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OUTLINE

• Features of  Warped Extra Dimensions

• Stabilizing Models with 2 branes

• Soft Wall models (Models with 1 brane)

• Stabilizing the Soft Wall

• (Soft Walls and the Cosmological Constant)

Monday, October 19, 2009



OPEN QUESTIONS IN THE SM
 (AND BEYOND)

• What is the origin of Electroweak Symmetry Breaking?

• Why is the scale of the Z and W bosons 1017 times smaller than the 
Planck mass? (Hierarchy Problem)

• Why is there such a huge hierarchy in the masses of the Standard 
Model fermions?

• What is the origin of neutrino masses?

• If there is Supersymmetry, how is it broken?

• If there is a Grand Unified Theory, how is it broken to the SM, and 
why are there no colored Higgses?
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All these issues can be addressed in models 
with Extra Dimensions

Monday, October 19, 2009



RS MODELS
Randall & Sundrum ’99
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RS MODELS

Fifth Dimension
4D 

Boundary
4D 

Boundary

Randall & Sundrum ’99
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Boundary

ds2 = e−2 k ydxµdxνηµν + dy2

Warp factor
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RS MODELS

M5d M5d M5de−ky

Fifth Dimension
4D 

Boundary
4D 

Boundary

Fundamental cutoff scale is redshifted

ds2 = e−2 k ydxµdxνηµν + dy2

Warp factor

e−ky1

Randall & Sundrum ’99
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FERMION MASSES
Arkani-Hamed & Schmalz 
’00, Shifman & Dvali ’00, 
Gherghetta & Pomarol ‘00

Monday, October 19, 2009



FERMION MASSES

UV Brane
IR brane

Higgs
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FERMION MASSES

UV Brane
IR brane

Higgs(+ KK modes)
5D 

fields

4D fields

Wave functions

q(xµ, y) = Q0(y) q0(xµ)

Arkani-Hamed & Schmalz 
’00, Shifman & Dvali ’00, 
Gherghetta & Pomarol ‘00
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FERMION MASSES

UV Brane
IR brane

Higgs
Fermions: 5D masses 
control localization 
of wave functions

(+ KK modes)
5D 

fields

4D fields

Wave functions

q(xµ, y) = Q0(y) q0(xµ)

- Localize heavy fermions on IR brane
- Localize light fermions on UV braneY4D = Y5d Q0(y1) U0(y1)

Arkani-Hamed & Schmalz 
’00, Shifman & Dvali ’00, 
Gherghetta & Pomarol ‘00
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SUMMARY RS MODELS
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SUMMARY RS MODELS
• Extra Dimensions with WARPED background successful for

• Explaining electroweak hierarchy

• Explaining fermion mass hierarchy
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SUMMARY RS MODELS
• Extra Dimensions with WARPED background successful for

• Explaining electroweak hierarchy

• Explaining fermion mass hierarchy

• Other features

• Distinctive Collider Signature (KK gravitons)

• Dual to strongly coupled gauge theories in 4D

• “Modelling QCD”
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PROBLEMS

• Pure 5D Gravity with negative Cosmological constant (and 
appropriate brane tensions) has RS as a solution.

• BUT: Interbrane distance is UNDETERMINED

• There is an extra massless mode (RADION)

• Both brane tensions need to be fine tuned

gMN = gRS
MN +

(
hµν

h55

)
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STABILIZATION

• The question of Radius stabilization

• What determines DISTANCE between UV and IR brane?

• How can I generate a POTENTIAL and a MASS for the 
Radion?

• What ensures that the 4D metric is FLAT?

• How NATURAL is it?
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SUPERPOTENTIAL METHOD
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SUPERPOTENTIAL METHOD
• Gravity + scalar field

with bulk and brane potential 

• Solve Einstein equations 
coupled to scalar

λ0(φ) λ1(φ)

V (φ)

ds2 = e−2A(y)dxµdxνηµν + dy2
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SUPERPOTENTIAL METHOD
• Gravity + scalar field

with bulk and brane potential 

• Solve Einstein equations 
coupled to scalar

λ0(φ) λ1(φ)

V (φ)

ds2 = e−2A(y)dxµdxνηµν + dy2

• Define a “Superpotential” 

• Einstein equations become

• Boundary values from Minimizing the 4D potentials

V (φ) = 3W ′(φ)2 − 12W 2(φ)

φ′(y) = W ′(φ) A′(y) = W (φ)

Vi(φ) = λi(φ)− 6 W (φ)

NO SUSY
INVOLVED

DeWolfe et al ’99, Brandhuber & Sfetsos ’99
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STABILIZATION
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STABILIZATION
φ′(y) = W ′(φ) A′(y) = W (φ)

Vi(φi) = λi(φi)− 6 W (φi)

- Solve to get bulk profiles

- Minimize to get brane values
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STABILIZATION
φ′(y) = W ′(φ) A′(y) = W (φ)

Vi(φi) = λi(φi)− 6 W (φi)

- Solve to get bulk profiles

- Minimize to get brane values

 - Choose some suitable W such that 

k y1 =
∫ φ1

φ0

1
W ′ ≈ 37

- Notice that ek y1 = 1016 =⇒ k y1 ≈ 37

- Now shift superpotential W →W + k

A(y)→ A(y) + k y

- Adds warping without changing the value of  ky1

DeWolfe et al ’00,
Cabrer, GG & Quirós ’09

Monday, October 19, 2009



GOLDBERGER WISE

- Take W ′(φ) = k b φ

- Then ky1 = b−1 log φ1/φ0 ≈ 37

- Moderate fine tuning necessary  

- Metric 

Exact BackreactionWarping

A(y) = ky + 1
2φ2

0 (e2 b k y − 1)

- Backreaction small: 
BR

ky
< .01 for b−1 = 37, φ0 = 1/e, φ1 = 1

Goldberger & Wise ’99
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Do we need two branes?
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GAUGE/GRAVITY DUALITY
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GAUGE/GRAVITY DUALITY
• Gravity/Gauge theory correspondence stipulates that the 5D 

theory is dual to a strongly coupled 4D gauge theory that

• is approximately conformal in the UV

• has large number of colors

• describes the same physics as 5D theory
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GAUGE/GRAVITY DUALITY
• Gravity/Gauge theory correspondence stipulates that the 5D 

theory is dual to a strongly coupled 4D gauge theory that

• is approximately conformal in the UV

• has large number of colors

• describes the same physics as 5D theory

• KK modes correspond to resonances of gauge theory

• RS with two branes: KK spectrum is roughly 

• 4D strongly coupled gauge theories have many more 
possibilities. 

m2
n ∼ n2
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POSSIBLE SPECTRA

M2

ρ(M2)
Conformal 

M2

ρ(M2)
Conformal + Gap (Unparticles) 

M2

ρ(M2) Regge M2 ∼ n

M2

ρ(M2) RS M2 ∼ n2
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IR brane can be replaced by SOFT WALL
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SOFT WALLS
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SOFT WALLS

Soft Walls models only possess a single (UV) 
brane, but nevertheless exhibit a finite length in the 
5th dimension. The IR brane is replaced by a 
curvature singularity at which the metric vanishes.
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SOFT WALLS

Soft Walls models only possess a single (UV) 
brane, but nevertheless exhibit a finite length in the 
5th dimension. The IR brane is replaced by a 
curvature singularity at which the metric vanishes.

A(y)

φ(y)

y ys
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SOFT WALLS

Soft Walls models only possess a single (UV) 
brane, but nevertheless exhibit a finite length in the 
5th dimension. The IR brane is replaced by a 
curvature singularity at which the metric vanishes.

A(y)

φ(y)

y ys

Profiles diverge at finite y if
W (φ) ∼ φ2 or faster!
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APPLICATIONS
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APPLICATIONS

• Things that CAN be done with Soft Walls

• Electroweak Breaking 

• Strong interactions (AdS/QCD)

Batell, Gherghetta & Sword ’08, 
Falkowski & Perez-V. ’08, 
Cabrer, GG & Quiros (in progr.)

Karch et al ’06, Gursoy et al 
’07, Batell & Gherghetta ’08, 
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APPLICATIONS

• Things that CAN be done with Soft Walls

• Electroweak Breaking 

• Strong interactions (AdS/QCD)

• Things that CANNOT be done with Soft Walls

• Solve Cosmological Constant problem

Batell, Gherghetta & Sword ’08, 
Falkowski & Perez-V. ’08, 
Cabrer, GG & Quiros (in progr.)

Karch et al ’06, Gursoy et al 
’07, Batell & Gherghetta ’08, 

Arkani-Hamed et al ’00,  
Kachru, Schulz & Silverstein 
’00 , Csaki et al ’00 

Forste et al ’00, 
Cabrer, GG & Quirós ’09
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SPECTRA WITH SOFT WALLS
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SPECTRA WITH SOFT WALLS
• Even though the physical length is finite, the conformal length 

might be either finite or infinite:

ds2 = e−2A(y)dxµdxνηµν + dy2

Proper Length coordinates

ds2 = e−2A(z)(dxµdxνηµν + dz2)

Conformally flat coordinates

ys <∞ , zs = z(ys) can be finite or infinite
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SPECTRA WITH SOFT WALLS
• Even though the physical length is finite, the conformal length 

might be either finite or infinite:

• In the conformally flat frame, the KK spectrum of any bulk field 
follows a Schrödinger Equation

ds2 = e−2A(y)dxµdxνηµν + dy2

Proper Length coordinates

ds2 = e−2A(z)(dxµdxνηµν + dz2)

Conformally flat coordinates

ys <∞ , zs = z(ys) can be finite or infinite

Depends on the background

−ψ′′(z) + V̂ (z)ψ(z) = m2ψ(z)
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NON CONFINING POTENTIALS

CONFINING POTENTIALS

Conformal length infinite

Conformal length finite or infinite

Conformal (continuous) 

z

Regge: M2 ∼ n

z

M2 ∼ n2RS like: 

z zs

Unparticle (continuous 
+ gap)

z

V̂ (z)V̂ (z)

V̂ (z) V̂ (z)
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W (φ)
≤ φ2 > φ2 eφ eφφβ > eφφ

1

2 ≥ e2φ

< eφ 0 < β ≤ 1

2
< e2φ

ys ∞ finite
zs ∞ finite

mass
continuous

continuous discrete
spectrum w/ mass gap mn ∼ n2β mn ∼ n
consistent

yes no
solution

Table 1: Spectra resulting from different asymptotic forms of the superpotential.
In the first row we give the asymptotic behavior of W (φ), with the strength of
the divergence increasing from left to right (> means ”diverges faster than”, etc).
Second and third row show the finiteness of ys and zs, with the behavior changing
at W ∼ φ2 and W ∼ eφφ

1

2 respectively. The third row shows the spectrum, while
in the last one we indicate the consistency of the solution.

determination of kys and φ0. We have shown that in this way one can warp down
the parameter setting the overall scale for the spectrum by a factor ekys, leading
to the desired hierarchy.

There are a number of phenomenological applications which are outside the
scope of the present paper but which are worth of future investigations. For the
range of the parameter 1 < ν < 2 these applications are common with two brane
models, as RS1, but with some peculiarities. In particular graviton (and radion)
KK modes are at the TeV scale and they can be produced and decay at LHC
by their interaction with matter ∼ hµνT µν , so they are expected to be produced
through gluon annihilation [25]. Since there is no IR brane, for soft-wall models to
solve the gauge hierarchy problem the Higgs boson (either a scalar doublet or the
fifth component of a gauge field in a gauge-Higgs unified model) has to propagate
in the bulk and it has to be localized near the singularity for its mass to feel
the warping. On the other hand fermions with sizable Yukawa couplings (third
generation fermions) should be localized near the singularity as well while first
and second generation fermions can propagate at (or near the) UV brane. As we
have seen that the first graviton KK mode is localized near the singularity, once
produced it is expected to decay into either Higgs or tt̄ pairs. For ν = 1 the mass
spectrum of fields propagating in the bulk is a continuum above an O(TeV ) mass
gap. This continuum (endowed with a given conformal dimension) can interact
with SM fields propagating in the UV brane as operators of a CFT, where the
conformal invariance is explicitly broken at a scale given by the mass gap, and
can model and describe the unparticle phenomenology. In particular the Higgs
embedded into such 5D background can describe the unHiggs theory of Ref. [26]

24

SOFT WALL SPECTRA

Gursoy et al ’07, 
Cabrer, GG & Quirós ’09
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at W ∼ φ2 and W ∼ eφφ

1

2 respectively. The third row shows the spectrum, while
in the last one we indicate the consistency of the solution.

determination of kys and φ0. We have shown that in this way one can warp down
the parameter setting the overall scale for the spectrum by a factor ekys, leading
to the desired hierarchy.

There are a number of phenomenological applications which are outside the
scope of the present paper but which are worth of future investigations. For the
range of the parameter 1 < ν < 2 these applications are common with two brane
models, as RS1, but with some peculiarities. In particular graviton (and radion)
KK modes are at the TeV scale and they can be produced and decay at LHC
by their interaction with matter ∼ hµνT µν , so they are expected to be produced
through gluon annihilation [25]. Since there is no IR brane, for soft-wall models to
solve the gauge hierarchy problem the Higgs boson (either a scalar doublet or the
fifth component of a gauge field in a gauge-Higgs unified model) has to propagate
in the bulk and it has to be localized near the singularity for its mass to feel
the warping. On the other hand fermions with sizable Yukawa couplings (third
generation fermions) should be localized near the singularity as well while first
and second generation fermions can propagate at (or near the) UV brane. As we
have seen that the first graviton KK mode is localized near the singularity, once
produced it is expected to decay into either Higgs or tt̄ pairs. For ν = 1 the mass
spectrum of fields propagating in the bulk is a continuum above an O(TeV ) mass
gap. This continuum (endowed with a given conformal dimension) can interact
with SM fields propagating in the UV brane as operators of a CFT, where the
conformal invariance is explicitly broken at a scale given by the mass gap, and
can model and describe the unparticle phenomenology. In particular the Higgs
embedded into such 5D background can describe the unHiggs theory of Ref. [26]

24

SOFT WALL SPECTRA

Asymptotic behaviour of W

Gursoy et al ’07, 
Cabrer, GG & Quirós ’09
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Second and third row show the finiteness of ys and zs, with the behavior changing
at W ∼ φ2 and W ∼ eφφ

1

2 respectively. The third row shows the spectrum, while
in the last one we indicate the consistency of the solution.

determination of kys and φ0. We have shown that in this way one can warp down
the parameter setting the overall scale for the spectrum by a factor ekys, leading
to the desired hierarchy.

There are a number of phenomenological applications which are outside the
scope of the present paper but which are worth of future investigations. For the
range of the parameter 1 < ν < 2 these applications are common with two brane
models, as RS1, but with some peculiarities. In particular graviton (and radion)
KK modes are at the TeV scale and they can be produced and decay at LHC
by their interaction with matter ∼ hµνT µν , so they are expected to be produced
through gluon annihilation [25]. Since there is no IR brane, for soft-wall models to
solve the gauge hierarchy problem the Higgs boson (either a scalar doublet or the
fifth component of a gauge field in a gauge-Higgs unified model) has to propagate
in the bulk and it has to be localized near the singularity for its mass to feel
the warping. On the other hand fermions with sizable Yukawa couplings (third
generation fermions) should be localized near the singularity as well while first
and second generation fermions can propagate at (or near the) UV brane. As we
have seen that the first graviton KK mode is localized near the singularity, once
produced it is expected to decay into either Higgs or tt̄ pairs. For ν = 1 the mass
spectrum of fields propagating in the bulk is a continuum above an O(TeV ) mass
gap. This continuum (endowed with a given conformal dimension) can interact
with SM fields propagating in the UV brane as operators of a CFT, where the
conformal invariance is explicitly broken at a scale given by the mass gap, and
can model and describe the unparticle phenomenology. In particular the Higgs
embedded into such 5D background can describe the unHiggs theory of Ref. [26]

24

SOFT WALL SPECTRA

Asymptotic behaviour of W

Singularity in “proper distance”

Gursoy et al ’07, 
Cabrer, GG & Quirós ’09
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determination of kys and φ0. We have shown that in this way one can warp down
the parameter setting the overall scale for the spectrum by a factor ekys, leading
to the desired hierarchy.

There are a number of phenomenological applications which are outside the
scope of the present paper but which are worth of future investigations. For the
range of the parameter 1 < ν < 2 these applications are common with two brane
models, as RS1, but with some peculiarities. In particular graviton (and radion)
KK modes are at the TeV scale and they can be produced and decay at LHC
by their interaction with matter ∼ hµνT µν , so they are expected to be produced
through gluon annihilation [25]. Since there is no IR brane, for soft-wall models to
solve the gauge hierarchy problem the Higgs boson (either a scalar doublet or the
fifth component of a gauge field in a gauge-Higgs unified model) has to propagate
in the bulk and it has to be localized near the singularity for its mass to feel
the warping. On the other hand fermions with sizable Yukawa couplings (third
generation fermions) should be localized near the singularity as well while first
and second generation fermions can propagate at (or near the) UV brane. As we
have seen that the first graviton KK mode is localized near the singularity, once
produced it is expected to decay into either Higgs or tt̄ pairs. For ν = 1 the mass
spectrum of fields propagating in the bulk is a continuum above an O(TeV ) mass
gap. This continuum (endowed with a given conformal dimension) can interact
with SM fields propagating in the UV brane as operators of a CFT, where the
conformal invariance is explicitly broken at a scale given by the mass gap, and
can model and describe the unparticle phenomenology. In particular the Higgs
embedded into such 5D background can describe the unHiggs theory of Ref. [26]

24

SOFT WALL SPECTRA

Asymptotic behaviour of W

Singularity in “proper distance”
Singularity in “conformal distance”

Gursoy et al ’07, 
Cabrer, GG & Quirós ’09
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W (φ)
≤ φ2 > φ2 eφ eφφβ > eφφ

1

2 ≥ e2φ

< eφ 0 < β ≤ 1

2
< e2φ

ys ∞ finite
zs ∞ finite

mass
continuous

continuous discrete
spectrum w/ mass gap mn ∼ n2β mn ∼ n
consistent
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solution

Table 1: Spectra resulting from different asymptotic forms of the superpotential.
In the first row we give the asymptotic behavior of W (φ), with the strength of
the divergence increasing from left to right (> means ”diverges faster than”, etc).
Second and third row show the finiteness of ys and zs, with the behavior changing
at W ∼ φ2 and W ∼ eφφ

1

2 respectively. The third row shows the spectrum, while
in the last one we indicate the consistency of the solution.

determination of kys and φ0. We have shown that in this way one can warp down
the parameter setting the overall scale for the spectrum by a factor ekys, leading
to the desired hierarchy.

There are a number of phenomenological applications which are outside the
scope of the present paper but which are worth of future investigations. For the
range of the parameter 1 < ν < 2 these applications are common with two brane
models, as RS1, but with some peculiarities. In particular graviton (and radion)
KK modes are at the TeV scale and they can be produced and decay at LHC
by their interaction with matter ∼ hµνT µν , so they are expected to be produced
through gluon annihilation [25]. Since there is no IR brane, for soft-wall models to
solve the gauge hierarchy problem the Higgs boson (either a scalar doublet or the
fifth component of a gauge field in a gauge-Higgs unified model) has to propagate
in the bulk and it has to be localized near the singularity for its mass to feel
the warping. On the other hand fermions with sizable Yukawa couplings (third
generation fermions) should be localized near the singularity as well while first
and second generation fermions can propagate at (or near the) UV brane. As we
have seen that the first graviton KK mode is localized near the singularity, once
produced it is expected to decay into either Higgs or tt̄ pairs. For ν = 1 the mass
spectrum of fields propagating in the bulk is a continuum above an O(TeV ) mass
gap. This continuum (endowed with a given conformal dimension) can interact
with SM fields propagating in the UV brane as operators of a CFT, where the
conformal invariance is explicitly broken at a scale given by the mass gap, and
can model and describe the unparticle phenomenology. In particular the Higgs
embedded into such 5D background can describe the unHiggs theory of Ref. [26]

24

SOFT WALL SPECTRA

Asymptotic behaviour of W

Singularity in “proper distance”
Singularity in “conformal distance”
Asymptotic form of the spectrum Gursoy et al ’07, 

Cabrer, GG & Quirós ’09
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W (φ)
≤ φ2 > φ2 eφ eφφβ > eφφ

1
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< eφ 0 < β ≤ 1

2
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ys ∞ finite
zs ∞ finite
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continuous

continuous discrete
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consistent
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Table 1: Spectra resulting from different asymptotic forms of the superpotential.
In the first row we give the asymptotic behavior of W (φ), with the strength of
the divergence increasing from left to right (> means ”diverges faster than”, etc).
Second and third row show the finiteness of ys and zs, with the behavior changing
at W ∼ φ2 and W ∼ eφφ

1

2 respectively. The third row shows the spectrum, while
in the last one we indicate the consistency of the solution.

determination of kys and φ0. We have shown that in this way one can warp down
the parameter setting the overall scale for the spectrum by a factor ekys, leading
to the desired hierarchy.

There are a number of phenomenological applications which are outside the
scope of the present paper but which are worth of future investigations. For the
range of the parameter 1 < ν < 2 these applications are common with two brane
models, as RS1, but with some peculiarities. In particular graviton (and radion)
KK modes are at the TeV scale and they can be produced and decay at LHC
by their interaction with matter ∼ hµνT µν , so they are expected to be produced
through gluon annihilation [25]. Since there is no IR brane, for soft-wall models to
solve the gauge hierarchy problem the Higgs boson (either a scalar doublet or the
fifth component of a gauge field in a gauge-Higgs unified model) has to propagate
in the bulk and it has to be localized near the singularity for its mass to feel
the warping. On the other hand fermions with sizable Yukawa couplings (third
generation fermions) should be localized near the singularity as well while first
and second generation fermions can propagate at (or near the) UV brane. As we
have seen that the first graviton KK mode is localized near the singularity, once
produced it is expected to decay into either Higgs or tt̄ pairs. For ν = 1 the mass
spectrum of fields propagating in the bulk is a continuum above an O(TeV ) mass
gap. This continuum (endowed with a given conformal dimension) can interact
with SM fields propagating in the UV brane as operators of a CFT, where the
conformal invariance is explicitly broken at a scale given by the mass gap, and
can model and describe the unparticle phenomenology. In particular the Higgs
embedded into such 5D background can describe the unHiggs theory of Ref. [26]

24

SOFT WALL SPECTRA

Asymptotic behaviour of W

Singularity in “proper distance”
Singularity in “conformal distance”
Asymptotic form of the spectrum 

Finite Length

Gursoy et al ’07, 
Cabrer, GG & Quirós ’09
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W (φ)
≤ φ2 > φ2 eφ eφφβ > eφφ

1
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< eφ 0 < β ≤ 1

2
< e2φ

ys ∞ finite
zs ∞ finite

mass
continuous

continuous discrete
spectrum w/ mass gap mn ∼ n2β mn ∼ n
consistent
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Table 1: Spectra resulting from different asymptotic forms of the superpotential.
In the first row we give the asymptotic behavior of W (φ), with the strength of
the divergence increasing from left to right (> means ”diverges faster than”, etc).
Second and third row show the finiteness of ys and zs, with the behavior changing
at W ∼ φ2 and W ∼ eφφ

1

2 respectively. The third row shows the spectrum, while
in the last one we indicate the consistency of the solution.

determination of kys and φ0. We have shown that in this way one can warp down
the parameter setting the overall scale for the spectrum by a factor ekys, leading
to the desired hierarchy.

There are a number of phenomenological applications which are outside the
scope of the present paper but which are worth of future investigations. For the
range of the parameter 1 < ν < 2 these applications are common with two brane
models, as RS1, but with some peculiarities. In particular graviton (and radion)
KK modes are at the TeV scale and they can be produced and decay at LHC
by their interaction with matter ∼ hµνT µν , so they are expected to be produced
through gluon annihilation [25]. Since there is no IR brane, for soft-wall models to
solve the gauge hierarchy problem the Higgs boson (either a scalar doublet or the
fifth component of a gauge field in a gauge-Higgs unified model) has to propagate
in the bulk and it has to be localized near the singularity for its mass to feel
the warping. On the other hand fermions with sizable Yukawa couplings (third
generation fermions) should be localized near the singularity as well while first
and second generation fermions can propagate at (or near the) UV brane. As we
have seen that the first graviton KK mode is localized near the singularity, once
produced it is expected to decay into either Higgs or tt̄ pairs. For ν = 1 the mass
spectrum of fields propagating in the bulk is a continuum above an O(TeV ) mass
gap. This continuum (endowed with a given conformal dimension) can interact
with SM fields propagating in the UV brane as operators of a CFT, where the
conformal invariance is explicitly broken at a scale given by the mass gap, and
can model and describe the unparticle phenomenology. In particular the Higgs
embedded into such 5D background can describe the unHiggs theory of Ref. [26]
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W (φ)
≤ φ2 > φ2 eφ eφφβ > eφφ
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2 ≥ e2φ

< eφ 0 < β ≤ 1

2
< e2φ

ys ∞ finite
zs ∞ finite

mass
continuous

continuous discrete
spectrum w/ mass gap mn ∼ n2β mn ∼ n
consistent

yes no
solution

Table 1: Spectra resulting from different asymptotic forms of the superpotential.
In the first row we give the asymptotic behavior of W (φ), with the strength of
the divergence increasing from left to right (> means ”diverges faster than”, etc).
Second and third row show the finiteness of ys and zs, with the behavior changing
at W ∼ φ2 and W ∼ eφφ

1

2 respectively. The third row shows the spectrum, while
in the last one we indicate the consistency of the solution.

determination of kys and φ0. We have shown that in this way one can warp down
the parameter setting the overall scale for the spectrum by a factor ekys, leading
to the desired hierarchy.

There are a number of phenomenological applications which are outside the
scope of the present paper but which are worth of future investigations. For the
range of the parameter 1 < ν < 2 these applications are common with two brane
models, as RS1, but with some peculiarities. In particular graviton (and radion)
KK modes are at the TeV scale and they can be produced and decay at LHC
by their interaction with matter ∼ hµνT µν , so they are expected to be produced
through gluon annihilation [25]. Since there is no IR brane, for soft-wall models to
solve the gauge hierarchy problem the Higgs boson (either a scalar doublet or the
fifth component of a gauge field in a gauge-Higgs unified model) has to propagate
in the bulk and it has to be localized near the singularity for its mass to feel
the warping. On the other hand fermions with sizable Yukawa couplings (third
generation fermions) should be localized near the singularity as well while first
and second generation fermions can propagate at (or near the) UV brane. As we
have seen that the first graviton KK mode is localized near the singularity, once
produced it is expected to decay into either Higgs or tt̄ pairs. For ν = 1 the mass
spectrum of fields propagating in the bulk is a continuum above an O(TeV ) mass
gap. This continuum (endowed with a given conformal dimension) can interact
with SM fields propagating in the UV brane as operators of a CFT, where the
conformal invariance is explicitly broken at a scale given by the mass gap, and
can model and describe the unparticle phenomenology. In particular the Higgs
embedded into such 5D background can describe the unHiggs theory of Ref. [26]
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SOFT WALL STABILIZATION

- Choose some suitable W such that 

- Stabilization works similar as before 

- Now shift superpotential W →W + k

A(y)→ A(y) + k y

- Shift does not change position of singularity  

kys =
∫ ∞

φ0

1
W ′(φ)

≈ 37
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SOFT WALL STABILIZATION

- Choose some suitable W such that 

- Stabilization works similar as before 

- Now shift superpotential W →W + k

A(y)→ A(y) + k y

- Shift does not change position of singularity  

kys =
∫ ∞

φ0

1
W ′(φ)

≈ 37

The Warping affects the Mass scale:
- The Unparticle mass gap
- The level spacing in the discrete case 

warped down

Cabrer, GG & Quirós ’09
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PARTICULAR MODELS

Consider the class of models W (φ) = k(1 + eνφ)

kys =
1
ν2

e−νφ0 ≈ 37 for O(1) negative values for φ0

for our superpotential 5. For negative φ0, the ratio of scales k/ρ exhibits a double
exponential behaviour

log
k

ρ
∼

eν(−φ0)

ν2
+ . . . , (3.7)

and we can create a huge hierarchy with very little fine-tuning. In Fig. 1 we plot
ρ/k as a function of |φ0| for different values of ν and also as a function of ν for
a fixed value kys = 30 which generates a hierarchy of about fourteen orders of
magnitude.

A comment about the choice of our superpotential is in order here. Its par-
ticular form, Eq. (3.1), guarantees full analytic control over our solution. A more
detailed analysis of other possibilities will be postponed to Section 5.

|φ0|

kys = 30

lo
g 1

0
(ρ

/k
)

lo
g 1

0
(ρ

/k
)

ν = 1
ν = 2

ν
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−10
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−20
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Figure 1: Plot of log10(ρ/k) as a function of |φ0| for ν = 1 and ν = 2 [left panel],
and as a function of ν for kys = 30 (this value will be used in following plots)
[right panel].

It will be useful in the following to define the metric also in conformally flat
coordinates defined by the line element

ds2 = e−2A(z)(dxµdxνηµν + dz2). (3.8)

5In order to satisfy the first of Eq. (2.12) we still need a fine-tuning, for instance by adding
a φ independent term to λ(φ). This is precisely the tuning of the 4D CC discussed above that
of course has nothing to do with the electroweak hierarchy we want to explain here.

10

Spectrum can be 
- Continuous
- Continuous+gap
- Discrete
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THE GRAVITON SPECTRUM
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Figure 3: Mass modes for the graviton, computed for kys > 4 8. The massless
(n = 0) and the first 5 massive modes (n = 1, . . . , 5) are shown.

Moreover one can find an expression for the spacing of the mass eigenstates
by approximating the potential as an infinite well, which is valid for m2 ! Vh.
The result of this approximation is

∆m "
ρ π

Γ (1 − 1/ν2)
=

π

zs
. (4.26)

Note that the mass spectrum is linear (mn ∼ n), and that as one approaches
ν = 1

∆m −→
ν→1

0, (4.27)

recovering the expected continuous spectrum at this value (for ν < 1 the spectrum
is continuous too, since (4.26) is only valid for ν > 1). The numerical result for
the mass eigenvalues is shown in Fig. 3 where these behaviours can be observed.
Some profiles for the graviton computed numerically using the equation of motion
(4.6) and the boundary conditions (4.7) are shown in Fig. 4.

8Numerically one finds that the scaling property in Eq. (4.25) ceases to be valid for kys ! 3,
as discrepancies from this behavior become greater than 1%.
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Figure 3: Mass modes for the graviton, computed for kys > 4 8. The massless
(n = 0) and the first 5 massive modes (n = 1, . . . , 5) are shown.

Moreover one can find an expression for the spacing of the mass eigenstates
by approximating the potential as an infinite well, which is valid for m2 ! Vh.
The result of this approximation is

∆m "
ρ π

Γ (1 − 1/ν2)
=

π

zs
. (4.26)

Note that the mass spectrum is linear (mn ∼ n), and that as one approaches
ν = 1

∆m −→
ν→1

0, (4.27)

recovering the expected continuous spectrum at this value (for ν < 1 the spectrum
is continuous too, since (4.26) is only valid for ν > 1). The numerical result for
the mass eigenvalues is shown in Fig. 3 where these behaviours can be observed.
Some profiles for the graviton computed numerically using the equation of motion
(4.6) and the boundary conditions (4.7) are shown in Fig. 4.

8Numerically one finds that the scaling property in Eq. (4.25) ceases to be valid for kys ! 3,
as discrepancies from this behavior become greater than 1%.
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Figure 3: Mass modes for the graviton, computed for kys > 4 8. The massless
(n = 0) and the first 5 massive modes (n = 1, . . . , 5) are shown.

Moreover one can find an expression for the spacing of the mass eigenstates
by approximating the potential as an infinite well, which is valid for m2 ! Vh.
The result of this approximation is

∆m "
ρ π

Γ (1 − 1/ν2)
=

π

zs
. (4.26)

Note that the mass spectrum is linear (mn ∼ n), and that as one approaches
ν = 1

∆m −→
ν→1

0, (4.27)

recovering the expected continuous spectrum at this value (for ν < 1 the spectrum
is continuous too, since (4.26) is only valid for ν > 1). The numerical result for
the mass eigenvalues is shown in Fig. 3 where these behaviours can be observed.
Some profiles for the graviton computed numerically using the equation of motion
(4.6) and the boundary conditions (4.7) are shown in Fig. 4.

8Numerically one finds that the scaling property in Eq. (4.25) ceases to be valid for kys ! 3,
as discrepancies from this behavior become greater than 1%.
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THE GRAVITON SPECTRUM
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Figure 3: Mass modes for the graviton, computed for kys > 4 8. The massless
(n = 0) and the first 5 massive modes (n = 1, . . . , 5) are shown.

Moreover one can find an expression for the spacing of the mass eigenstates
by approximating the potential as an infinite well, which is valid for m2 ! Vh.
The result of this approximation is

∆m "
ρ π

Γ (1 − 1/ν2)
=

π

zs
. (4.26)

Note that the mass spectrum is linear (mn ∼ n), and that as one approaches
ν = 1

∆m −→
ν→1

0, (4.27)

recovering the expected continuous spectrum at this value (for ν < 1 the spectrum
is continuous too, since (4.26) is only valid for ν > 1). The numerical result for
the mass eigenvalues is shown in Fig. 3 where these behaviours can be observed.
Some profiles for the graviton computed numerically using the equation of motion
(4.6) and the boundary conditions (4.7) are shown in Fig. 4.

8Numerically one finds that the scaling property in Eq. (4.25) ceases to be valid for kys ! 3,
as discrepancies from this behavior become greater than 1%.
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WAVE FUNCTIONS

n=0

n=1

n=2
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√
z s

h̃
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)

0

1

1.5

0.5

−1

−1.5

−0.5

z/zs

Figure 4: KK graviton profiles in the z frame for kys = 30 and ν = 3/2, using the
normalization

∫

dz h̃2 = 1. The massless mode (n = 0) is peaked near the brane.
The two first massive modes (n = 1, 2) are also shown. The zero mode becomes
more peaked near the brane in comparison to the massive modes as kys increases.

4.2 The Radion-Scalar system

Now we consider the spin-zero fluctuations of the system. This is

φ(x, y) = φ(y) + ϕ(x, y), (4.28)

ds2 = e−2A(y)−2F (x,y)ηµνdxµdxν + (1 + G(x, y))2dy2. (4.29)

With an appropiate gauge choice, the equations of motion for the y-dependent
part of the KK modes form a coupled system with only one degree of freedom.
The derivation of the equations is given with detail in [21], and the result is

F ′′ − 2A′F ′ − 4A′′F − 2
φ′′

φ′
F ′ + 4A′

φ′′

φ′
F = −m2e2A, (4.30)

φ′ϕ = 6(F ′ − 2A′F ), (4.31)

G = 2F. (4.32)

The boundary equations on the brane depend on the brane tension λ(φ). The
precise form of the dependence can be found in [21]. At the singularity, similarly
to the graviton case, one gets the boundary equation

e−4A(y)ϕ′(y)|ys = 0, (4.33)
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THE RADION SPECTRUM 
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Figure 5: Mass modes for the radion, computed for values of kys > 4 8. The first
6 massive modes (n = 0, . . . , 5) are shown.

Next to the singularity, using (4.19) the potential is approximated by

VF |y!ys !
6ν2 + 3

4ν4

ρ2

[k(ys − y)]2−2/ν2
∼

6ν2 + 3

4(1 − ν2)2

1

(zs − z)2
, (4.42)

that gives the solution

F̃ (z) = cJ

√
m∆zJα(m∆z) + cY

√
m∆zYα(m∆z), (4.43)

with

α =
2 + ν2

2ν2 − 2
. (4.44)

The behaviour of this solution near the singularity is

F̃ (z) ∼ c(1)
J (∆z)(2ν2+1)/(2ν2−2) + c(2)

J (∆z)(6ν2−3)/(2ν2−2) + c(1)
Y (∆z)−3/(2ν2−2). (4.45)

Using (4.37) we can compute the behaviour of the field and apply the normaliz-
ability condition (4.34),

ϕ̃(z) ∼ c′(1)J (∆z)3/(2ν2−2) + c′(1)Y (∆z)−(2ν2+1)/(2ν2−2), (4.46)

and the boundary condition (4.33),

e−3A(z)ϕ̇(z) ∼ c′(2)J (∆z)(ν2+2)/(ν2−1) + c′′(1)Y (∆z)(−2ν2+2)/(ν2−1). (4.47)
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Figure 5: Mass modes for the radion, computed for values of kys > 4 8. The first
6 massive modes (n = 0, . . . , 5) are shown.

Next to the singularity, using (4.19) the potential is approximated by

VF |y!ys !
6ν2 + 3

4ν4

ρ2

[k(ys − y)]2−2/ν2
∼

6ν2 + 3

4(1 − ν2)2

1

(zs − z)2
, (4.42)

that gives the solution

F̃ (z) = cJ

√
m∆zJα(m∆z) + cY

√
m∆zYα(m∆z), (4.43)

with

α =
2 + ν2

2ν2 − 2
. (4.44)

The behaviour of this solution near the singularity is

F̃ (z) ∼ c(1)
J (∆z)(2ν2+1)/(2ν2−2) + c(2)

J (∆z)(6ν2−3)/(2ν2−2) + c(1)
Y (∆z)−3/(2ν2−2). (4.45)

Using (4.37) we can compute the behaviour of the field and apply the normaliz-
ability condition (4.34),

ϕ̃(z) ∼ c′(1)J (∆z)3/(2ν2−2) + c′(1)Y (∆z)−(2ν2+1)/(2ν2−2), (4.46)

and the boundary condition (4.33),

e−3A(z)ϕ̇(z) ∼ c′(2)J (∆z)(ν2+2)/(ν2−1) + c′′(1)Y (∆z)(−2ν2+2)/(ν2−1). (4.47)

19

NO ZERO MODE

Monday, October 19, 2009



THE CC PROBLEM

Monday, October 19, 2009



THE CC PROBLEM

V (φ) = 3W ′(φ)2 − 12W 2(φ)

φ′(y) = W ′(φ)

A′(y) = W (φ)
} 3 constants of integration
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THE CC PROBLEM

V (φ) = 3W ′(φ)2 − 12W 2(φ)

φ′(y) = W ′(φ)

A′(y) = W (φ)
} 3 constants of integration

V ′
0(φ0) = 0

V0(φ0) = 0
V ′

1(φ1) = 0
V1(φ0) = 0

} 4 boundary conditions2 Branes:
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THE CC PROBLEM

V (φ) = 3W ′(φ)2 − 12W 2(φ)

φ′(y) = W ′(φ)

A′(y) = W (φ)
} 3 constants of integration

2 boundary conditions}1 Brane:
V ′

0(φ0) = 0
V0(φ0) = 0

No fine tuning??
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THE CC PROBLEM
This is incorrect!!! Forste et al ’00, 
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4D CC =
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THE CC PROBLEM
This is incorrect!!!

- There is a contribution to the CC from the singularity!

4D CC =
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THE CC PROBLEM
This is incorrect!!!

- There is a contribution to the CC from the singularity!

- Equations of motion are NOT satisfied at the singularity

- Can be fixed by choosing the integration constant for W
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THE CC PROBLEM
This is incorrect!!!

- There is a contribution to the CC from the singularity!

- Equations of motion are NOT satisfied at the singularity

- Can be fixed by choosing the integration constant for W

- Fine tuning is restored

4D CC =
∫

dyLon−shell = lim
y→ys

W [φ(y)]e−4A(y)

Forste et al ’00, 
Cabrer, GG & Quirós ’09
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CONCLUSIONS

• RS models provide neat way of obtaining electroweak and 
fermion mass hierarchy

• Stabilization can be achieved by adding extra scalar field

• IR brane can be consistently replaced by Soft Walls

• Spectra of Soft Wall models richer than in usual RS (gapped 
continuum, gapped, discretuum, Regge-like, etc.)

• Stabilization can be achieved without ANY fine tuning
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