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OUTLINE

* Features of Warped Extra Dimensions

» Stabilizing Models with 2 branes

» Soft Wall models (Models with | brane)

» Stabilizing the Soft Wall

* (Soft Walls and the Cosmological Constant)
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OPEN QUESTIONS IN THE SM
(AND BEYOND)

* What 1s the origin of Electroweak Symmetry Breaking!

* Why is the scale of the Z and W bosons 10!/ times smaller than the
Planck mass! (Hierarchy Problem)

* Why Is there such a huge hierarchy in the masses of the Standard
Model fermions!

* What Is the origin of neutrino masses!?
* If there I1s Supersymmetry, how Is it broken!?

* If there I1s a Grand Unified Theory, how Is It broken to the SM, and
why are there no colored Higgses!?
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All these issues can be addressed in models
with Extra Dimensions
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RS MODELS

Randall & Sundrum ’99
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RS MODELS
/

Randall & Sundrum ’99

ds® = e@x“dz“nuy + dy?

Warp factor

o Fifth Dimension
O v )
Boundary | ndary
Msq ¢ Tl e™ "Y1 Msq

Fundamental cutoff scale is redshifted
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RS MODELS
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Randall & Sundrum ’99

d82 S 6_2kyd513'ud£li‘l/77'u,/ _|_dy2 nggs

Warp factor

o Fifth Dimension
O v )
Boundary | ndary
Msq ¢ Tl e™ "Y1 Msq

Fundamental cutoff scale is redshifted

Monday, October 19, 2009



FERMION MASSES

Arkani-Hamed & Schmalz
’00, Shifman & Dvali ’00,
Gherghetta & Pomarol ‘00
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UV Brane

FERMION MASSES

s

Higgs
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Arkani-Hamed & Schmalz
’00, Shifman & Dvali ’00,
Gherghetta & Pomarol ‘00
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so 9@ y) = Qo(y) qo(a")

fields

UV Brane
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FERMION MASSES

Wave functions Arkani-Hamed & Schmalz
) ’00, Shifman & Dvali ’00,
\ / 4D fields Gherghetta & Pomarol ‘00
w ol v
X — X
o _de ) = Qe

fields (+ KK modes)

Higgs

/ Fermions: 5D masses
control localization
of wave functions

UV Brane IR brane

=

- Localize heavy fermions on IR brane
- Localize light fermions on UV brane

Yip = Y54 Qo(y1) Up(y1) =—>
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SUMMARY RS MODELS

» Extra Dimensions with WARPED background successtul for
* Explaining electroweak hierarchy

* Explaining fermion mass hierarchy




SUMMARY RS MODELS

» Extra Dimensions with WARPED background successtul for
* Explaining electroweak hierarchy
* Explaining fermion mass hierarchy

- Ol eenllges
» Distinctive Collider Signature (KK gravitons)

» Dual to strongly coupled gauge theories in 4D

B Mede|ing QCD"
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PROBLEMS

* Pure 5D Gravity with negative Cosmological constant (and
appropriate brane tensions) has RS as a solution.

 BUT: Interbrane distance 1s UNDETERMINED

* [here Is an extra massless mode (RADION)

R
QMNZ!JJ%\ML( £ 7 )
15%5)

« Both brane tensions need to be fine tuned
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STABILIZATION

* [he question of Radius stabilization

* What determines DISTANCE between UV and IR brane!

* How can | generate a POTENTIAL and a MASS for the
Radion!?

* What ensures that the 4D metric 1s FLAT?

BN AT URAL s it
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SUPERPOTENTIAL METHOD

» Gravity + scalar field
with bulk and brane potential

» Solve Einstein equations
coupled to scalar

N\

7|
\

A

a2 6—2A(y)dxudwunuy ik dyQ/

Ao (@)

V(o)
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SUPERPOTENTIAL METHOD

f 2 2A 2 1
» Gravity + scalar field ds® = e dat da"n,, + dy/
with bulk and brane potential Ao\(@ />\1(¢)
N
* Solve Einstein equations V(o) :
led to scalar
\ cCoup » / )
f >
. (f ey e / D, 2
Define a “Superpotential” V(¢) = 3W'(¢)* — 12W=(¢) I:SS&SE\I!)

» Einstein equations become ¢'(y) = W'(¢) A'(y) = W(¢)

* Boundary values from Minimizing the 4D potentials
Vi(@) = Ai(¢) — 6 W (o)
DeWolfe et al 99, Brandhuber & Sfetsos 99

! J
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STABILIZATION

(_ Solve to set bulk profiles  ¢'(y) =W'(¢) A'(y) = W (o)
- Minimize to get brane values V;(¢;) = Ai(¢i) — 6 W(¢;)

N

N

_4




STABILIZATION

(_ Solve to set bulk profiles  ¢'(y) =W'(¢) A'(y) = W (o)
- Minimize to get brane values V;(¢;) = Ai(¢i) — 6 W(¢;)

N

8 4

. )
- Notice that e*¥ = 101 — ky; ~ 37

- Choose some suitable W such that

b1
kyi = ) W’ ~ 37
- Now shift superpotential W — W + k&

Aly) — Aly) +ky
- Adds warping without changing the value of k3

- 4

DeWolfe et al ’00,
Cabrer, GG & Quiros 09
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GOLDBERGER WISE

Goldberger & Wise 99

(7 -

Take W'(¢) =kb¢
“Then ky1 = b~ 'log ¢1/¢o = 37

- Moderate fine tuning necessary

- Metric A(y) = ky + &g @8 _ 1)

A \

Warping Exact Backreaction

- Backreaction small:

B
k—R < .01 for b_l :37, Qb():l/e, gbl =i
Y
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Do we need two branes?
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GAUGE/GRAVITY DUALITY

» Gravity/Gauge theory correspondence stipulates that the 5D
theory Is dual to a strongly coupled 4D gauge theory that

* IS approximately conformal in the UV
* has large number of colors

» describes the same physics as 5D theory
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GAUGE/GRAVITY DUALITY

» Gravity/Gauge theory correspondence stipulates that the 5D
theory Is dual to a strongly coupled 4D gauge theory that

* IS approximately conformal in the UV
* has large number of colors
» describes the same physics as 5D theory
» KK modes correspond to resonances of gauge theory
* RS with two branes: KK spectrum Is roughly m; ~n’

* 4D strongly coupled gauge theories have many more
possibilities.
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POSSIBLE SPECTRA

Regge M° ~n

Conformal

p(M

p(M*)

i

)

RS M? ~ n?

>M2

Conformal + Gap (Unparticles)

(\) M2




IR brane can be replaced by SOFT WALL
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SOFT WALLS




SOFT WALLS

Soft Walls models only possess a single (U\/)\
brane, but nevertheless exhibit a finrte length in the
SNGimERsion. [he IR brane IS repldccaiue s
.curvature singularity at which the metric vanishes.

J
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SOFT WALLS

Soft Walls models only possess a single (U\/)\
brane, but nevertheless exhibit a finrte length in the
SiaNcimmERsion. he R brane sk replacEEmse A
.curvature singularity at which the metric vanishes.

J

Profiles diverge at finite y )
W (¢) ~ ¢* or faster!

\ _/
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APPLICATIONS

* Things that CAN be done with Soft Walls

Batell, Gherghetta & Sword ’08,

» Electroweak Breaking Fallemnld 2 A
Cabrer, GG & Quiros (in progr.)
» Strong interactions (AdS/QCD) eyl €6 2l U5, Clisey i el

'07, Batell & Gherghetta ’08,
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APPLICATIONS

* Things that CAN be done with Soft Walls

Batell, Gherghetta & Sword ’08,

* Electroweak Breaking Falleonysld & [Femeei L
Cabrer, GG & Quiros (in progr.)
» Strong interactions (AdS/QCD) eyl €6 2l U5, Clisey i el

'07, Batell & Gherghetta ’08,

* Things that CANNOT be done with Soft Walls

Arkani-Hamed et al ’00,

» Solve Cosmological Constant problem Kachru, Schulz & Silverstein
'00 , Csaki et al ’00

Forste et al 00,
Cabrer, GG & Quiros '09
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SPECTRAWITH SOFI WALLS




SPECTRAWITH SOFI WALLS

» Even though the physical length is finite, the conformal length
might be erther finite or infinite:

7 . . h
Proper Length coordinates Conformally flat coordinates
ds® = e_QA(y)dx“dx”nW + dy” ds2 —len 2l el

ys <00,  zs=2(ys) can be finite or infinite

N v
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SPECTRAWITH SOFI WALLS

» Even though the physical length is finite, the conformal length
might be erther finite or infinite:

7 . . h
Proper Length coordinates Conformally flat coordinates
ds® = e_QA(y)dx“dx”nW + dy” ds2 —len 2l el

ys <00,  zs=2(ys) can be finite or infinite j

\ ¥

* In the conformally flat frame, the KK spectrum of any bulk field
follows a Schrodinger Equation

7 )

A

—¢"(2) + V(2)p(2) = m*9(2)

|

Depends on the background
\. 4
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NON CONFNING POTENTIALS
Conformal length infinite

Conformal (continuous) ) \ Unparticle (continuous
| + gap)

~
~
~
s
s
...-
bl .
------------------------

Z Z

CONFINING POTENTIALS
Conformal length finite or infinite

RS like: M2 ~ n?
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BOF T VWALL SPECTRS

< ¢ | > ¢? e e?d’ | >efpz | > e
Wi¢) < e? 0<pB<3 <
Uk o' finite
% 00 finite
mass . continuous discrete
continuous 5
spectrum w/ mass gap | m, ~ n?’ My ~ N
consistent
solution YO8 =

Gursoy et al ’07,
Cabrer, GG & Quiros ’09
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BOF T VWALL SPECTRS

< ¢ | > ¢? e e?d® | >efpz | > e
Wi¢) < e? 0<pB<3 =
Uk o' finite
% o0 finite
mMass . continuous discrete
continuous 5
spectrum w/ mass gap | m, ~ n?’ My ~ N
consistent
solution YR e

— Asymptotic behaviour of W

Gursoy et al ’07,
Cabrer, GG & Quiros ’09
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BOF T VWALL SPECTRS

< ¢ | > ¢? e e?d’ | >efpz | > e
Wi¢) < e? 0<pB<3 <
e 00 finite
% 00 finite
mass . continuous discrete
continuous 5
spectrum w/ mass gap | m, ~ n?’ My ~ N
consistent
solution YO8 =

— Asymptotic behaviour of W

—Singularity in “proper distance”

Gursoy et al ’07,
Cabrer, GG & Quiros ’09
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BOF T VWALL SPECTRS

< ¢ | > ¢? e e?d’ | >efpz | > e
W(e) < e? gl | <
e o0 finite
e 00 finite
mass . continuous discrete
continuous 5
spectrum w/ mass gap | m, ~ n?’ My ~ N
consistent
solution YO8 =

— Asymptotic behaviour of W

—Singularity in “proper distance”

— Singularity in “conformal distance”

Gursoy et al ’07,
Cabrer, GG & Quiros ’09
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BOF T VWALL SPECTRS

< ¢ | > ¢? e e?d’ | >efpz | > e
W(e) < e? gl | <
e 00 finite
% 00 finite
mass . continuous discrete
continuous 5
spectrum w/ mass gap | m, ~ n?’ My ~ N
consistent
solution YO8 =

— Asymptotic behaviour of W

—Singularity in “proper distance”

— Singularity in “conformal distance”

Asymptotic form of the spectrum Gursoy et al '07,
Cabrer, GG & Quiros ’09

Monday, October 19, 2009



BOF T VWALL SPECTRS

W | S[>¢ e e?d® | >efpz | > e
< e? = | < oo
U o' finite
% 00 finite
mass . continuous discrete
continuous 53
spectrum w/ mass gap | m, ~n My, ~ T
consistent " ki
solution Y
— Asymptotic behaviour of W — llalE L= R
—Singularity in “proper distance”
—Singularity In “conformal distance”

Asymptotic form of the spectrum Gursoy et al '07,
Cabrer, GG & Quiros ’09
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BOF T VWALL SPECTRS

we |=¢]>9 e? e8¢’ | > etgi | > e
< e? = | < e2¢
e 00 finite
% 00 finite
mass : continuous discrete
continuous 33
spectrum w/ mass gap | m, ~n My, ~ T
consistent " 3
solution Y
— Asymptotic behaviour of W -inrte Length
—Singularity In “proper distance” — Mass gap appears
— Singularity in “conformal distance”

Asymptotic form of the spectrum Gursoy et al '07,
Cabrer, GG & Quiros ’09
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BOF T VWALL SPECTRS

we | 9]¢ e e?d® | >efpz | > e
< e? O <05 F B
U o' finite
% o0 finite
mass . continuous discrete
continuous 53
spectrum w/ mass gap | m, ~n My, ~ T
consistent " ki
solution Y
— Asymptotic behaviour of W -inrte Length
—Singularity in “proper distance” — Mass gap appears
mesiticularity In “conformal distance” —— Spectrum diseheie
Asymptotic form of the spectrum Gursoy et al '07,

Cabrer, GG & Quiros '09
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SOFT WALL STABILIZATION

f =
- Stabilization works similar as before

- Choose some suitable W such that

e |
kys = ~ 37
g0 W'(9)

- Now shift superpotential W — W + &k
Aly) — A(y) + ky

- Shift does not change position of singularity

\




SOFT WALL STABILIZATION

f =
- Stabilization works similar as before

- Choose some suitable W such that

G |
kys = ~ 37
g0 W'(P)

- Now shift superpotential W — W + &k
Aly) — A(y) + ky

- Shift does not change position of singularity

\

The Warping affects the Mass scale:
- I he Unparticle mass gap

- [ he level spacing In the discrete case

wal"ped down

Cabrer, GG & Quiros ’09
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PARTICULAR MODELS

@ -
Consider the class of models W(¢) = k(1 + €*?)
1 .
kys = — e V% ~ 37 for O(1) negative values for ¢o
\ 4

4 .

Spectrum can be

- Continuous

- Continuous+gap
- Discrete

\ 8 v
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THE GRAVITON SPECTRUM




THE GRAVITON SPECTRUM
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THE GRAVITON SPECTRUM

14T
12|
10|
S
QU ﬁ
\ L
=
4
2]
i S —
1 12 1.4 1.6 1.8 2
1 ”

gap + continuous

ooooooooooooooooooooo



THE GRAVITON SPECTRUM
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THE GRAVITON SPECTRUM
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Discrete, hard-wall like
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WAVE FUNCTIONS

B

7 AN e O
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THE RADION SPECTRUM




THE RADION SPECTRUM

15|

12,5

10}

m/p(v)

75 |

2.5 |

Monday, October 19, 2009



THE RADION SPECTRUM
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g e CC PROBLERS

V(g) =3W'(¢)" — 12W*(¢)

¢ (y) = W' (o) } 3 constants of integration
A'(y) = W(9)
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g e CC PROBLERS

V(g) =3W'(¢)" — 12W*(¢)

¢ (y) = W' (o) } 3 constants of integration
A'(y) = W(9)

, Vo (¢o) =0 Rt
| Brane: Vo(do) = 0 } 2 boundary conditions

No fine tuning?
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s riE CC PROBUEE

Forste et al ’00,

This is incorrect!!! Cabrer. GG & Ouirés *09

4D CC = / dy £o2 el — Tim W g(y)]e AW

Y—Ys

- There Is a contribution to the CC from the singularity!

- Equations of motion are NOT satisfied at the singularity
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s riE CC PROBUEE

Forste et al ’00,

This is incorrect!!! Cabrer. GG & Ouirés *09

AD) O] = /dy Lon—shell 1B W[gb(y)]€_4A(y)

Y—Ys

- There Is a contribution to the CC from the singularity!
- Equations of motion are NOT satisfied at the singularity

- Can be fixed by choosing the integration constant for W
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s riE CC PROBUEE

Forste et al ’00,

This is incorrect!!! Cabrer. GG & Ouirés *09

4D CC = / dy £o2 el — Tim W g(y)]e AW

Y—Ys

- There Is a contribution to the CC from the singularity!

- Equations of motion are NOT satisfied at the singularity

- Can be fixed by choosing the integration constant for W

- FIne tuning Is restored
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CONCLUSIONS

* RS models provide neat way of obtaining electroweak and
fermion mass hierarchy

» Stabilization can be achieved by adding extra scalar field
* IR brane can be consistently replaced by Soft Walls

» Spectra of Soft Wall models richer than in usual RS (gapped
continuum, gapped, discretuum, Regge-like, etc.)

- Stabilization can be achieved without ANY fine tuning
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