STABILIZING EXTRA DIMENSIONS

Gero von Gersdorff (École Polytechnique) Warsaw, October 19th 2009

Collaboration with J.A.Cabrer and M.Quirós

OUTLINE

- Features of Warped Extra Dimensions
- Stabilizing Models with 2 branes
- Soft Wall models (Models with I brane)
- Stabilizing the Soft Wall
- (Soft Walls and the Cosmological Constant)

OPEN QUESTIONS IN THE SM (AND BEYOND)

- What is the origin of Electroweak Symmetry Breaking?
- Why is the scale of the Z and W bosons 10¹⁷ times smaller than the Planck mass? (Hierarchy Problem)
- Why is there such a huge hierarchy in the masses of the Standard Model fermions?
- What is the origin of neutrino masses?
- If there is **Supersymmetry**, how is it broken?
- If there is a Grand Unified Theory, how is it broken to the SM, and why are there no colored Higgses?

All these issues can be addressed in models with Extra Dimensions

RS MODELS

Randall & Sundrum '99

RS MODELS

Randall & Sundrum '99

Fifth Dimension

RS MODELS

Randall & Sundrum '99

Fundamental cutoff scale is redshifted

Fundamental cutoff scale is redshifted

Fundamental cutoff scale is redshifted

Arkani-Hamed & Schmalz '00, Shifman & Dvali '00, Gherghetta & Pomarol '00

SUMMARY RS MODELS

SUMMARY RS MODELS

- Extra Dimensions with WARPED background successful for
 - Explaining electroweak hierarchy
 - Explaining fermion mass hierarchy

SUMMARY RS MODELS

- Extra Dimensions with WARPED background successful for
 - Explaining electroweak hierarchy
 - Explaining fermion mass hierarchy
- Other features
 - Distinctive Collider Signature (KK gravitons)
 - Dual to strongly coupled gauge theories in 4D
 - "Modelling QCD"

PROBLEMS

- Pure 5D Gravity with negative Cosmological constant (and appropriate brane tensions) has RS as a solution.
- BUT: Interbrane distance is UNDETERMINED
- There is an extra massless mode (RADION)

$$g_{MN} = g_{MN}^{RS} + \begin{pmatrix} h_{\mu\nu} & \\ & h_{55} \end{pmatrix}$$

Both brane tensions need to be fine tuned

- The question of Radius stabilization
 - What determines **DISTANCE** between UV and IR brane?
 - How can I generate a POTENTIAL and a MASS for the Radion?
 - What ensures that the 4D metric is FLAT?
 - How NATURAL is it?

SUPERPOTENTIAL METHOD

SUPERPOTENTIAL METHOD

 $\lambda_0(\phi$

 $V(\phi)$

- $ds^{2} = e^{-2A(y)} dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dy^{2}$ • Gravity + scalar field with bulk and brane potential
- Solve Einstein equations coupled to scalar

SUPERPOTENTIAL METHOD

- Gravity + scalar field $ds^2 = e^{-2A(y)}dx^{\mu}dx^{\nu}\eta_{\mu\nu} + dy^2$ with bulk and brane potential $\lambda_0(\phi)$ • Solve Einstein equations coupled to scalar
- Define a "Superpotential" $V(\phi) = 3W'(\phi)^2 12W^2(\phi)$ NO SUSY
- Einstein equations become $\phi'(y) = W'(\phi)$ $A'(y) = W(\phi)$
- Boundary values from Minimizing the 4D potentials $V_i(\phi) = \lambda_i(\phi) - 6 W(\phi)$

DeWolfe et al '99, Brandhuber & Sfetsos '99

- Solve to get bulk profiles $\phi'(y) = W'(\phi)$ $A'(y) = W(\phi)$ - Minimize to get brane values $V_i(\phi_i) = \lambda_i(\phi_i) - 6W(\phi_i)$

- Solve to get bulk profiles $\phi'(y) = W'(\phi)$ $A'(y) = W(\phi)$ - Minimize to get brane values $V_i(\phi_i) = \lambda_i(\phi_i) - 6 W(\phi_i)$

- Notice that $e^{k y_1} = 10^{16} \Longrightarrow k y_1 \approx 37$

- Choose some suitable W such that

$$k y_1 = \int_{\phi_0}^{\phi_1} \frac{1}{W'} \approx 37$$
- Now shift superpotential $W \to W + k$
 $A(y) \to A(y) + k y$

- Adds warping without changing the value of ky_1

DeWolfe et al '00, Cabrer, GG & Quirós '09

GOLDBERGER WISE

Goldberger & Wise '99

Do we need two branes?

GAUGE/GRAVITY DUALITY

GAUGE/GRAVITY DUALITY

- Gravity/Gauge theory correspondence stipulates that the 5D theory is dual to a strongly coupled 4D gauge theory that
 - is approximately conformal in the UV
 - has large number of colors
 - describes the same physics as 5D theory

GAUGE/GRAVITY DUALITY

- Gravity/Gauge theory correspondence stipulates that the 5D theory is dual to a strongly coupled 4D gauge theory that
 - is approximately conformal in the UV
 - has large number of colors
 - describes the same physics as 5D theory
- KK modes correspond to resonances of gauge theory
 - RS with two branes: KK spectrum is roughly $m_n^2 \sim n^2$
 - 4D strongly coupled gauge theories have many more possibilities.

IR brane can be replaced by SOFT WALL

SOFT WALLS

SOFT WALLS

Soft Walls models only possess a single (UV) brane, but nevertheless exhibit a finite length in the 5th dimension. The IR brane is replaced by a curvature singularity at which the metric vanishes.

SOFT WALLS

Soft Walls models only possess a single (UV) brane, but nevertheless exhibit a finite length in the 5th dimension. The IR brane is replaced by a curvature singularity at which the metric vanishes.

SOFT WALLS

Soft Walls models only possess a single (UV) brane, but nevertheless exhibit a finite length in the 5th dimension. The IR brane is replaced by a curvature singularity at which the metric vanishes.

Profiles diverge at finite y if $W(\phi) \sim \phi^2$ or faster!

APPLICATIONS

APPLICATIONS

- Things that CAN be done with Soft Walls
 - Electroweak Breaking
 - Strong interactions (AdS/QCD)

Batell, Gherghetta & Sword '08, Falkowski & Perez-V. '08, Cabrer, GG & Quiros (in progr.)

Karch et al '06, Gursoy et al '07, Batell & Gherghetta '08,

APPLICATIONS

- Things that CAN be done with Soft Walls
 - Electroweak Breaking
 - Strong interactions (AdS/QCD)

Batell, Gherghetta & Sword '08, Falkowski & Perez-V. '08, Cabrer, GG & Quiros (in progr.)

Karch et al '06, Gursoy et al '07, Batell & Gherghetta '08,

- Things that CANNOT be done with Soft Walls
 - Solve Cosmological Constant problem

Arkani-Hamed et al '00, Kachru, Schulz & Silverstein '00 , Csaki et al '00

SPECTRA WITH SOFT WALLS

SPECTRA WITH SOFT WALLS

• Even though the physical length is finite, the conformal length might be either finite or infinite:

Proper Length coordinatesConformally flat coordinates $ds^2 = e^{-2A(y)} dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dy^2$ $ds^2 = e^{-2A(z)} (dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dz^2)$ $y_s < \infty$, $z_s = z(y_s)$ can be finite or infinite

SPECTRA WITH SOFT WALLS

• Even though the physical length is finite, the conformal length might be either finite or infinite:

 $\begin{array}{ll} \mbox{Proper Length coordinates} & \mbox{Conformally flat coordinates} \\ ds^2 = e^{-2A(y)} dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dy^2 & ds^2 = e^{-2A(z)} (dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dz^2) \\ y_s < \infty, & z_s = z(y_s) & \mbox{can be finite or infinite} \end{array}$

 In the conformally flat frame, the KK spectrum of any bulk field follows a Schrödinger Equation

$$-\psi''(z) + \hat{V}(z)\psi(z) = m^2\psi(z)$$

Depends on the background

NON CONFINING POTENTIALS Conformal length infinite

$W(\phi)$	$\leq \phi^2$	$ > \phi^2 \\ < e^{\phi} $	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$ \begin{array}{ c c c } > e^{\phi} \phi^{\frac{1}{2}} \\ < e^{2\phi} \end{array} $	$\geq e^{2\phi}$	
y_s	∞						
z_s			finite				
mass	conti	nuous	continuous discrete				
spectrum		liuous	w/ mass gap	$m_n \sim n^{2\beta}$ $m_n \sim n^{2\beta}$		$\sim n$	
consistent solution		yes					

$W(\phi)$	$\leq \phi^2$	$> \phi^2 \\ < e^{\phi}$	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$ > e^{\phi} \phi^{\frac{1}{2}} \\ < e^{2\phi} $	$\geq e^{2\phi}$
y_s	∞					
Z_S			∞	finite		
mass	continuous		continuous	discrete		
spectrum			w/ mass gap	$\begin{bmatrix} m_n \sim n^{2\beta} \end{bmatrix} \qquad m_n \sim n$		$\sim n$
consistent solution			yes			no

- Asymptotic behaviour of W

_	$W(\phi)$	$\leq \phi^2$	$> \phi^2$	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$> e^{\phi} \phi^{\frac{1}{2}}$ $< e^{2\phi}$	$\geq e^{2\phi}$	
	(φ)		$< e^{\phi}$		$0 < \beta \le \frac{1}{2}$	$< e^{2\phi}$		
	y_s	∞						
	Z_{S}			∞	finite			
	mass	continuous		continuous	discrete			
	spectrum			w/ mass gap	$\begin{bmatrix} m_n \sim n^{2\beta} \end{bmatrix} \qquad m_n \sim n^{2\beta}$		$\sim n$	
	consistent			VOC		no		
	solution	yes						

-Asymptotic behaviour of W

Singularity in "proper distance"

	$W(\phi)$	$\leq \phi^2$	$> \phi^2$ $< e^{\phi}$	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$> e^{\phi} \phi^{\frac{1}{2}}$ $< e^{2\phi}$	$\geq e^{2\phi}$
	y_s	∞			finite		
	Z_{S}			∞ fi			te
	mass	continuous		continuous	discrete		
	spectrum			w/ mass gap	$\begin{bmatrix} m_n \sim n^{2\beta} \end{bmatrix} \qquad m_n \sim n$		$\sim n$
	consistent solution			yes			no

- Asymptotic behaviour of W

- -Singularity in "proper distance"
- -Singularity in "conformal distance"

	$W(\phi)$	$\leq \phi^2$	$> \phi^2$ $< e^{\phi}$	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$> e^{\phi}\phi^{\frac{1}{2}}$	$\geq e^{2\phi}$		
	$VV(\varphi)$		$< e^{\phi}$		$0 < \beta \leq \frac{1}{2}$	$< e^{2\phi}$			
	y_s	∞			finite				
	z_s			∞		fini	te		
	mass	continuous		continuous	discrete				
	spectrum	commuous		w/ mass gap	$m_n \sim n^{2\beta}$	$m_n \sim$	$\sim n$		
	consistent solution			yes		no			
	Asymptoti	c beha	viour	ot VV					
	——Singularity in ''proper distance''								
	——Singularity in ''conformal distance''								
	Asymptoti	mptotic form of the spectrum Gursoy et al '07,							

		.0	.0	1	1 . 0	1,1			
	$-W(\phi)$	$\leq \phi^2$	$> \phi^2 \\ < e^{\phi}$	e^{ϕ}	$e^{\phi}\phi^{\beta}$	$\begin{vmatrix} > e^{\phi}\phi^{\frac{1}{2}} \\ < e^{2\phi} \end{vmatrix}$	$\geq e^{2\phi}$		
	$vv(\varphi)$		$< e^{\phi}$		$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$< e^{2\phi}$			
	y_s	∞			finite				
-	z_s			∞		fini	te		
	mass	conti	0110115	continuous	C	liscrete			
	spectrum		Iuous	w/ mass gap	$m_n \sim n^{2\beta}$	$m_n \sim$	$\sim n$		
	consistent			VAS			no		
	solution		yes				IIO		
	- Asymptoti	c beha	viour	ofW	- Finite	Length			
	——Singularity in "proper distance"								
	Singularity in ''conformal distance''								
	Asymptotic form of the spectrum Gursoy et al '07, Cabrer, GG & Quirós '0								

		2 T	11					
Г	$-W(\phi)$	$\leq \phi^2$	$ > \phi^2 \\ < e^{\phi} $	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$\begin{vmatrix} > e^{\phi} \phi^{\frac{1}{2}} \\ < e^{2\phi} \end{vmatrix}$	$\geq e^{2\phi}$	
			$ < e^{\varphi}$		$0 < \beta \leq \frac{1}{2}$	$ < e^{2\varphi}$		
	y_s	∞			finite			
	z_s			∞		fini	te	
	mass	continuous		continuous	C	liscrete	ete	
	spectrum	continuous		w/ mass gap	$m_n \sim n^{2\beta}$	$m_n \sim$	$\sim n$	
	consistent			VOC			no	
	solution			yes no			no	
L	- Asymptoti	c beha	viour	ofW	- Finite	Length		
	, ,							
	-Singularity	in "pro	oper d	istance"	- Mass	gap appe	ears	
	Singularity in "conformal distance"							
Asymptotic form of the spectrum Gursoy et al '07, Cabrer, GG & Quirós								

and the second							
$W(\phi)$	$\leq \phi^2$	$> \phi^2 \\ < e^{\phi}$	e^{ϕ}	$e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$	$ > e^{\phi} \phi^{\frac{1}{2}} \\ < e^{2\phi} $	$\geq e^{2\phi}$	
		$< e^{\varphi}$		$0 < \beta \le \frac{1}{2}$	$< e^{2\varphi}$		
y_s	∞			finite			
z_s			∞		fini	te	
mass	conti	nuous	continuous	d	liscrete		
spectrum		luous	w/ mass gap	$m_n \sim n^{2\beta}$	$m_n \sim$	$\sim n$	
consistent			VOC			no	
solution			yes			no	
	1978 - 188 1978 - 188						
Asymptoti	c beha	viour	ofW	 Finite Length Mass gap appears 			
— Singularity	in "pro	oper d	istance''				
- Singularity	IN "COI	Specti	rum disc	rete			
—Asymptoti	c form		soy et al '07, rer, GG & Q				

SOFT WALL STABILIZATION

SOFT WALL STABILIZATION

- Stabilization works similar as before
- Choose some suitable W such that

$$ky_s = \int_{\phi_0}^{\infty} \frac{1}{W'(\phi)} \approx 37$$

- Now shift superpotential $W \to W + k$

$$A(y) \to A(y) + k y$$

- Shift does not change position of singularity

SOFT WALL STABILIZATION

Stabilization works similar as before
Choose some suitable W such that $ky_s = \int_{\phi_0}^{\infty} \frac{1}{W'(\phi)} \approx 37$ - Now shift superpotential W → W + k $A(y) \to A(y) + k y$ - Shift does not change position of singularity

The Warping affects the Mass scale:

- The Unparticle mass gap
- The level spacing in the discrete case

Cabrer, GG & Quirós '09

PARTICULAR MODELS

Consider the class of models $W(\phi) = k(1 + e^{\nu\phi})$ $ky_s = \frac{1}{\nu^2} e^{-\nu\phi_0} \approx 37$ for O(1) negative values for ϕ_0

Discrete, hard-wall like

WAVE FUNCTIONS

THE RADION SPECTRUM

THE RADION SPECTRUM

Monday, October 19, 2009

THE RADION SPECTRUM

NO ZERO MODE

 $V(\phi) = 3W'(\phi)^2 - 12W^2(\phi)$ $\phi'(y) = W'(\phi)$ $A'(y) = W(\phi)$

3 constants of integration

 $V(\phi) = 3W'(\phi)^2 - 12W^2(\phi)$ $\phi'(y) = W'(\phi)$ $A'(y) = W(\phi)$

3 constants of integration

2 Branes:

$$V'_{0}(\phi_{0}) = 0$$

 $V_{0}(\phi_{0}) = 0$
 $V'_{1}(\phi_{1}) = 0$
 $V_{1}(\phi_{0}) = 0$

4 boundary conditions

 $V(\phi) = 3W'(\phi)^2 - 12W^2(\phi)$ $\phi'(y) = W'(\phi)$ $A'(y) = W(\phi)$

3 constants of integration

2 Branes:

$$V_0'(\phi_0) = 0$$
$$V_0(\phi_0) = 0$$
$$V_1'(\phi_1) = 0$$
$$V_1(\phi_0) = 0$$

4 boundary conditions

I fine tuning

 $V(\phi) = 3W'(\phi)^2 - 12W^2(\phi)$ $\phi'(y) = W'(\phi)$ $A'(y) = W(\phi)$

3 constants of integration

rane:
$$\begin{array}{l} V_0'(\phi_0) = 0 \\ V_0(\phi_0) = 0 \end{array} \} 2 \text{ boundary conditions} \end{array}$$

R

 $V(\phi) = 3W'(\phi)^2 - 12W^2(\phi)$ $\phi'(y) = W'(\phi)$ $A'(y) = W(\phi)$

3 constants of integration

Brane:

$$V'_0(\phi_0) = 0 \quad \} \quad 2 \text{ boundary conditions}$$

No fine tuning??

This is incorrect!!!

This is incorrect!!!

4D CC =
$$\int dy \mathcal{L}^{\text{on-shell}} \stackrel{!}{=} 0$$

This is incorrect!!!

4D CC =
$$\int dy \mathcal{L}^{\text{on-shell}} = \lim_{y \to y_s} W[\phi(y)] e^{-4A(y)}$$

This is incorrect!!!

Forste et al '00, Cabrer, GG & Quirós '09

4D CC =
$$\int dy \mathcal{L}^{\text{on-shell}} = \lim_{y \to y_s} W[\phi(y)]e^{-4A(y)}$$

- There is a contribution to the CC from the singularity!

This is incorrect!!!

Forste et al '00, Cabrer, GG & Quirós '09

4D CC =
$$\int dy \mathcal{L}^{\text{on-shell}} = \lim_{y \to y_s} W[\phi(y)]e^{-4A(y)}$$

- There is a contribution to the CC from the singularity!

- Equations of motion are NOT satisfied at the singularity

This is incorrect!!!

Forste et al '00, Cabrer, GG & Quirós '09

4D CC =
$$\int dy \mathcal{L}^{\text{on-shell}} = \lim_{y \to y_s} W[\phi(y)] e^{-4A(y)}$$

- There is a contribution to the CC from the singularity!

- Equations of motion are NOT satisfied at the singularity

- Can be fixed by choosing the integration constant for W

This is incorrect!!!

Forste et al '00, Cabrer, GG & Quirós '09

4D CC =
$$\int dy \mathcal{L}^{\text{on-shell}} = \lim_{y \to y_s} W[\phi(y)]e^{-4A(y)}$$

- There is a contribution to the CC from the singularity!

- Equations of motion are NOT satisfied at the singularity
- Can be fixed by choosing the integration constant for W
- Fine tuning is restored

CONCLUSIONS

- RS models provide neat way of obtaining electroweak and fermion mass hierarchy
- Stabilization can be achieved by adding extra scalar field
- IR brane can be consistently replaced by Soft Walls
- Spectra of Soft Wall models richer than in usual RS (gapped continuum, gapped, discretuum, Regge-like, etc.)
- Stabilization can be achieved without ANY fine tuning