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Abstract
UNIVERSITY OF WARSAW

Faculty of Physics

Doctor of Philosophy

Statistical physics
of coevolving networks

by Tomasz RADUCHA

Statistical physics has introduced key concepts for analyzing systems con-
sisting of a large number of elements. It showed that problems seemingly
out of reach for quantitative description can be actually treated in a strict
manner. The essential achievement was a shift in the notion of prediction
from deterministic to stochastic ground. The approach of statistical physics
has been successfully applied in numerous branches of science, of which the
most important one for this thesis is the theory of complex systems.

Networks create the core of complexity science. When a studied object
contains many interacting parts and the pattern of interaction is not trivial,
networks are the most natural tool to describe it. Some recent publications
even identify complex systems as coevolving multilayer networks. One can
argue with such a rigorous definition, but the coevolution of structure and
state on its own has proved to be a crucial feature in complex systems.

Studies on the coevolution’s impact on the behavior of particular models
are relatively new. Moreover, a general theory of coevolving networks is so
far out of reach. In order to get closer to universal laws we need to under-
stand single problems first. Thus, I seek to explore the effects of coevolution
in different models, both analytic (or equilibrium) and algorithmic (or non-
equilibrium) ones.

The thesis explores outcomes of introducing coevolving mechanisms in
three models, namely the voter model, the Axelrod model and the Ising
model. The first one is a reference point in the quantitative description of
social systems, however it was successfully applied also in physics, biol-
ogy, and finance. The voter model is extended in this work to integrate
coevolution, triadic closure, nonlinear interactions, and noise. The Axelrod
model has a purely social interpretation - it’s a model of social interactions
or dissemination of culture. It is studied in the thesis how different types of
rewiring, during the coevolution of the network’s structure and state of the
nodes, influence the final topology of the system. Results obtained using the
Axelrod model are compared with empirical data. The model was improved
for better agreement with the empirically observed scaling behavior. No-
tably, previous extensions of the model didn’t resolve the contradiction with

HTTP://EN.UW.EDU.PL/
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the empirical data, which is solved here. The Ising model was originally
constructed to explain ferromagnetism. However, it gained much bigger at-
tention than the first application might have suggested. It became a reference
point for network models and has been studied in many variations, not only
empirically implied but also theoretically thrilling. In this abstract context,
the spin dynamics from the Ising model is combined in the thesis with topo-
logical traits of the nodes to analyze the outcome of a coevolving equilibrium
model with structural traits included in the Hamiltonian.

In all models studied throughout this thesis new results are obtained. The
most important ones are the following. In the nonlinear coevolving voter
model with triadic closure a new shattered phase is observed together with
high values of the clustering coefficient. When the noise is included two
new phases are obtained. One of these phases persists in the thermody-
namic limit. The other one contains topological communities driven by state
of the nodes, what was not observed before for the coevolving voter model
with noise. Additionally, a new analytical description of the model is pro-
posed. As this model is the most general one, it contains previously studied
limit cases like the coevolving voter model or the nonlinear coevolving voter
model. Similarly, in the Axelrod model high clustering is generated, as well
as a power-law degree distribution. But most importantly, due to the imple-
mented changes the model displays a new scaling of the number of domains
with the system size. This result, in contrast to results obtained with the orig-
inal model, is consistent with empirical data. Finally, an equilibrium model
of coevolving networks is proposed for the first time. More precisely, the
Hamiltonian of the model includes not only states of the nodes and their
mutual interactions, but also degree of the nodes, as a local topological trait.
A rich phase diagram obtained in this way is described analytically. The ob-
served configurations coincide with those obtained in non-equilibrium mod-
els, suggesting a possibility of their equilibrium description.

The results of the thesis provide a new insight into the behavior of coe-
volving networks from a statistical physics perspective. The theory of com-
plex systems is not yet complete and new building blocks are being discov-
ered. Hopefully, after analyzing and understanding enough separate parts a
more universal theory will emerge. The content of this thesis contributes to
the development of such theory by providing several new building blocks.
Above all, these blocks take into account coevolution of network’s structure
and state, as one of the crucial properties of complex systems is their adap-
tive behavior. The obtained results surely represent advancement in partic-
ular models that were studied within the scope of the thesis, but can be also
seen as another step towards the theory of complex systems.
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Chapter 1

Introduction

1.1 Physics of networks

Network science has tremendously developed over the last two decades and
a large part of this development has been achieved thanks to work of physi-
cists. A great number of new methods, algorithms, tools, theories, statis-
tics, and empirical results have been published in physics journals. Yet, the
connection between physics and the, undoubtedly interdisciplinary, field of
complex networks is sometimes questioned1. It is true that graphs, as ab-
stract constructs, have been analyzed by mathematicians for a long time be-
fore physicists started to contribute [1]. Also sociologists were using net-
works when describing social systems already for a while. But there was
something unique in the techniques of physics that greatly accelerated the
advancement. Unlike mathematics, physics is rooted in empirical research,
and in contrast to sociology it aims at discovering general rules behind the
whole system, rather then describing individuals. Maybe this combination
makes physics approach so fruitful, maybe there is something more. Never-
theless, it is clear that physics played a central role in building the founda-
tions of network science.

1.1.1 The concept of network

The central concept of this thesis is network, being at the same time the main
tool. Therefore, I feel obliged to specify what it is not only in the mathe-
matically correct definition, but also in an intuitive way. Of course, for a
scientist working on the border of statistical physics and complex systems
this term is straightforward, there is not much to explain. Nevertheless, the
word network is being used in many different contexts in different fields, not
to mention everyday non-academic conversations. According to the online
Oxford Dictionary2 the noun network can mean (i) an arrangement of intersect-
ing horizontal and vertical lines or (ii) a group or system of interconnected people or
things. The first definition is rather narrow and we would call it a square lat-
tice (which is a frequently analyzed type of a network). The second definition

1Although, during the panel discussion at the Conference on Complex Systems 2018 in
Thessaloniki, Guido Caldarelli, a famous Italian researcher in the field of complex networks,
asked „is this [complex networks] a new science or is it just a new physics?”.

2https://en.oxforddictionaries.com/

https://en.oxforddictionaries.com/
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Edge (link)

Vertex (node)

Figure 1.1: A simple graph example.

is much closer to the gist of this work. In fact, the dictionary gives several
sub-definitions of the (ii), which are examples of real-world networks stud-
ied by many. For instance, a number of interconnected computers, machines, or
operations is a computer or technological network, a complex system of railways,
roads, or other routes is a transportation network. These examples also illus-
trate the every-day intuition. But the basic concept of network is much more
elementary – it is a set of objects, called nodes or vertices (sometimes agents),
interacting on some level with each other, where every interacting pair can
be seen as connected [2]. These connections we can also call links or edges3. A
network can be further referred to as a graph 4. A graph is usually associated
with some kind of a diagram, although in this thesis it is simply a synonym
of a network. The jargon here is rich, sometimes even redundant, due to the
diversity of fields scientists studying networks come from.

Having an abstract representation of a system we can start exploring it.
In the Fig 1.1 you can see a very simple example of a network. Now, put
people under the nodes and say the links represent a particular type of inter-
actions between them (daily conversations for instance) and you can analyze
social networks within the network science regime. Relate the vertices with
a spin of electrons and the edges with pair interactions and you can study
ferromagnetic phenomena from the microscopic perspective. For a biologist
it can represent proteins interactions, or a part of the food chain, for an engi-
neer it may be a power grid system, a transportation network etc. Obviously,
it implies that the description is purely phenomenological. But after all, how
one can be sure any theory is not? It is as good as it can teach us about the re-
ality we want to comprehend. And network approach is particularly useful
in complex systems. Imagine we have an ultimate theory perfectly describ-
ing every part of a system we are studying – given the system is complex
enough we have to average or aggregate the description anyways to be able

3A strict definition of a network, as a mathematical object, is given in Chapter 2.
4Sometimes we can encounter a distinction between sets of names {network, node, link}

and {graph, vertex, edge}, but usually they are used interchangeably. For example, in [3] the
difference is noted, but not always obeyed; in [2] these two terminologies are synonymous.
Following the second example, in this work there is no formal distinction between the ter-
minologies.
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to understand the behavior on the general level and predict the macroscopic
outcome. But the ability to predict, as far as advantageous and profitable
it can be, is not the only and ultimate measure of a scientific method. The
possible advancement in understanding a part of the reality we live in is also
important, if not fundamental. In the end, science should serve the truth, not
the people.

Some researchers study only properties of individual objects, others study
just the interactions between them. Connecting these two approaches can
give us a grater insight into the system. Moreover, the pattern of interactions
can be crucial, and a network representation is a natural way of including
this pattern in the study. Going further, one can analyze the dynamics of
state of the nodes, or the dynamics of the structure5 of the network. We have
models of double-value spins interacting on a static network and models of
the growth of the WWW network with an increasing number of links, ignor-
ing individual properties of each node. Both approaches are valid in their
own regime, but we can again make a step towards a more general picture,
including both, changes of the structure and states of the nodes, in the de-
scription. In fact, in this manner we can grasp much more, as the feedback
loop between these two aspects of a network can be and frequently is essen-
tial. Such approach is fairly new and still being developed, yet it has its place
in the scientific literature. We refer to networks studied in this way as adap-
tive networks or coevolving networks. Coevolving networks lay at the core of
this thesis. They are particularly interesting for physicists, since they can
be seen as a unification of previously utilized models. Moreover, from sta-
tistical physics point of view, adaptive network models can be understood
as non-equilibrium processes, however at the end of the thesis also an at-
tempt at equilibrium description of coevolving networks will be made.
The question is whether such representation is useful, can it tell us some-
thing about the studied object, can it explain the phenomena? Certainly, the
answer is positive and hopefully further chapters of this work will confirm
that.

1.1.2 Empirical examples

As we can see, the basic idea of network is very broad. This is probably the
reason, why it is used in so many contexts in so many fields with so many
applications. It is just an elastic tool, useful in different branches of science
[5]. And thanks to the strict mathematical theory behind all the network
considerations we can grasp a variety of complex problems with similar or
the same set of theoretical ideas.

No wonder networks are gaining recently a lot of popularity, as we can
see in Fig 1.2. The increase of usage of the word network was enormous at the
end of the twenty first century. This may be partially due to the birth of new
technological networks of a huge size and a big interest of people in them. To
list a few: the Internet, the telephone network, power grids, transportation

5Structure of a network is an arrangement of the links. Following [3], [4], it is used in this
thesis interchangeably with topology of a network.
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Figure 1.2: The number of occurrences of the word network in
Google Books [6] since 1900.

networks. The network representation arises here naturally, in the Internet
we have computers and related devices creating a set of nodes, and the phys-
ical or wireless data connections between them are the links. In power grids
we have transmission lines as edges, and generating stations and electricity
receivers as nodes. Frequently an important part of a technological network
is a software built in order to control the system. Hence, it is possible to ob-
tain virtually full knowledge about the topology, what, combined with the
large scale of the structure and the vivid interest in understanding it, pro-
vides a fertile area for a scientist.

In social sciences people discovered advantages of the network formalism
relatively long time ago. A social network consists of vertices created of peo-
ple or groups of people and links indicated by a social interaction, such as a
friendship, a partnership or a scientific collaboration. People tend to organize
in different structures at all possible levels, hence there is a lot of empirical
data to study. As in the previous example, recent developments give us the
possibility to map huge groups of people in one large network. Facebook,
Twitter and other online social platforms grant us a chance of looking at the
social systems in a really big scale. The history of the network approach in
social sciences, however, is much longer and can be traced back to the nine-
teenth century. Indeed, „among researchers who study networks, sociologists have
perhaps the longest and best established tradition of quantitative, empirical work”
[2].

Networks are also used in biology, where scientists work on mapping the
protein-protein interaction or metabolic networks. Ecologists study interac-
tions between species, e.g. a predator-prey network. The neural network –
the diagram of wiring between cells in our brain – is hoped to give us an
insight in the amazing computational capability of the brain. Furthermore,
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Figure 1.3: Copy of the original drawing of bridges in Könings-
berg by Leonard Euler in Solutio problematis ad geometriam situs
pertinentis [7]. Capital letters A-D denote separate parts of land,
lower case letters a-g denote 7 bridges on the rivers. Picture
available in the public domain, source: Wikimedia Commons.

it inspired a class of artificial intelligence methods known as artificial neural
networks.

Different medical data can be better understood when mapped into a net-
work, as it has been done with electroencephalography (EEG) signal or func-
tional magnetic resonance imaging (fMRI). We have information networks,
like the World Wide Web or citation networks, financial networks of banks
or countries. The list of examples is indeed impressive and the first con-
clusion one can draw is that the field of complex networks has a truly in-
terdisciplinary character. Different branches of human knowledge has been
inspiring and influencing each other and they definitely still do. Neverthe-
less, physics has brought a wider perspective to the table. It is amazing how
many applications networks have in so distinct fields. One could think it is
an impossible task to describe it all in a consistent way with common mathe-
matical tools. Yet, many of these systems display similar properties and, once
we move to the abstract plane of analyzes, we can collect them under gen-
eral models and laws. In the twentieth century, this kind of universality had
already had a long tradition in physics, but was yet to discover in network
science.

1.1.3 Foundations of theory

A point in the history of sciences that is commonly associated with the be-
ginning of the graph theory is Leonard Euler’s study of bridges in Könings-
berg in 1735 [7], [8]. Certainly, it is a very interesting work with a noticeable
physics approach – the problem is simplified and presented in an abstract
way that one can treat mathematically. But the word graph or network is not
present anywhere in the publication, neither is any diagram like from Fig-
ure 1.1 that would be a visual representation of a graph. So, why is this work
always pointed at as the origin of graph theory?
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Figure 1.4: The illustration from Figure 1.3 represented in a sim-
pler form – as a graph.

In his publication Leonard Euler was trying to find a general solution to
a problem he encountered in Köningsberg. The city had at the time seven
bridges connecting four separate parts of the land, as it is depicted in Fig-
ure 1.3. There was a puzzle popular in the neighborhood: is it possible to
walk through all the bridges passing each one exactly once? Euler has heard
nobody had done it, however there was no formal proof why it should be
impossible. In the first paragraph of his work he said „This branch [geometry
of position] is concerned only with the determination of position and its properties;
it does not involve measurements, nor calculations made with them”. At the time
the field was named geometry of position by Leibintz, but this sentence con-
tains the essence of reductionism in network science. In this spirit, he cre-
ated a simplified diagram of rivers and bridges, that today would look like
the one in Figure 1.4, if we called points A, B, C, D nodes and a, b, c, d, e,
f, g links. Although schemes from Figure 1.3 and Figure 1.4 look different,
the idea is the same. This was the first major step made by Euler towards
the branch of mathematics called graph theory. The second step was, sur-
prisingly, creating such a representation of the problem that the diagram be-
comes unnecessary. Once more: he represented the problem in an abstract
diagram extracting only the crucial information. This is usually the first step
in analysis of many phenomena in network science nowadays. And then he
created an even more abstract representation using only letters. Although
today one would use rather numbers and the problem would be called find-
ing a path, there is a one-to-one projection relation between these approaches.
Later, Euler proved that the puzzle of Köningsberg’s bridges is impossible to
solve, there is no path going exactly once through every bridge. He also gave
a general necessary condition for this class of problems to be solvable6. But
the most important was the framework he built to solve it.

A colorful illustration of the reductionism in network science taking into

6There can not be more then two nodes with an odd number of connections for the path
to exist.
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Figure 1.5: Three versions of the London Underground map
(top to bottom): from 1908, 1932, and 1933 [9]. Pictures avail-

able in the public domain, source: Wikimedia Commons.
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account only the most important parts of the system are maps of metro. In
Figure 1.5 we can see the evolution of the London Underground map. The
first and the oldest version contains all the topography of the city drawn un-
derneath metro lines, making the whole picture vague. In the later update
the grid of streets was erased from the map, what made it easier to read, but
still the whole diagram looked rather messy due to the growing number of
lines. Finally, Henry Charles Beck [9] introduced his famous simplified map
of metro, which not only omits unnecessary details of the city, but also rep-
resents the metro lines in a simple easier to read manner, using only angles
of 90 and 45 degrees. It has little to do with the actual topography of the city,
nevertheless it’s much more useful and more convenient to extract impor-
tant information from. For instance, let’s have a look at the green line in Fig-
ure 1.5. In the middle picture it meanders a lot, but do all of these tiny turns
matter when navigating over the metro lines? Not really. And the straight
line from the bottom picture, with only 3 turns, is topologically equivalent to
the previous representation. In other words, it contains the same amount of
relevant information. Network approach to real-world systems is similar in
this context – it might not always be the perfect reflection of the reality, but
it takes into account everything we should potentially focus on and makes it
easier to analyze the essence of a problem.

After pioneer work of Euler came many others. A famous example in
physics are two laws of electrical circuits proposed by Gustav Kirchhoff [10].
These rules that deal with current and potential differences, that we learn
at the beginning of electromagnetism courses, are nothing but pure network
analysis. First law – stating that the sum of currents flowing into a node in an
electrical circuit is equal to the sum of currents flowing out of that node – is
explicitly referring to a node in an electrical circuit, which is a network. The
second law – saying that the directed sum of the potential differences around
any closed loop is zero – is basically describing a closed path in a (directed)
network. The whole methodology of drawing electrical circuits can be seen
as a beginning of network visualization.

Later networks have been applied in a growing range of problems. Arthur
Cayley identified a correspondence between structural isomers of alkanes
and planar graphs [11]. Using networks, he proposed rules limiting the enu-
meration of alkanes isomers. A similar problem to the one solved by Euler
was studied by William Hamilton in 1858 [12]. A Hamiltonian cycle is a path
in a network visiting each vertex exactly once, in contrast to the Euler tour,
which goes through every edge exactly once. Another famous example is the
map coloring problem, or four color map theorem. The problem was: is four
colors of ink enough to paint a map in such a way that each of neighboring
countries have different color? Empirically three colors were not enough,
but a formal proof was given after more than a century. Afterwards it was
discovered that the problem can be simplified using networks [13].

A crucial moment, forming the shape of network science in the future
to come after it, was the invention the Ising model. The model created by
Wilhelm Lenz [14] and solved by his student Ernst Ising [15] is commonly
recognized as a milestone in statistical physics. The aim was to explain the
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phenomena of ferromagnetism from microscopic point of view and the idea
was straightforward – to start from as simple description as possible. This
means representing a material as a chain of spins and including only the
most important interactions, i.e. nearest-neighbor interactions. This descrip-
tion happened to be too primitive, but the second attempt proved to be more
successful. The model was extended into a two-dimensional square lattice.
As simple as that, it managed to explain symmetry breaking that had been
observed in ferromagnets. Two lessons learned from it by network science
were: simplification of the problem focusing on what really matters and talk-
ing into account the structure of the analyzed system, which can be essential.

The approach of looking at the microscopic properties of individual ele-
ments to later conclude rules and laws of the macroscopic system is a method
commonly borrowed from physics in network science. Ising model was later
further developed and generalized for different possible configurations [16],
continuing to inspire researchers working on other applications of graphs.
Ideas from statistical physics have been influencing network science for decades
and continue to do so. In particular, this very work is an example of said in-
fluence. Ising model is a reference point for one of the models developed in
this thesis that will be covered in detail in Chapter 5.

Next big step came with the work of a social scientist Jacob Moreno [17].
First of all, he started a very important branch of network science – anal-
ysis of social networks. Moreno was interested in how the social ties and
connections influence the psychological functions of an individual. To study
such phenomena he developed, and this is the second part of his valuable
contribution in network science, a method of representing human contacts,
interactions, sympathies and antipathies in a graphical way. Schemes he has
created are called sociograms and they have basically all traits of the modern
network visualization.

Finally, the modern network science started with works of Paul Erdős and
Alfréd Rényi [18], [19]. Complex networks waited a long time to be mathe-
matically captured. The breakthrough came with an idea to apply proba-
bility theory and treat the system as one of many possible realizations. In
this way Erdős and Rényi constructed statistical ensemble, taking into ac-
count fluctuations naturally occurring in real-world networks and describ-
ing a whole set of networks with similar properties. Again, this approach is
unquestionably a reflection of concepts present in statistical physics. More-
over, these two mathematicians discovered a percolation phase transition in
random networks, but before describing it more precisely in Chapter 2, strict
mathematical definitions of network science shell be introduced.

1.2 Outline of this work

The goal of this thesis is to explore effects of coevolution in network mod-
els and to examine its influence on recognized models in general. As co-
evolution is a step towards more realistic description of networked sys-
tems, the work aims at bringing the analysis closer to the empirical obser-
vation. In particular, I seek to remedy the problem of the Axelrod model’s
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disagreement with empirical data, I aim at extending the voter model by
essential real-world mechanisms, and I make an attempt at equilibrium de-
scription of adaptive networks with an intention of explaining the behavior
of the topology.

The thesis has a following structure. Chapter 2 covers the basics of net-
work science. First, the fundamental definitions of graph theory are intro-
duced and different types of graphs are described. In the second part of the
chapter fundamental models of network science are presented, together with
main numerical7 and analytical results. The coevolution is discussed. Chap-
ters 3, 4, and 5 contain original results obtained by myself. In Chapter 3 the
voter model is covered. The chapter starts with an introduction to the general
framework of the voter model from a homogeneous case, through complex
networks versions, to the coevolving voter model. Finally, the nonlinear co-
evolving voter model with triadic closure and with noise are introduced,
which are original models created in this work. Chapter 4 continuous the
exploration of algorithmic non-equilibrium models. It is devoted to the Axel-
rod model. Original definition of the model is described, as well as selected
extensions. The coevolving Axelrod model is then introduced, together
with preferential attachment and triadic closure extensions developed in
this thesis. At the end of the chapter an original solution dealing with
the empirical data discrepancy is proposed. In Chapter 5 the equilibrium
approach to coevolving networks is presented. It starts with a general intro-
duction into statistical mechanics methods and entropy maximization. Then,
the Ising model is briefly discussed and similar frameworks describing net-
work’s topology are presented. Subsequently, an original model applying
the statistical mechanics approach in a description of coevolving networks
is introduced and thoroughly analyzed. Chapter 6 contains a summary of
the work with an outline of main results. All plots in the thesis were cre-
ated by myself, based on my own simulations. Three appendices at the end
provide additional information on the issues discussed in the work.

7All numerical results presented in the thesis are original, also for fundamental and his-
torical models, where simulations were reproduced to obtain and plot main results.
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Chapter 2

Basics of network science

2.1 Graph theory

Graph theory is a branch of mathematics describing networks in a strict man-
ner. It provides many important theoretical discoveries in network science
and forms the basic framework for a consistent analyzes. At the foundation
of this framework lay definitions, which are especially important in an inter-
disciplinary field (like complex systems) developed by scientists from many
different backgrounds. Many times in the scientific literature we can see dif-
ferent terms referring to the same object, model or phenomena in networks.
Here we shall establish the vocabulary, definitions and symbols necessary for
the later discussion to be clear and unambiguous.

A graph (network) G = (V, E) is a pair consisting of a non-empty set
V of vertices (nodes) and a set of edges (links) E ⊆ {{u, v} : u, v ∈ V},
which is a family of two-element subsets of the set V, i.e. every edge starts
and ends at one of the vertices of the graph [20], [21]. We denote the sizes
of these sets N and M respectively. Consider a simple example of a six-
vertex graph Gex = (V, E) with V(Gex) = {1, 2, 3, 4, 5, 6} and E(Gex) =
{{1, 2}, {1, 3}, {2, 3}, {4, 5}}, so it contains just four edges. The common way
of representing a graph is by drawing a dot for every node and a line con-
necting two nodes for every link, as is is shown in Figure 2.1 for our simple
example. The way in which the links are pictured is irrelevant, they can be
straight or bent, they can cross each other. The only and essential information
is which nodes do they connect.

1

2

3

4

5

6

Figure 2.1: A visual representation of the graph Gex.
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Another useful manner of defining a network is by an adjacency matrix
A. Its elements aij are equal to 1, if there is a link between the node i and the
node j, and 0 otherwise. In simple graphs (see simple graph in Section 2.1.2)
the adjacency matrix A is symmetrical – if the node i is connected to the node
j, then the node j is connected to the node i, but it doesn’t always have to be
the case (see directed graph in Section 2.1.2). The adjacency matrix A for our
simple graph Gex can be written as:

A =


0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

 . (2.1)

There are advantages and disadvantages of such representation of a net-
work. Firs of all, we can see that in an adjacency matrix we need to keep
the information about every virtually possible connection, including auto-
connections. Thus, if the graph is sparse, which means it contains few links
compared to the maximal possible number of them, we keep a lot of unnec-
essary information. This might be a difficult dilemma in numerical simula-
tions. For sparse networks it is generally better to keep just the set of edges
E, which together with the number of nodes N provides everything required
to reconstruct the network. On the other hand, adjacency matrix might be
convenient for dense networks, i.e. those containing a number of edges close
to the maximal. It might be also advantageous to keep only the list of pairs of
vertices that are not connected, it strongly depends on the simulated model,
the used algorithm and what we want to achieve. Nevertheless, adjacency
matrix is extremely helpful in analytical calculations.

2.1.1 Coefficients and measures

Degree of a node

Degree1 of a node, denoted by k, is the number of connections with other
nodes that it has. If a node is separated from the rest of the network having
no connections its degree is equal 0. The maximal possible degree in a simple
graph is equal to N − 1. Having the adjacency matrix A we can calculate the
degree of a node i by:

ki =
N

∑
j=1

aij. (2.2)

Often the average degree in the network is an important measure, it can be
calculated from 〈k〉 = 2M

N . However, many times the essential property of a

1Degree of a node is sometimes called connectivity, mainly in older publications. Here
connectivity refers to a different quantity, namely to c = M/N, which is half of the value of
the average degree.
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network, rendering its structure and thus properties, is the degree distribu-
tion P(k) describing the probability of a random node having the degree k.
Some of the central network models can be defined by the degree distribu-
tion. For instance, we say that a network is scale-free, if the distribution is a
power-law function (see Section 2.2.4).

Path and distance

The concept of distance is crucial in formal sciences, but it might be ambigu-
ous how to apply it in networks. Surely, physical or geographical distance is
irrelevant in most of the cases – what would it mean when considering the
WWW network, or the protein interaction network? What could be the dis-
tance between two webpages? The solution is the path length [3]. A path is a
route on a network going through nodes and edges. Or more formally, it is
an ordered sequence of edges, for example a path of length 4 between node 1
and 6 in a network can be P = {(1, 2), (2, 5), (5, 3), (3, 6)} (given all the edges
exist). A route going through the same edges, but the opposite direction –
from the node 6 to 1 – is a different path as the order matters. Generally,
nodes and edges can be repeated in one path, but some alternative defini-
tions do not allow that. A closed path starting and ending at the same node
is called a cycle.

Having defined the path it is easy to create a convenient distance mea-
sure for networks, namely the shortest path length. Therefore, the distance
dij between nodes i and j is equal to the number of edges in the shortest path
between them, ranging from 1 (for distinct nodes, for an auto-connected ver-
tex it can be 0) to M, or conventionally even +∞, if a path doesn’t exist. Note
that there can be more than one shortest path between two nodes.

Another helpful measure is the diameter dmax of a network, which is the
biggest distance between a pair of nodes, i.e. the longest shortest path. How-
ever, much more popular and perhaps practical is the average path length
〈d〉 ≡ l (also called the geodesic) in the network:

〈d〉 = 1
N(N − 1) ∑

i 6=j
dij. (2.3)

It was the central concept in the famous Milgram experiment [22] and the
starting point for creating the idea of the small world described in Section 2.2.3.

With the adjacency matrix it is straightforward to calculate the number Nd
ij

of paths of the length d or the distance dij between nodes i and j. If aij = 1,
there is a direct link between the vertices. If there is a path of length 2, there
must be a node k connected to i and j, such that aikakj = 1. The number of
paths of length 2 is the number of such nodes k that satisfy this condition,
therefore N2

ij = ∑N
k=1 aikakj = a2

ij (which stands for the element ij of a matrix
A2, not the element ij to the power of two of a matrix A). Similarly, the
number of paths of length d between two nodes is equal to the adequate
entry of the dth power of the adjacency matrix Nd

ij = ad
ij. The distance dij

can be defined as the smallest d for which ad
ij > 0. It is also worth noting
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that a2
ii = ki, because every node has exactly as many paths of length 2 from

itself to itself back as it has edges, therefore a2
ii is equal to the degree ki of

the node i. Consequently, the trace of A2 is equal to the doubled number of
edges TrA2 = ∑N

i=1 a2
ii = ∑N

i=1 ki = 2M. Although elegant, this approach is
not very useful in computer simulations of big networks.

Worth mentioning are two more quantities associated with path. First one
originates from the very first work on graph theory described in Chapter 1
– the Eulerian path is a path that traverses each link in a network exactly
once. The second one is the Hamiltonian path, which visits every node in a
network exactly once.

Clustering coefficient

In general, the clustering coefficient measures the probability that two neigh-
bors of a given node are connected directly. In other words, it’s a density
of closed triangles of vertices in a network, with every vertex connected to
two others. There are two common parameters widely used and they usually
correlate with each other, although the exact values for a given structure can
be substantially different. The first one is the local clustering coefficient ci
[2], [23] defined as the number of all connected pairs of neighbors of a node
i divided by all possible pairs of neighbors. It can be written as:

ci =
2Li

ki(ki − 1)
, (2.4)

where Li is the number of links between the ki neighbors of the node i. To
investigate properties of a whole network we want to look at all nodes simul-
taneously. Therefore, the average local clustering coefficient 〈c〉 is often very
useful in the analysis:

〈c〉 = 1
N

N

∑
i=1

ci. (2.5)

From the equation 2.4 one can see that the value of ci is not well defined, if the
node i has less than 2 neighbors (ki < 2). It is common to exclude such nodes
when calculating the average value or to assume their clustering coefficient
is equal to 0. Either way, it should be stated how the value was obtained,
since depending on our choice it can vary significantly.

The second popular quantity is the global clustering coefficient C, also
called transitivity, that directly counts the number of triangles in the network:

C =
no. of closed paths of length two

no. of paths of length two
=

3× number of triangles
no. of connected triples

. (2.6)

The factor 3 in the numerator can be puzzling. It is easy to visualize, if we
consider a small network of 3 vertices, where all of them are connected (re-
sulting in 3 edges), like nodes {1, 2, 3} in the Figure 2.1. Then, we have 6
paths of length two in such a network (direction matters in paths) all being
closed, 3 connected triples (each centered on one of the nodes) and 1 triangle.
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The triangle is straightforward, the paths can be represented by all possible
permutations of the series 123, and the triples are related to paths of length
2 neglecting the order. The global clustering coefficient is equal 1 in a com-
plete graph or a network consisting of complete subgraphs and 0 in a tree or
a square lattice for example. A triangle is the simplest example of a motif and
the concept of transitivity can be generalized by analysis of different types of
motifs [24], [25].

The clustering coefficient is an important measure, because it is often
much larger in empirical networks than in corresponding graphs with the
same degree distribution, but random connections. It is argued that triadic
closure is a frequently observed process in social networks [26], [27], where
we can measure the highest values of the clustering coefficient [28], [29]. The
process consists of literally closing triangles – there is a better chance to be-
come friends with a friend of our friend than with a random person from
the whole network. For example, the collaboration network of physicists is
said to have 〈c〉 = 0.45, where a network with the same 〈k〉 and 〈k2〉, but
with connections assigned at random, would have 〈c〉 = 0.0023 [2]. For that
reason, coevolving models of social networks should be studied extended by
the triadic closure, what is done in this work in Chapters 3 and 4.

Component

In empirical networks we can frequently find a pair of nodes i and j, such that
it is impossible to reach one from another, i.e. dij = ∞. This is a problem of
connectedness of a network. Two nodes are connected, if there is a path between
them and are disconnected otherwise. And further, a network is connected, if
every pair of nodes in it is connected. If not, the network is disconnected
meaning that it contains several separate clusters or components. A compo-
nent is a part of a network (a subgraph) where each node is connected to
every other node and there is no vertex in the network that could be added
to the component retaining this property. More precisely, it can be defined
recursively as follows: two vertices i and j belong to the same component,
if (i) they are connected by a direct edge or (ii) there is a vertex k such that
the vertex i belongs to the same component as the vertex k and the vertex k
belongs to the same component as the vertex j.

When the network in the analyzed model becomes fragmented or shat-
tered in many small parts it’s intuitive to describe it in terms of components.
To estimate the level of fragmentation we can use the size of the largest compo-
nent S, measured in the number of nodes it contains, or the number of compo-
nents nS. It’s also convenient to normalize these quantities by the size N of
the network.

In order to understand these definitions we can look at the Figure 2.1. We
can see three separate clusters, therefore nS = 3, and the biggest one con-
tains vertices number 1, 2 and 3, so S = 3 as well. Since the whole network
contains six nodes, both quantities after normalization would be equal to 1

2 .
If a network contains more than one component its adjacency matrix can be
written in a block diagonal form as the one from Equation 2.1.
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Domain

When the studied model allows different states of the nodes, more detailed
quantity than the component maybe favorable, such as domain. A domain is
a group of connected nodes being in the same state. More specifically: two
vertices i and j, having states si and sj respectively, belong to the same do-
main, if (i) they are connected by a direct edge and they have the same state
si = sj or (ii) there is a vertex k such that the vertex i belongs to the same
domain as the vertex k and the vertex k belongs to the same domain as the
vertex j. Obviously, the concept of domain extends the notion of component
incorporating state of the nodes. As a result, one component may contain
many domains and there can not be fewer domains than components. Addi-
tionally, two separate domains having the same state can exist, simply being
disconnected. As for the component, two most helpful quantities are the size
of the largest domain D (in number of nodes) and the number of domains nD.
Likewise, it is usually normalized by the size N of the network.

Other measures

There is a number of other measures and coefficients commonly applied in
network research, but not of a great importance for this thesis. For exam-
ple many centrality measures exist, of which the simplest one is perhaps the
degree. All of them aim at describing the importance of a node in a given
context. The famous PageRank [30], [31] expressing relevance of a webpage
in search engines, DebtRank [32], [33] specifying bank’s condition from sys-
temic risk point of view, closeness centrality [34] measuring the mean distance
from a vertex to other vertices etc. Another big concept is the assortativity
portraying the likelihood of nodes to be connected to similar nodes, in terms
of the degree for instance. Additionally, centrality measures may concern
edges, like betweenness centrality describing the role of a link in information
transfer or, more generally, spreading processes. Most of these measures are
described in [2]–[4], [35].

2.1.2 Types of graphs

It was shown at the beginning of Section 2.1 how a graph can be defined, but
one can construct countless different objects fitting this definition. To be more
precise in our description we need narrower categories. This subsection lists
all categories necessary to understand the further content of the thesis and a
few more to put the work in a broader context of the current research. The
following network types are covered in greater detail in [2], [23], [35]–[38].

Simple graph

A simple graph is an unweighted, undirected graph with single edges between
vertices and no self-loops. An example is presented in Figure 2.2 a) and d).
Its adjacency matrix contains only zeros and ones and is symmetrical. Every
pair of nodes is either connected by a single link or not, with no distinction
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a) b) c)

d) e)

Figure 2.2: Examples of different graph types. a) A simple,
complete and regular graph, b) a directed graph, c) a weighted
and planar graph (weights are indicated by the line width and
a number), d) a tree (consequently also being planar), e) a bi-

partite graph.

between types of links. A node cannot be connected to itself. A simple graph
doesn’t have to be connected, i.e. it can contain many components. Usually,
the word graph or network refers to a simple graph, if the type is not specified.
Sometimes, a network containing multiple connections between one pair of
nodes is called a multigraph.

Complete graph

A complete graph is a network with every pair of nodes connected by an edge,
as in Figure 2.2 a). A complete graph of N nodes is usually denoted by KN.
All nodes have the same degree k = N − 1 and the total number of links
is equal M = N(N − 1)/2. The diameter in this graph is dmax = 1 and so
is the average path length 〈d〉 = 1. It is often the first choice to analyze a
given model on a complete graph, due to its simplicity when it comes to the
analytical description. For numerical simulations it’s also convenient, since a
full structure is somewhat equivalent to no structure at all – there is no need
of keeping any information about it. Unfortunately, it’s rather rare among
empirical examples. It is argued that very small parts of social networks
can take form of a complete graph. But most of the real-world networks
are sparse, i.e. they contain much less edges then a corresponding complete
graph.

Directed network

A directed network is a network with links possessing directions, what can be
represented by an arrow, like in Figure 2.2 b). In a directed network a link



18 Chapter 2. Basics of network science

from a node i to a node j can exist independently of the opposite link from
the node j to i. Therefore, every pair of nodes can be connected by up to
two links of opposite directions, and if it is, we say that the connection is
reciprocal. A consequence of the link direction is a possible asymmetry of the
adjacency matrix, in general aij doesn’t have to be equal aji, what requires a
special analytical approach in many applications [39], [40]. A network that
is not directed is called undirected network. All models developed in this
thesis consider undirected networks.

Weighted network

Sometimes a simple indication of the connection is not enough and the strength
or value of this connection is relevant. We call this value a weight and a net-
work with weighted connections a weighted network [41], [42]. An example
can be seen in Figure 2.2 c). Usually, the weight is a real number indicat-
ing the strength, the frequency or other feature of the relation between two
nodes. The adjacency matrix entries aij for a weighted network can take any
value, in some models even negative, with 0 indicating no link. All models
developed in this thesis consider unweighted networks only.

Regular network

A regular network is a network where every vertex has exactly the same num-
ber of connections ki = const, as in Figure 2.2 a). A regular network with
vertices of degree k is called a k-regular graph. An example of such structure
is a square lattice, where every node has four neighbors (except those on the
boundary). The square lattice was very popular in statistical physics and is
still frequently used as a null model. Note, that not every regular network
displays this level of regularity when plotted, it can even look completely
random.

Tree

A tree is a graph with no cycles, i.e. no closed loops, like the one in Fig-
ure 2.2 d). This structure is well known for applications of spanning trees in
correlation analysis. A spanning tree of a connected graph G = (V, E) is the
minimal possible subset of edges E containing all vertices V and creating a
tree. In weighted networks, for example to study a correlation matrix, usu-
ally the maximal or minimal spanning tree (MST) is considered [43]–[45]. MST
instead of minimizing the number of edges aims at minimizing/maximizing
the total weight of the selected edges.

Bipartite network

A bipartite network or a bigraph, also called two-mode network, is a network
whose nodes can be divided into two groups or modes, in such a way that
there are no connections between nodes belonging to the same mode. In
other words, every link goes from one group to the other. These groups are
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represented by white and black color in Figure 2.2 e). For instance, a network
of banks and financial instruments they are using can be seen as a bipartite
network. A bank is connected to a given instrument, say shares of a given
company, if it invests in it. Many banks can invest in the same stock and one
bank can invest in multiple stocks.

An equivalent of adjacency matrix for bipartite graphs is the incidence ma-
trix B. Staying with the financial interpretation, if there is n banks and m
instruments, then the incidence matrix is a n × m matrix, where Bij is 1 if
the bank i invests in the instrument j, and 0 otherwise. When every node
from one mode is connected to every node from the second mode it’s called
a complete bipartite graph represented by Kn,m.

Bipartite networks may give a full representation of particular structures,
however it’s often helpful to work with nodes of one type only. Such re-
duction of a bigraph is called one-mode projection [46] and is performed by
connecting two vertices of one mode, if they have links to the same vertex
of the other mode. As there are no cycles of length three in two-mode net-
works analysis of clustering is not trivial [47]. A structure similar to a bi-
partite graph is a hypergraph, which is actually homeomorphic to a bigraph
and contains the same information, but has only one type of nodes labeled
adequately.

Planar graph

A planar graph is a graph that can be drawn on a plane in such a way that
none of its edges intersect. In other words, we can draw a planar graph with-
out edges crossing each other, except for meeting at vertices. For example,
graphs in Figure 2.2 c) and d) are planar. A famous Polish mathematician
Kazimierz Kuratowski proved a theorem providing a convenient approach
for identifying whether a graph is planar [48]. The Kuratowski’s theorem
states that a graph is planar, if and only if it does not contain any subgraph
that is a complete graph K5 or a complete bipartite graph K3,3. It can not con-
tain a subdivision of K5 or K3,3 neither. A subdivision of a graph is formed by
inserting a vertex in the middle of an edge, or by doing so multiple times.
Planar maximally filtered graphs (PMFG) are of particular interest due to simi-
lar applications as MST [44], [49].

Multilayer network

A multilayer network or a multiplex network is an object consisting of layers of
graphs [50], [51]. In other words, each layer is one network of any kind. Then,
every node can exist in any subset of layers, but every representation of the
same node in different layers is connected by inter-layer connections. Links
within one layer are called intra-layer connections. An example of a duplex – a
multiplex network with two layers – is presented in Figure 2.3. Some authors
[52], [53] distinguish between multilayer and multiplex networks, by stating
that the former allows any node of any layer to connect to any other (in any
layer) and the latter needs to contain the same nodes in each layer being con-
nected only to itself via iter-links (with arbitrary intra-links). However, this
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Figure 2.3: An example of a multlilayer network with two lay-
ers (a duplex). All nodes exist on both layers, but intra-layer

connections are different.

1
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t

Figure 2.4: One of possible ways of visualizing a temporal net-
work. This simple example considers three nodes 1, 2 and 3
and discrete time of equal intervals. Each tick represents one

snapshot of the current state of the network.

branch of network science is relatively young and the consensus about the
vocabulary is not yet established. The adjacency matrix for mulilayer net-
works is generalized to a tensor. There are different methods of aggregating
mulilayer networks into a single-layer network, but none of them reproduces
all properties [54], [55]. This type of networks is of particular interest in so-
cial sciences, since different layers can naturally represent different types of
social interactions, or interactions via different media [56], [57].

Temporal network

Another young branch of network science comes from the analysis of tempo-
ral networks [58]–[60]. A temporal network is a network with a new dimen-
sion taken into account, namely time. It contains information about nodes
and links, but together with additional information about time of every in-
teraction. Therefore, every connection has its time frames – it can be a single
timestamp (giving a discrete time scale) or a period of time. Either way, for
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every edge its existence duration has to be specified. An example is given in
Figure 2.4. A temporal network can be fully represented by a multilayer net-
work with every layer being the state of the network in between any changes.
And like a multilayer network, a temporal network is helpful in the descrip-
tion of real-world social networks as every social interaction has its duration.

2.2 Fundamental models

Graph theory lays within the scope of basic research, but network science
additionally to its intellectual value has many applications. Network mod-
els are used in physics, chemistry, biology, sociology, linguistics, economics,
computer sciences and other disciplines [61]. To cover such a broad range of
fields a rich collection of network models is necessary. Indeed, over the years
a considerable number has been proposed. Many of them, however, can be
seen as an extension of a few fundamental models being the milestones in
the network science. In this section the most relevant ones are described.

All network models can be divided into deterministic and probabilistic.
For instance, a square lattice is a fully deterministic network. Once it is de-
cided how many nodes it contains its structure is perfectly determined and
there is only one way to construct it. Another example can be a triangular
lattice, a complete graph, chain-like networks, or fractal networks. In all of
them, once we set the parameters values we know exactly how the network
will look like, because there is only one possible realization of it. Determin-
istic models are useful for example in analysis of processes taking place on
a crystal structure. The phenomena of ferromagnetism was explained using
regular deterministic networks. But in most of the previously mentioned ap-
plications there is a certain level of randomness. It can be due to noise or it
can be the very nature of the system, i.e. the process of it’s creation and evo-
lution is not deterministic. That’s why the probabilistic models form much
bigger group and are much more frequently applied in description of real-
world phenomena.

Going further, the probabilistic models can be divided into algorithmic
and analytical ones [62], or into equilibrium and non-equilibrium networks
[63], [64]. This division is strongly related to the approach known from sta-
tistical physics and thermodynamics. For instance, a static network2 can be
seen as an equilibrium process – their macroscopic properties are constant
and independent of time. On the other hand, evolving networks can be un-
derstood as a non-equilibrium process in a stationary state – their macro-
scopic properties keep changing, but particular parameters do not evolve
and remain constant (e.g. average degree). The majority of network mod-
els are algorithmic (non-equilibrium), like the ones described in Chapters 3
and 4. However, equilibrium approach can also be fruitful, as in the models
described in Chapter 5.

2A static network is an extreme example given just to emphasize the difference between
equilibrium and non-equilibrium models. Chapter 5 contains much more detailed discus-
sion of the topic.
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Static networks are often employed to study phenomena taking place on
a network. For example, a spreading process can be analyzed on a network
and its outcomes may, and usually do, significantly vary depending on the
topology of the network. That is why the proper description of the struc-
ture is so important, but its not always relevant how this structure was cre-
ated. Contrarily, in evolving network models the dynamics of the network is
the main subject. Of course, the generated structure can be further studied,
for example to examine its influence on mentioned spreading processes. Al-
though, the main question asked in the context of evolving models is what
rules give rise to a given structure.

2.2.1 Random networks

By calling a network random we mean that some parameters are fixed, but
there is a certain level of randomness in other aspects. For instance, the num-
ber of vertices can be fixed and the structure can be accidental. Although
there are many models of random networks, the name is normally associ-
ated with a particular one, if not specified otherwise. This model was first
studied by Salomonoff and Rapoport [65], but largely developed by Erdős
and Rényi [18], [19], [66]. Due to the significant contribution of the second
authors the model is usually refereed to as Erdős-Rényi random graph or just
ER model (sometimes Poisson random graph).

The ER model has two equivalent definitions. In both the number of
nodes N is fixed. In the first definition additionally the number of links M is
set. Then, to generate the network all links are distributed among the nodes
with every pair of nodes having equal probability of being connected. In fact,
the model can be alternatively defined as en ensemble of graphs of N vertices
and M edges. In this ensemble every possible configuration being a simple
graph is equally possible. Therefore, the network generation process consists
of picking one of them at random. Although, as in statistical physics, ev-
ery realization is equally probable there is much higher chance of obtaining
homogeneous and disordered one, since there is a greater number of them.

The second definition also has two parameters, this time being the num-
ber of nodes N and the probability of link creation p. In this definition the
number of links M varies, but on average the model is identical to the first
definition, sharing all relevant features. To generate a network one has to
create N vertices and for every single pair of them create an edge with a
probability p. There is N(N − 1)/2 pairs, therefore the expected number of
links equals 〈M〉 = pN(N− 1)/2. Knowing that 〈k〉 = 2M/N, we obtain the
average degree for ER network:

〈k〉 = p(N − 1). (2.7)

From a single node point of view, the process of obtaining new neighbors can
be seen as a Bernoulli trial with probability of success equal p. Every node
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has N − 1 potential neighbors what leads to a binomial degree distribution:

P(k) =
(

N − 1
k

)
pk(1− p)N−1−k. (2.8)

For the thermodynamic limit, i.e. N → ∞ with 〈k〉 = const., it converges to
the Poisson distribution (what is the reason behind the name Poisson random
graph):

P(k) =
〈k〉k
k!

e−〈k〉. (2.9)

As the probability that any two nodes are connected is p, it is also the proba-
bility that two nodes being neighbors of a given node are connected. There-
fore, the average local clustering coefficient takes value:

〈c〉 = p =
〈k〉

N − 1
. (2.10)

It can be shown that the diameter of the ER random graph for 〈k〉 >> 1 is
equal dmax = ln N/ ln 〈k〉 and the average path length:

〈d〉 = ln N − γ

ln 〈k〉 +
1
2

, (2.11)

where γ is the Euler constant [67].
The parameter p in the ER model can take values from 0 to 1, since it

is a probability, and it is easy to notice that for these two extreme values
the network will display significantly different features. For p = 0 there
is no edge, the network is just a set of vertices. For p = 1 every pair of
nodes is connected, therefore we obtain a complete graph. Somewhere in
between there must be a change in the network topology, in the sense of
the size of the largest component S. We can observe this transformation in
Figure 2.5. As connectedness of the network changes, it can be referred to as
a percolation transition [68]. Indeed, it displays properties of a percolation
process on a square lattice of infinite dimensions [69], [70]. It turns out that
the minimal value of the average degree 〈k〉c required to observe macroscopic
structures is 1. Therefore, the critical probability at which components of a
size comparable to the whole network will start to emerge must be equal
pc = 1/(N − 1). The exact size of the normalized giant component in the
limit of large network size is given by [18]:

S = 1− e−〈k〉S = 1− e−p(N−1)S. (2.12)

The percolation phase transition in the ER network is a continuous phase
transition, as it can be seen in Figure 2.6. It was argued that there can exist
a discontinuous explosive phase transition, but it was proved to be merely a
numerical artifact [71], [72]. The percolation phenomena is especially inter-
esting, because it is connected to the question of robustness of networked
systems under errors and attacks [73].
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a) p = 0.008 b) p = pc ≈ 0.017

c) p = 0.035 d) p = 0.05

Figure 2.5: Percolation transition in the ER model visualized for
different values of p: a) below the critical point, b) at the critical
point pc, and c), d) above it. Network contains N = 60 nodes.
The main cluster is colored red, nodes with no connections are

colored light green, and the rest dark green.
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Figure 2.6: Percolation transition in the ER network. Size of the
largest component S (normalized) vs. the probability of edge
creation p for N = 10000. Solid line is a solution of Equa-
tion 2.12, circles represent results of a simulation averaged over

100 realizations. Dashed line indicates the critical value pc.

Unfortunately, as much as the ER random graph is a pioneering and stim-
ulating model, which can provide a convenient framework for network pro-
cesses analysis, it does not provide an accurate representation of real-world
networks. Its structure doesn’t display several crucial traits observed in em-
pirical data. The first issue is the shape of the degree distribution. Empiri-
cal networks have often power-law, or at least fat-tailed, degree distribution.
The exponential decay for ER model is definitely divergent with this obser-
vation. The second issue is the clustering coefficient value. As predicted by
Equation 2.10, it will tend to zero when the system size grows3. Usually, val-
ues of clustering coefficient in real networks exceed those in a corresponding
ER graph by orders of magnitude. Finally, there is no correlation between the
neighboring nodes degrees, since the attachment is purely random. In many
networks, assortativity is strong and can not be neglected. Consequently, the
only conclusion can be: the real networks are not so random.

2.2.2 Exponential random graphs

As it was mentioned in the previous section, the ER random graph model
can be seen as an ensemble of graphs over which we define a simple prob-
ability distribution, with every realization having the same probability. This
approach proved to be incredibly successful in statistical physics. It would

3It will go to zero, if we want to keep the average degree constant, which is reasonable,
since real networks are sparse.



26 Chapter 2. Basics of network science

be disappointing to utilize it only as a mere comparison. Indeed, such ap-
proach was applied in network science in much grater strictness and it is
called exponential random graphs model (ERGM) [74], [75]. In this model we
assume that there is many possible realizations of a network with N vertices,
even if only one exits in the empirical world, and we construct a probability
distribution over them. This pair – the set of networks G and the distribution
P(G) – creates a statistical ensemble. From normalization we have:

∑
G∈G

P(G) = 1. (2.13)

We can calculate expected value of any measure on the network xi(G) over
the ensemble as:

〈xi〉 = ∑
G∈G

xi(G)P(G). (2.14)

Say we can observe certain features xi of an empirical network and we want
to maintain them in the model. Further, having a model reproducing these
features we want to ask a question about possibility of observing different
features yi. Or we would like to know how probable is a given structure.
ERGM provides natural and very elegant framework to answer these ques-
tions. The fixed features are represented by appropriate network measures
xi, or in the simplest form by their average values 〈xi〉. Then, in Equation 2.14
the left-hand side is specified and together with Equation 2.13 it forms con-
straints for the probability distribution P(G). Usually, the number of con-
straints is small, we want to fix maybe several measures. The total number
of achievable graphs of N vertices in the ensemble is equal 2N(N−1)/2, which
is much larger than the number of constraints even for relatively small N.
Thus, the constraints don’t fully specify the distribution – there is still a lot of
flexibility. As in statistical physics, it is argued that the best choice of the dis-
tribution with the smallest amount of assumptions is the one that maximizes
the Boltzmann-Gibbs-Shannon (BGS) entropy4 [76], [77]:

S = − ∑
G∈G

P(G) ln P(G). (2.15)

The maximum entropy principle assures that we are not adding any extra
biases or assumptions into our analysis [78] (more thorough description of
this principle can be found in Section 5.1). Maximizing Equation 2.15 by the
method of Lagrange multipliers leads to:

P(G) = exp

(
α− 1 + ∑

i
βixi(G)

)
, (2.16)

4Entropy, as usually, is denoted here by S, like the size of the largest component. It was
decided to leave this ambiguity to preserve natural symbols of quantities. Everywhere else
S stands for the size of the largest component, if not specified otherwise.
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where α and βi are Lagrange multipliers (see Appendix A for the full deriva-
tion). The formula can be rewritten as:

P(G) =
e−H(G)

Z
, (2.17)

where Z = e1−α is a partition function and H(G):

H(G) = −∑
i

βixi(G), (2.18)

is a Hamiltonian of a graph. The partition function Z must fulfill the normal-
ization constraint, therefore Z = ∑G∈G e−H(G). Parameters βi are to define
from the constraints equations 2.14.

On the other hand, we might be interested in the inverse reasoning. If we
treat βi as free parameters with a certain range of possible values, we can an-
alyze the structures it can produce. We can control the outcome of the model
in a similar way as the probability p controls the structure of the ER ran-
dom network. Such approach is promising, since we can obtain the relation
between microscopic measures of a network and its macroscopic properties.
Additionally, an analogue of temperature (in the sense of fluctuation size)
can be constructed. This reasoning is applied in one of the main models of
the thesis in Chapter 5.

In general, it might be difficult to calculate the average value of an arbi-
trary quantity over the ensemble, but it is straightforward, if the quantity is
present in the Hamiltonian:

〈xi〉 = ∑
G∈G

P(G)xi(G) = ∑
G∈G

e−H(G)

Z
xi(G) =

1
Z ∑

G∈G
e∑i βixi(G)xi(G)

=
1
Z

∂

∂βi
∑

G∈G
e∑i βixi(G) =

1
Z

∂Z
∂βi

=
∂ ln Z

∂βi
,

(2.19)

where the quantity F = ln Z is called free energy. Therefore, the only thing
necessary to calculate the value of 〈xi〉 is the partition function Z.

En example of ERGM with a simple constraint is a network with a fixed
average number of edges 〈M〉. Then, the Hamiltonian is:

H(G) = −βM, (2.20)

and from Equation 2.17 we obtain:

P(G) =
eβM

Z
, (2.21)

where Z = ∑G∈G eβM from normalization 2.13. It is easy to count the number
of links in a network using the adjacency matrix A:

M = ∑
i<j

aij, (2.22)
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what allows to compute the exact form of the partition function:

Z = ∑
{aij}

eβ ∑i<j aij = ∑
{aij}

∏
i<j

eβaij = ∏
i<j

∑
aij=0,1

eβaij

= ∏
i<j

(1 + eβ) = (1 + eβ)N(N−1)/2,
(2.23)

where {aij} indicates all possible adjacency matrix configurations for a sim-
ple graph of N vertices. Having Z we can calculate the average value of the
chosen measure using Equation 2.19:

〈M〉 = ∂ ln Z
∂β

=
N(N − 1)

2
1

1 + e−β
. (2.24)

Now we can finally find the proper value of the parameter β to satisfy the
constraint:

β = ln

(
〈M〉

N(N−1)
2 − 〈M〉

)
. (2.25)

As we know, the maximal possible number of edges in a simple graph is
equal to N(N− 1)/2, hence from Equation 2.24 we can deduce that the factor
(1 + e−β)−1 must be the probability of a single edge to exist:

p =
1

1 + e−β
. (2.26)

Therefore, the exponential random graphs model with a Hamiltonian given
by Equation 2.20 is equivalent to the ER random graph model with the prob-
ability p given by Equation 2.26. In other words, the ER model can be seen as
a special case of a more general framework of ERGM. Moreover, ERGM can
account for several other models, for instance random graphs with arbitrary
degree distribution, high clustering or particular motifs [79]–[84]. The model
is also referred to as p∗ (p-star), mainly in social sciences [85], [86], where it
gained large interest and is frequently applied in the analysis of social net-
works.

2.2.3 Small-world networks

Models of random networks described in previous sections, although im-
portant, suffer a substantial drawback. The real-world networks often times
display high values of the clustering coefficient. This effect is particularly vis-
ible in social networks [63], [87]–[89]. The ER random graph has insignificant
clustering5. Moreover, it goes to zero when the network grows, therefore one
could expect no clustering at all on the level of whole societies. But clearly
this is not the case, hence a better model is necessary.

5In the ERGM it is possible to construct a Hamiltonian satisfying high clustering coeffi-
cient constraints [81].
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A very simple graph that accounts for the higher clustering can be con-
structed in a following manner. Put N vertices on a line and connect them by
edges in such a way that every vertex is connected to ki nearest neighbors.
For simplicity, the degree is kept even and constant, ki = 〈k〉 ≡ k for every
i. It can be shown that the global clustering coefficient in this network with
periodic boundary conditions will be [2]:

C0 =
3(k− 2)
4(k− 1)

. (2.27)

For instance, k = 4 gives clustering C = 1
2 , which is a reasonable value

compared to the empirical measurements. The only problem is that such
a regular structure generates very long distances between nodes. Indeed, the
average path length is given by:

l0 =
N
2k

, (2.28)

which results in l = 125 for k = 4 and N equal just 1000. As Milgrams ex-
periment showed [22], [90], this is not what we would expect from empirical
networks. They are said to be small, not in the sense of the number of nodes,
but short paths between vertices [91]–[93]. This phenomena is referred to
as the small-world problem and no regular planar construction can explain it.
So the simple model appropriately reproduces the clustering behavior, but
fails in terms of the average path length. However, one of the features of the
random graph was a very short geodesic (Equation 2.11).

We have two models then. One explains the transitivity very well and
fails when it comes to the small-world property, the second the other way
around. Why not to merge them? This is exactly what Duncan Watts and
Steven Strogatz did creating their simple, yet powerful and famous model
[94]. The Watts-Strogatz model (WS)6 proposes a parameter p, which is a
probability of rewiring an edge. More precisely, we start from a regular
graph described before and for every link we decide with the probability
p to rewire it, choosing new ends at random from the entire network. As it
is a simple graph, the rewiring must be performed without generating self-
loops or multi-edges. Obviously, for p = 0 nothing will change and for p = 1
we will obtain a random graph. But the most interesting behavior can be
observed somewhere in between these values, when only a fraction of links
is rewired, as we can see in Figure 2.7. Originally only one end of every
edge was rewired, but this does not lead to the ER random graph for p = 1,
because the degree distribution will not be Poissonian. Since every node
preserves half of its links the minimal degree would be k/2, where in the
Poissonian random graph there is no such restriction. Elsewhere, the models
are identical for both rewiring procedures.

The most striking result of the WS model is the behavior of the network
parameters when p is varied. As we can see in Figure 2.8, the average path

6 The WS model is also called the small-world model, but since many models posses the
small-world property it’s better to stick to the authors names.
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a) p = 0 b) p = 0.1 c) p = 0.9

Figure 2.7: Network in the WS model for different values of the
rewiring probability p. Between the limiting cases – the regular
network and the random graph – a network with the small-

world property and high clustering emerges.
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Figure 2.8: Average path length 〈d〉, global C and average lo-
cal 〈c〉 clustering coefficient in the WS model. Results obtained
from a simulation for N = 1000 and 〈k〉 = 4, averaged over 500
realizations. All values are normalized – divided by the corre-

sponding quantity in p = 0 (Equations 2.27 and 2.28).
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length rapidly decreases even for small values of p, while the clustering coef-
ficient is still relatively high and drops to zero much later. Therefore, there is
a wide area where the generated network has both – the small-world prop-
erty and significant transitivity. This remarkable outcome explains how it is
possible to observe the two properties in empirical networks simultaneously,
maintaining them sparse at the same time. It is achievable thanks to the small
amount of long-range connections serving as shortcuts between distant ver-
tices.

The WS model can be defined also for more complex structures than the
one-dimensional chain of nodes. It can be extended to an arbitrary num-
ber of dimensions, constructed on a triangular lattice, or a square lattice, al-
though the last one lacks the clustering, but contains many loops of length
four. Interesting problems arise when analyzing efficiency [95] and possibil-
ity of navigation [96], [97] in small-world networks.

2.2.4 Scale-free networks

Together with the small-world property and high clustering coefficient a very
important topological feature of real-world networks is the power-law degree
distribution P(k) ∼ k−α. This distribution and networks that posses it are
called scale-free, due to lack of a characteristic scale of the phenomena – vari-
ance or even the average value may not exist [98]. Such network looks the
same before and after zooming in a picture – there is always a lot of weakly
connected nodes and a few hubs with a huge number of links. The difference
between the scale-free topology and the ordinary random graph can be seen
in Figure 2.9. A power-law degree distribution was reported in a number
of empirical networks, like the WWW [99], metabolic networks [100], scien-
tific collaboration network [101], the Internet [102], or actors collaboration
network [103]. Especially, the World Wide Web case triggered a discussion
about how random is the structure of real networks and led to the first scale-
free network model.

The scale-free property is a critical aspect in various systems. The first
model to explain it was proposed by George Yule to describe the number of
species per genus of flowering plants [104]. Later it was applied to demon-
strate the city size distribution [105] and scientific citation networks [106].
But the most prominent model was introduced by Alber-László Barabási and
Réka Albert [107], [108] in order to explain the structure of the WWW. In all
this examples the key to generate a power-law distribution is growth and pref-
erential attachment. More precisely, over time new nodes are introduced into
the network and they connect not completely at random, but with a prefer-
ence over some types of nodes. Therefore, the Barabási-Albert model (BA) is
a model of evolving network defined as follows [3]. We start with m0 nodes
creating a complete graph7. At each time step a new node is added into
the network and connected to m ≤ m0 other nodes in the network. Hence,
the minimal degree is equal m. Preferential attachment is achieved by using

7The initial configuration doesn’t matter, as long as every node has at least one connec-
tion.
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a) BA network

b) ER network

Figure 2.9: Comparison of a) a scale-free and b) a random struc-
ture of a network. Nodes with higher degree are drawn with
bigger circles and darker color. It is clear that BA network has
much bigger hubs, while ER network is more homogeneous.
Both graphs consist of N = 70 nodes and M = 204 edges. Pa-

rameters in the BA model are m0 = m = 3.
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a certain probability distribution over existing nodes – the probability Π(ki)
that a new node will connect to the node i depends on its degree and is equal:

Π(ki) =
ki

∑N
j=1 k j

, (2.29)

where N ≡ N(t) depends on time, as the network grows. To describe results
of many realizations of the BA model we can assume that ki is a continu-
ous variable, characterizing average over many experiments [108]. Then, the
change of the degree ki in time is:

dki

dt
= mΠ(ki) =

mki

∑N
j=1 k j

, (2.30)

because at each time step the node i has m possibilities of accumulating a
link. The sum ∑N

j=1 k j over all degrees is just twice the number of edges in
the network 2M. Every new node introduces m new links at each time step.
Therefore, the number of edges added by new nodes in time t is M(t) =
mt. For a large network, i.e. in the limit t → ∞, we can omit the initial
m0(m0 − 1)/2 edges and write:

dki

dt
=

ki

2t
. (2.31)

The initial condition for this equation is given by ki(ti) = m, where ti is the
time when the node i was added to the network. It is straightforward to solve
the equation, obtaining a formula for the degree growth in time:

ki(t) = m
√

t
ti

. (2.32)

To obtain the degree distribution in the continuum approximation first we
shall find the cumulative probability distribution P(ki ≤ k). If ki ≤ k at time
t, then from Equation 2.32 we have:

m
√

t
ti
≤ k =⇒ ti ≥ t

m2

k2 , (2.33)

which is the condition for the time ti of the appearance of the node i such that
ki ≤ k. As the maximal time of appearance is t, this condition requires that
ti ∈ [t m2

k2 , t]. This interval is well defined, because k ≥ m for any node. New
nodes are introduced at each time unit, therefore the number of nodes with
degree smaller than k is equal to the size if this time interval ∆ = t− t m2

k2 . To
obtain probability we have to divide this number by the number of all nodes
N = t + m0 ≈ t, what gives the final form of the cumulative distribution:

P(ki ≤ k) = 1− m2

k2 . (2.34)
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Figure 2.10: Degree distribution of a network in the BA model.
Red line represents the analitical result from Equation 2.35 for
m = 3. Blue circles stand for results of a numerical simulation

with N = 106, m0 = m = 3, averaged over 500 realizations.

After differentiating we arrive at the formula for the degree distribution in
the BA model, which is a power law:

P(k) =
2m2

k3 . (2.35)

The function from Equation 2.35 is presented in Figure 2.10 and compared
with results of a numerical simulation. The numerical results slightly deviate
from the analytical expression, especially for small k. This is because the
continuum approximation is an asymptotic solution. The exact formula can
be derived using a master equation [109], [110].

Another intriguing property of a BA network is the behavior of the aver-
age path length. As it was reported [111], [112], for a large N limit:

〈d〉 ∼ ln N
ln ln N

, (2.36)

what is an even slower growth than in a random graph. For that reason
scale-free networks are said to display ultra-small-world property. Although
the BA model explains fat-tailed degree distribution in networks and prefer-
ential attachment is a distinguished process in many real systems, scale-free
networks as the random ones fail in explanation of the clustering. The tran-
sitivity in the BA model scales as:

C ∼ (ln N)2

N
, (2.37)
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what is better (bigger) than in ER graphs, but still insignificant when com-
pared to the empirical values. There were, however, extensions of the model
solving this issue [113], [114]. Recently, there was also a vigorous discussion
weather scale-free networks are actually common or rare [115]–[118]. Never-
theless, the BA model is a milestone in network science and even if scale-free
networks were rare, they would still be interesting due to their special prop-
erties [73].

2.2.5 Constant rewiring

Another example of an evolving network is a graph of fixed number of nodes
N and links M with the links constantly being rewired. There is no growth in
such model, but preferential attachment can be applied. This kind of evolv-
ing network is particularly relevant, because in adaptive networks the struc-
ture’s evolution is usually achieved exactly by link rewiring. Not all the
considerations, however, apply to coevolving networks due to their much
higher complexity caused by existence of nodes states and the feedback be-
tween the structure and state evolution. Nevertheless, this simple model of
link rewiring might be very descriptive. Additionally, it allows to chose ar-
bitrary type of preferential attachment, similarly to the models developed in
Chapters 3 and 4.

The model of evolving network with constant rewiring can be defined as
follows. We start from constructing a random graph of N vertices and M
edges 8. Then, in every time step [5], [64], [119]:

1. Randomly select a link9, then randomly select one of its ends. Detach
this end from the node.

2. With probability Π(ki) select a node i and attach the rewired link to it.

The procedure is repeated until the graph reaches a stationary state with or-
der parameters fluctuating over the average values. To indentify the degree
distribution P(k) in this model we shall use the rate equation approach, which
is equivalent to the master equation. Let us consider the number of nodes
N(k, t) of degree k at time t. There are two possibilities to change this num-
ber. (i) If a node of degree k is chosen to be detached from, the number N(k, t)
will drop by 1. Probability of this event is equal k/2M (for one particular
node), because there is 2M ends of edges in the network and k of them are
attached to the node. (ii) If a node of degree k is chosen to be attached to, the
number N(k, t) will increase by 1. Probability in this case, for one node, is
just Π(k) by definition. Putting these points together we can write down the

8The initial configuration doesn’t matter as long as every node has probability of gaining
new links grater than zero, i.e. it can be attached back to the network, if the initial configu-
ration happens to be disconnected.

9Every time when something is randomly selected without specifying the distribution of
this random draw, it means the distribution is flat with equal probability of any outcome.
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rate equation for N(k, t):

N(k, t + 1) = N(k, t)−Π(k)N(k, t) + Π(k− 1)N(k− 1, t)

− k
2M

N(k, t) +
k + 1
2M

N(k + 1, t).
(2.38)

Dividing both sides by N and reorganizing factors we arrive at:

P(k, t + 1)− P(k, t) =
[

Π(k− 1)P(k− 1, t)− k
2M

P(k, t)
]

−
[

Π(k)P(k, t)− k + 1
2M

P(k + 1, t)
]

,
(2.39)

where P(k, t) = N(k, t)/N is the degree distribution at time t. We are in-
terested in the stationary state at t → ∞ which does not depend on time:
limt→∞ P(k, t) = P(k). The left-hand side of Equation 2.39 becomes then
zero and we can write:

Π(k)P(k)− k + 1
2M

P(k + 1) = const. = 0, (2.40)

were we assumed that both square brackets from the right-hand side of Equa-
tion 2.39 must be equal in the stationary state in order to establish effectively
zero flow between P(k) and both neighboring states P(k − 1) and P(k + 1).
Otherwise, the distribution would change its shape and this would mean it’s
not the stationary state yet. The constant being zero comes from the condition
limk→∞ kP(k) = 0, which must hold for the distribution to be normalized. Fi-
nally, we can obtain the direct relation between the degree distribution and
the preferential attachment rule:

Π(k) =
k + 1
2M

P(k + 1)
P(k)

. (2.41)

The question is, what kind of preferential attachment Π(k) in the rewiring
process will lead to a power-law degree distribution? Substituting P(k) ∼
k−α to Equation 2.41 we obtain:

Π(k) ∼ (k + 1)
(

k + 1
k

)−α

= (k + 1)
(

1 +
1
k

)−α

≈ (k + 1)
(

1− α

k

)
= k + 1− α +O(1

k
),

(2.42)

were we assumed large k and limk→∞O(1/k) = 0. Therefore, a linear rela-
tion can lead to a fat-tailed degree distribution. But not only the asymptotic
behavior of Π(k) matters. It is crucial how it approaches this asymptote. To
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illustrate it let’s assume exponential degree distribution this time. If we sub-
stitute P(k) ∼ e−k/k0 into Equation 2.41 we obtain:

Π(k) ∼ (k + 1)

(
e−(k+1)/k0

e−k/k0

)
= (k + 1)e−1/k0 ∼ k + 1. (2.43)

This striking result shows how different outcomes we can observe from two
linear relations. Second requirement to achieve scale-free property in con-
stantly rewired network is sufficient density of links [64]. Although mean-
ingful, this approach can not be directly applied in coevolving networks,
due to the influence of nodes states on the topology and non-trivial feedback
loop between them. Also the manner of link rewiring is important. It can be
shown that for large networks the results are the same, if the whole edge is
detached and rewired with both ends selecting new nodes according to the
preferential attachment rule Π(k) [64]. However, if we perform rewiring by
selecting a node at random and detaching one of its links from the neighbor,
the dynamics of the process changes.

2.3 Coevolving networks

Models described so far were either providing rules to construct a static net-
work with given properties or defining dynamics governing evolution of a
network. In both cases nodes are indistinguishable, they posses no state
other then purely topological, i.e. the number of connections. These kinds
of models aim at describing structures that we observe in the empirical data.
If there is some dynamics, it’s the dynamics of network, with no insight into
what might be happening on the generated structure.

On the other hand, equally active branch of science focuses on the analysis
of the dynamics on networks. In this kind of models, an already generated and
static network is employed and a given process taking place on this struc-
ture is studied. Therefore, even if the graph was initially obtained using one
of the evolving network models, there is no evolution of the network any-
more. Once it’s generated its static version is considered. A complete list of
processes studied in this manner on different structures would be massive.
To give a few significant examples: opinion formation processes [120]–[122],
rumor spreading [123], [124], systemic risk and its connections to topology
[123], [125], [126], language evolution and competition [127]–[130].

Obviously, the topology of the network can significantly influence the
outcome of the process taking place on it. For instance, one of the most
prominent results in network science illustrates it – the epidemic threshold
vanishes when changing the topology of the network from random to scale-
free [131]–[133]. And vice versa, in real-world networks the state of nodes
may affect the topology of the network. It can change the preference in link
rewiring or attachment. For example, even a homogeneous initial attractive-
ness of nodes in the BA model changes the exponent of the power law [109],
[110], [134]. For this reason, it is rational to investigate both processes – the
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evolution of the networkdynamics on the network 

determinesaffects

determines affects

Figure 2.11: A schematic representation of the feedback loop be-
tween the topological evolution of a network and the dynamics

of nodes states existing in the coevolving network models.

network’s evolution and the nodes states dynamics – at once. Moreover, in
many empirical systems it is impossible to separate one from another and
collective analysis is inevitable. Models incorporating evolution of the net-
work’s topology and dynamics of the state of nodes together are called adap-
tive or coevolving10 network models [135].

Although it’s still a relatively young field with much to be discovered,
a number of coevolving network models was proposed so far, covering phe-
nomena ranging from Boolean network dynamics and synchronization to so-
cial opinion formation and ecological food-webs evolution [136]–[157]. Adap-
tive networks hitherto displayed intriguing properties. Frequently, reported
phenomena contains formation of complex topologies, dynamical and some-
times critical self-organization, and diverse phase transitions in the structure
and in the state of nodes. A network may become dynamically fragmented,
or shattered. High topological heterogeneity among nodes can arise. Of-
ten times, seemingly distinct coevolving systems can exhibit similar behavior
and can be collectively described within one logical framework. This simi-
larity rationalizes the notion of coevolving network and common analysis of
such systems.

Another fascinating aspect of adaptive networks is their potential appli-
cability in autonomous artificial systems. The internet of things is becoming
real, we posses more and more smart devices that have to communicate with
each other according to a certain local rules. What emerges from this local
interactions defines behavior of the system. It was shown that power grid
fluctuations can be reduced thanks to such cooperation [158]. But there is
more possible applications. Autonomous robots, self-organizing communi-
cation systems, self-adapting production lines etc. In every case all we can

10Sometimes a coevolutionary network model can be encountered.
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define is local rules and all we would wish for is the anticipated global be-
havior. We want to be sure about the connection between this two opposite
levels of a given system.

It is important to understand that the outcome of an adaptive network
model is not a simple sum of results of separated underling processes. More
precisely, let’s say we independently analyze a rewiring mechanism and node
states dynamics. We conclude that the rewiring produces a topology A and
the dynamics leads to a state B. Then, we can not assume a coevolving model
merging the two would display the state B on the topology A. Moreover,
often times it’s entirely wrong and the system’s outcome is something that
can’t be achieved separating the evolution of the network from the dynam-
ics on the network. It is caused by a non-trivial feedback loop present in
adaptive systems (see Figure 2.11). The structure of the network affects the
dynamics of state. And the state of the nodes affects the evolution of the net-
work. For instance, in self-organized criticality sandpile model of Bak-Tang-
Wiesenfeld [159], [160] the avalanche dynamics and the network’s topology
may influence each other [161]. When we allow susceptible agents to cut con-
nections with infected ones in epidemic models, we can observe completely
new phases [162]. Coevolution gives a whole new dimension to game theory
strategies, for example in prisoner’s dilemma [163], [164], if we allow agents
to rewire their links. All these lessons inspire the extension of existing net-
work models to adaptive versions and provoke a question about the limits
of the static approach. They also create the context for this thesis and three
models developed within it that are described in the following chapters. It
is also an intriguing question, which topological properties of a network can
be affected by a given coevolution rule. Answer to this question is one of the
central points of the rest of the thesis.
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Chapter 3

The voter model

The simplest possible dynamical model on a network needs at least two dif-
ferent states of nodes [165]. Then, rules governing the dynamics must be
specified, what can be done in numerous ways. Among equilibrium mod-
els, probably the most well known and broadly applied is the Ising model
[15], being frequently a starting point for a more complex analysis. When it
comes to non-equilibrium or algorithmic models [62], the counterpart of the
Ising model is the voter model. The former will be discussed later, the latter
is the subject of this chapter.

The voter model has been described, analyzed, simulated and applied
under many different names. There is a certain amount of redundancy in the
literature reporting results of binary-state models defined by the same time
evolution rules. It’s no surprise, if one realizes how many potential appli-
cations such simple model has. Where by simple I mean a simple definition
and basic algorithm, not the outcome of the model which can be and usually
is rather complex. To have an idea which models may be associated with the
wide definition of the voter model we can distinguish two most important
traits of voter-like models. The first one is (i) the binary state of nodes, where
the exact numerical values chosen for these two states are not essential. The
second feature is (ii) defining the model through possible events for every
time step, discrete or continuous, where the basic event is a state copying.
Further details, like updating one node at a time or the whole network, may
vary. We can assume all to all interactions, i.e. a complete graph topology, or
a set of agents placed on a one-dimensional square lattice. It can be one-on-
one interaction, or a nonlinear interaction, there can be an external field or
not etc. But if (i) and (ii) are satisfied, we can refer to the model as a version
of the voter model1.

The first description of a voter-like model, to my best knowledge, was
given in 1973 [166]. In this short article authors studied two possible pro-
cesses taking place on a one- and two-dimensional square lattice of black
and white cells. The cells could change their color due to a swapping process
or invasion process. The second one is actually consistent with most of the
current definitions of the voter model – one node can influence another to
change its state. However, the authors proved that both processes are equiv-
alent when it comes to the probability of occupying a given cell by a given

1 This aggregation under a common name of voter model is present in most of the recent
literature cited in this chapter. However, in different fields the model can have different
names.
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color. The probability of event occurrence (swapping or invasion) was de-
fined for continuous time steps. Therefore, it is clear that (i) and (ii) were
satisfied in this work.

The first time the name voter model was used was two years later in [167].
In this mathematical study exploring ergodicity of infinite systems the pos-
sible states are 0 and 1, and the time parameter is desecrate. Although the
setup might sound quite distinct from the previous one, it also satisfies (i)
and (ii).

To understand the redundancy in many names of the voter model it is
best to look at its applications. It has been applied to describe species com-
peting over a territory [166], behavior of ants facing a choice between two
food sources, or people selecting a restaurant [168], stylized facts about stock
markets [169], opinion dynamics [170], innovation diffusion [171] and vot-
ing process [172], to name the main ones. Obviously, the name comes from
the last listed application, but the roots of the model can be found in statis-
tical physics of non-equilibrium systems. The model was implemented in
a description of a heterogeneous monomer-monomer catalytic process [173]
and dimer-dimer surface reactions [174]. In the social context, where the
voter model is most frequently applied, two states can correspond to differ-
ent opinions and the state-copying process to social imitation, i.e. the ten-
dency of people to adapt opinions of others.

3.1 Static network

As for probably all network models, the voter model was thoroughly studied
on static networks before the first extension introducing link rewiring came.
One of possible divisions of the work done in this context is by the network’s
topology with one class being a complete graph and the other everything
else, i.e. complex networks. When every node is connected to all the oth-
ers the interaction with neighbors may be considered as an interaction with
an aggregated state of the whole network, whereas in complex networks the
local structure must be analyzed neighbor by neighbor. Consequently, dif-
ferent mathematical tools are applied to these classes. A brief description of
both follows.

3.1.1 Homogeneous case

In the simplest version the voter model is defined and studied on a complete
graph, therefore homogeneous refers to the structure. Every node is exactly the
same from the topological point of view. This approach is sometimes consid-
ered a mean-field approximation of the voter model on a complex network
with a relatively homogeneous degree distribution.

In some of the articles about the voter model on a complete graph it is
not even acknowledged that there is any graph at all, since as mentioned
in Section 2.1.2 a complete graph can be seen as no graph at all. There is
no underling structure limiting possible interactions – every agent can and



3.1. Static network 43

do interact with every other. Therefore, to characterize the playground it’s
sufficient to specify the number of agents.

The model can be defined in a following manner. Consider a system of
N nodes creating a complete graph, i.e. every node can interact with every
other. There are only two possible states of each node, as for any version of
the voter model, which are si ∈ {−1,+1}, however the exact values vary
between different publications. By n we denote the number of nodes in the
state +1, and accordingly the number of nodes in the state−1 is N− n. Every
node is free to change its state. The transition rates per unit time for a single
node i are:

π+
i ≡ πi(−1→ +1) = a + hn,

π−i ≡ πi(+1→ −1) = a + h(N − n),
(3.1)

where the parameter a represents noise or individual random choices and
the parameter h represents the herding mechanism, forcing agents to become
more similar to the others. It is therefore clear why the model is also referred
to as a herding model. The bigger the noise parameter a the more independent
are changes in states of the nodes. The higher value of the herding parameter
h the more unanimous agents become and we should expect more ordered
behavior with most of the nodes being in agreement.

Since it doesn’t matter which particular nodes have a given state, but
rather how many of them, it is more convenient to analyze the system glob-
ally. Accordingly, the parameter n = 0, 1, 2, ..., N fully determines the state
of the system. The whole system has in principle many more possible states
(N + 1) than a single node (2).

We assume that the probability of any change depends only on the last
state of the system, i.e. it is a Markov process, hence we need transition
probabilities P1|1(n′, t + ∆t|n, t) for every n and n′ to describe it2. However,
for ∆t → 0 the probability of two jumps occurring in the same time interval
goes to zero and we can neglect the changes of ∆n = n′ − n > 1. The dy-
namics is usually described by transition rates per unit time, which depend
on the transition probabilities as P1|1(n′, t + ∆t|n, t) = ∆tπ(n → n′). Taking
into account possible individual changes from Equation 3.1 we get [169]:

π+(n) ≡ π(n→ n + 1) = (N − n)(a + hn),

π−(n) ≡ π(n→ n− 1) = n[a + h(N − n)].
(3.2)

The transition rate for remaining in the same state π(n→ n) may be obtained
from the normalization condition ∑n′ P1|1(n′, t + ∆t|n, t) = 1. Note that tran-
sition probabilities should be smaller than 1 per time increment, so discrete
simulations of the model are possible up to an upper limit of ∆t which is
given, for large N, by ∆tmax = 2/hN2. Equations 3.2 provide an extensive
definition of the noisy voter model on a complete graph. The transition rates

2We need also the initial distribution, but it is usually assumed to be equal P1(n, t = 0) =
δn,N/2, or other arbitrary value.
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increase with the system size N. Sometimes an alternative, intensive defini-
tion is used:

π+
int(n) =

N − n
N

[
a + h

n
N

]
,

π−int(n) =
n
N

[
a + h

N − n
N

]
.

(3.3)

Here the rates depend only on the relative state of the system, i.e. the fraction
of the nodes in the positive state n/N. It can be understood as an equivalent
of only local interactions with an assumption that the neighborhood is homo-
geneous, i.e. identical for every node. In this version the model is also called
the Kirman model [168], [175]. For any finite size system the difference be-
tween two definitions can be eliminated by rescaling the herding parameter
h, because rescaling of the whole transition rate by a constant (1/N) changes
only the time scale. In the thermodynamic limit, however, the difference
is essential. The equilibrium probability distribution for intensive case be-
comes a Dirac delta. In other words, the fluctuations of the system can be
neglected, and its behavior becomes deterministic [176]. Therefore, we will
use the extensive definition 3.2 for further considerations.

The transition rates 3.2 imply a Master equation governing the time evo-
lution of probability P(n, t) of having n positive nodes at the time t:

∆P(n, t)
∆t

=P(n− 1, t)π+(n− 1) + P(n + 1, t)π−(n + 1)

− P(n, t)[π−(n) + π+(n)].
(3.4)

The master equation gives a very convenient framework for an analytical
study of the system, but it is useful to first replace the extensive variable n by
an intensive one, namely the magnetization m = ∑i si/N = 2n/N − 1. From
the definition m ∈ [−1,+1]. Zero magnetization will signify a disordered
state of the system with half of the nodes in positive and half in negative
states, while m = ±1 will mean a full agreement with all nodes in the same
state. Note that ∆m = 2∆n/N, which for a continuous approximation of
large N leads to the relation between the probability distributions P(m, t) =
P(n(m), t)N/2.

Replacing the variable in the Master equation 3.4 for the continuous one
we can obtain the Fokker-Planck equation [177] describing the diffusion pro-
cess visible in the system:

∂P(m, t)
∂t

= − ∂

∂m
[µ(m)P(m, t)] +

1
2

∂2

∂m2 [D(m)P(m, t)] , (3.5)

where µ(m) is the drift and D(m) is the diffusion coefficient. By expanding
the transition rates in the Master equation 3.4 and taking into account only
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terms up to the second order in 1/N we arrive at the final form of the Fokker-
Planck equation for the mean-field noisy voter model [169]:

∂P(m, t)
∂t

=
∂

∂m
[2amP(m, t)] +

1
2

∂2

∂m2

[(
4a
N

+ 2h(1−m2)

)
P(m, t)

]
, (3.6)

where the drift coefficient is equal µ(m) = −2am and the diffusion coefficient
D(m) = 4a/N + 2h(1−m2). An alternative way of representing dynamics of
a stochastic system is by a stochastic differential equation known as Langevin
equation [177]. Having the Fokker-Planck equation, the transformation is
straightforward giving:

dm
dt

= µ(m) +
√

D(m) · η(t) = −2am +

√
4a
N

+ 2h(1−m2) · η(t), (3.7)

where η(t) is a Gaussian white noise, i.e. a random variable with a zero
mean value and a Gaussian distribution, 〈η(t)〉 = 0 , 〈η(t)η(t′)〉 = δ(t− t′).
Analyzing the Langevin equation 3.7 we can see what is the role of a and h
parameters. First, the term 4a/N vanishes in the continuous approximation
N → ∞. It is responsible for finite size fluctuations. The main stochastic com-
ponent 2h(1− m2) is the biggest for m = 0 and goes to zero when |m| = 1.
Therefore, it shifts the system to one of the boundary consensus states, as it
was expected from the herding parameter h. The deterministic term −2am,
on the other hand, tends to bring the system to the disordered configuration
at m = 0, where it vanishes. This is also consistent with the intuition for the
parameter a, which stood for the random individual choices among agents.
From Equation 3.6 one can derive the stationary distribution of the magneti-
zation m [178]:

Pst(m) = Z−1
[

a
2Nh

+
1
4
(1−m2)

] a
h−1

, (3.8)

where the Z is a normalization constant. See Appendix B for a full deriva-
tion of the stationary solution of the Fokker-Planck equation. The theoretical
stationary distribution Pst(m) of magnetization is compared with results of
a simulation in Figure 3.1. We can observe a phase transition in the system
when changing the ratio ε = a/h of the parameters. In the consensus phase
(Figure 3.1a)) the stationary distribution is bimodal, meaning that the most
probable configuration is either m = −1 or m = 1, i.e. full consensus with
all nodes possessing the same state. The transition happens at the noise rate
equal to the herding intensity ε = 1 and is marked by a flat distribution
with any configuration equally possible. Then, for ε > 1 we can observe dis-
ordered fully-mixing phase with a unimodal stationary distribution peaked
over m = 0. Different character of the dynamics is also visible in the trajec-
tory plots in Figure 3.1.

The herding model is likely the simplest version of the voter model, yet
it can generate interesting dynamics and was applied in various phenom-
ena, for instance explaining investors behavior at stock markets [169], [176],
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a) Results for ε = 0.4 – the consensus phase
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b) Results for ε = 1 – the transition line
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c) Results for ε = 10 – the disordered phase

Figure 3.1: Single trajectory of the mean-field noisy voter model
(left panel) and the stationary probability distribution of mag-
netization m (right panel) for different vales of ε = a/h and
N = 200. The histogram is created based on 20 runs of the
simulation for 2 million time steps each. The green solid line
represents the analytical solution from Equation 3.8. Even for
a relatively small N we can observe a good agreement between

the theory and simulations.
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[178]–[180]. However, it should be noted that financial systems display nu-
merous effects which require more complex analysis [181]–[183]. The model
was also extended to encompass asymmetric noise [169], asymmetric herd-
ing mechanism and external information effect [178] or existence of zealots
in the society [184]. It was also studied for nonlinear interactions [185] and
more complex structures [186].

3.1.2 Complex networks

Next step in bringing the model’s assumptions closer to real-world networks
is changing the topology for more complex one. Complete graphs are present
in social groups in a relatively small scale, as a part of the whole system, but
definitely they do not describe the global structure. A certain part of a social
network can be densely or even fully connected, however large scale real-
world networks are sparse.

The voter model on complex networks is normally defined by rules for
every desecrate time step, in contrast to the transition rates describing the
model on a complete graph. Nevertheless, both approaches have strong sim-
ilarities in assumptions (binary state, imitation rule) and in results (order-
disorder phase transition). Therefore, they are both commonly called voter
model, although many applications have little to do with a voting process.
Still, the most well known application concerns elections and the process of
arriving at a certain state of opinions. The model proved to be very effective
in this field. One variant of the voter model with effectively just one param-
eter was able to explain and reconstruct stylized facts about U.S. presidential
elections [172].

The model can be defined as follows. We start by creating an initial graph
of N nodes and M edges, giving the average degree µ = 2M/N. The initial
topology may vary and it will influence the dynamics of the system. Each
node is assigned one of the states si ∈ {−1, 1} at random3. Therefore, on
average there is the same number of positive and negative nodes leading to
zero magnetization m = 0 at the beginning. Then, in every time step:

1. select randomly a node i from the network, it is called the active node,

2. select randomly a node j from the neighbors of the active node i,

3. if the node i has a different state than its neighbor j (si 6= sj), it changes
its state to become the same as the node j, i.e. si → s′i = −si = sj;
otherwise nothing happens 4.

The process is continued until a frozen configuration is reached. In the frozen
configuration every node has the same state, so the state copying can no

3Every time something is done at random without specifying the probability distribution
it means the distribution is uniform, i.e. probability is constant for every outcome. In this
case both states have equal probability 1/2.

4Note, that this point could be rephrased to always copy the state of a random neighbor,
what would result in no action, if the neighbor was in the same state. However, for more
convenient comparison with other models it is given as above.
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longer occur. Note, that the number of nodes N and edges M is constant
in time. This algorithm is an example of a node-update rule. An alternative
is a link-update rule, which is equivalent in regular lattices and homogeneous
networks, but is significantly different in heterogeneous ones, for instance
scale-free networks [187]. Interestingly, the voter model has certain similari-
ties to the zero-temperature Glauber dynamics in the Ising model [188].

The aggregated state of the system is characterized by the magnetiza-
tion m = 1

N ∑i si, but for a given value of m the +1 and −1 states can be
distributed in many different ways over the network. In order to take into
account such possibility and measure it an additional order parameter is re-
quired. A good choice is the density of active links ρ, also called interface
density. An active link is a link connecting two nodes in opposite states. The
number of active links of a node i is denoted by ai, therefore the local density
of active links is given by ρi = ai/ki. Accordingly, the total interface density
is ρ = 1

2M ∑i ai. Naturally, when ρ = 0 the system has reached an absorbing
configuration where nothing can change, what also corresponds to |m| = 1,
if the network is connected.

Interface density also changes during a simulation in a complete graph,
but in that case it is fully determined by the value of magnetization, therefore
it would be redundant to use both. For a complete graph with n nodes in the
+1 state the density of active links is:

ρKN =
n(N − n)

N(N − 1)/2
=

N
N − 1

1
2
(1−m2) ≈ 1

2
(1−m2), (3.9)

where the dependency n = (1 + m)N/2 was used. In complex networks
this relation is not deterministic. Nevertheless, the stochastic attractor of the
dynamics also has a parabolic shape, but with a different maximum. It can
be shown , that in random networks with average degree µ the attractor is
given by [189]:

ρa =
µ− 2

2(µ− 1)
(1−m2). (3.10)

In Figure 3.2 we can see how single trajectories form a shape described by
Equation 3.10 to finally arrive at the absorbing state with m = ±1 and ρ = 0.

In the voter model on a static network we can distinguish two phases.
The first one is a disordered fully-mixing phase, where m = 0 and ρ 6= 0.
It is equivalent to the typical initial configuration with every node having
the same probability of possessing +1 or −1 state. The second phase is an
ordered consensus phase, with m = ±1 and ρ = 0. Therefore, it is also an
absorbing state. For any finite-size network the system will eventually end
up in a frozen configuration. In the thermodynamic limit, however, the con-
sensus phase is not always obtained and the final outcome depends on the
topology of the network. In regular lattices dimensionality has a significant
influence on the dynamics with meta-stable disordered states prevailing for
d > 2 [190], [191]. In complex networks the average survival time of meta-
stable disordered states decreases with network heterogeneity and with the
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Figure 3.2: Trajectories of the voter model on a static ER graph
with N = 1000, µ = 4 (blue, yellow) and µ = 8 (red, green).
For both values of the average degree there are two trajectories
finishing in opposite absorbing states. Solid black lines indicate
the attractor ρa from Equation 3.10. Dashed black line stand for

the complete graph relation from Equation 3.9.
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randomness of small-world networks for a finite N [170], [192], [193].
An important extension of above-described dynamics is the noisy voter

model [194]. It accounts for inevitable fluctuations observed in real systems.
The most important difference is that an absorbing state no longer exists in
the presence of noise [195]. The effect of noise shall be described in a greater
detail in next sections together with non-linearity.

The voter model on complex networks was also extended by an aging
mechanism [196], where nodes having the same state for longer time are less
likely to change their opinion. It was also studied on bipartite graphs [197],
[198]. Another extension focused on nonlinear interactions [199]. A popular
way of introducing non-linearity is done in so-called q-voter model [185],
[200]–[204]. In this variant not one but q neighbors of the active node are
chosen at random. If they all share the same state, the active node also adapts
it, otherwise there is no change. Usually, for the sake of simplicity repetitions
are allowed, i.e. the same neighbor may be chosen many times, therefore
it is possible to consider q bigger than a given ki. This is a discrete case of
non-linearity. In this thesis the continuous one is developed (Section 3.3).

3.2 Coevolving voter model

The most important extension of the voter model, in the context of this thesis,
is the coevolving voter model (CVM) [189]. As argued in Section 2.3, it brings
the model much closer to the real-world networks and allows to include
different topological mechanisms. The CVM is similar to the voter model
on static networks, but adds a new possibility of rewiring links. More pre-
cisely, we start as previously with a random graph of N nodes and M edges.
Here, the initial topology of the network doesn’t matter much, because it will
change in time due to the rewiring. And the type of rewiring determines the
final structure, as in the model described in Section 2.2.5. The initial distribu-
tion of states si = ±1 is random. Then, similarly to the previous algorithm,
in every time step:

1. select randomly an active node i from the network,

2. select randomly a node j from the neighbors of the active node i,

3. if the node i has a different state than its neighbor j (si 6= sj):

(a) with a probability p the active node i disconnects from the node j
and connects to a randomly chosen node l with the same state5,
i.e. sl = si,

(b) with a probability 1− p the node i changes its state to become the
same as the node j, i.e. si → s′i = −si = sj,

otherwise (if si = sj) nothing happens.

5Rewiring to a node with the same state is performed, if such a node exists and is not a
neighbor already. If there is no such node nothing happens.
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Figure 3.3: A schematic illustration of the CVM algorithm. Af-
ter choosing the active node i and one of the neighbors j in a
different state rewiring is performed with a probability p, or

state copying with a complementary probability 1− p.

As we can see, now in the case of disparity between two nodes either the
state copying or rewiring can occur, with the latter having a probability p.
Therefore, for p = 0 we have the ordinary voter model on a static network.
The probability p is a new parameter of the model called plasticity. Note,
that the network must be a simple graph at every point with no multi- or
auto-connections, thus not every node can be chosen during the rewiring
procedure. Number of vertices and edges is constant during the simulation.
The algorithm is illustrated on a scheme in Figure 3.3.

For low values of the rewiring probability p trajectories of CVM look qual-
itatively the same as for the static version, with a small shift of the attractor’s
line (Figure 3.4). For a large p, however, the trajectory is significantly differ-
ent – it follows a vertical line straight to the absorbing configuration of ρ = 0
(see purple trajectory in Figure 3.4). In this case it arrives at the frozen state
of m = 0, but the final magnetization depends on its value in the initial con-
figuration. The new frozen state with ρ = 0 and m = 0 is possible only if
the network splits, so no nodes of opposite states are connected. A natural
question is how does the final configuration depend on the plasticity p.

Before answering this question it is worth to have a look at the analytical
description of the system. In the mean-field approximation it is possible to
construct a rate equation for the dynamics of the number of active links [189],
[205]. From there it is straightforward to derive the time evolution of the
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Figure 3.4: Trajectories of the CVM for N = 500, µ = 4 and
p = 0 (blue, yellow), p = 0.2 (red, green) and p = 0.8 (pur-
ple). For p = 0 and p = 0.2 there are two trajectories finishing
in opposite absorbing states. The trajectory for p = 0.8 goes
straight down. Solid black lines indicate the attractor ρa from
Equation 3.13. Dashed black line stand for the complete graph

relation from Equation 3.9.
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interface density in the thermodynamic limit:

dρ

dt
=

2ρ

µ
[(1− p)(µ− 1)(1− 2ρ)− 1] , (3.11)

where as always µ = 2M/N is the average degree. This equation has two
possible solutions, whose stability depends on p. Let pc be the boundary
value separating regions where different solutions are stable. Then, for p >
pc the stable solution is ρ = 0, while for p < pc the stable solution is given
by:

ρ∗ =
(1− p)(µ− 1)− 1

2(1− p)(µ− 1)
. (3.12)

This is yet another indication of two distinct phases in the system. Addition-
ally, the shape of the dynamical attractor can be described using ρ∗:

ρa = ρ∗(1−m2), (3.13)

what for p = 0 becomes the relation for static networks from Equation 3.10.
For any finite size of the network the evolution will finish in the absorbing
state of ρ = 0, as we can see in Figure 3.4, due to the finite-size fluctua-
tions. Nonetheless, it has been shown [189] that during the dynamics ρ stays
for a long time at a plateau for p < pc before suddenly decreasing. In the
thermodynamic limit the system never leaves this plateau, remaining active
in a stationary state, where the average value of order parameters does not
change in time. A more precise analytical description of the CVM can be
obtained using motifs approximation [206].

Since the structure of the network can change in this model it is desir-
able to use, in addition to the interface density ρ and magnetization m, also
topological order parameters such as the size of the largest component S.
In Figure 3.5 we can see the behavior of order parameters with a varying
plasticity p. It clearly indicates existence of two phases. The first one, for
p < pc, is a consensus phase with full magnetization m = ±1 and one con-
nected component S = 1. Increasing p above pc the network splits into 2
separate components, i.e. a fragmentation transition occurs. In addition, mag-
netization drops to zero, because two components have opposite state. This
phase is called a fragmentation phase. In the thermodynamic limit the transi-
tion becomes discontinuous [189] and only the second phase ends in a frozen
configuration, while the first one remains active. For that reason it is also
referred to as an absorbing transition. The value of pc can be obtained from the
convergence time. It peaks at the transition point, as visible in Figure 3.5b).

It is also worth mentioning that rewiring to a random node despite its
state, instead of rewiring to same-state nodes as here, changes properties and
position of the phase transition and the final magnetization [207]. Interest-
ing effects occur when analyzing the CVM on a multilayer network as well.
Depending on the time scale on each of the layers the model can display the
same fragmentation transition as the ordinary CVM with adequate effective
average degree, or it can produce a shattered phase transition, where many
nodes isolate from the network [208]. Finally, non-linearity of interactions
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Figure 3.5: Dependence of the order parameters (normalized)
on the plasticity p in the CVM for N = 250 and µ = 4. Re-
sults are averaged over 103 realizations. A clear fragmentation
transition can be observed, indicated also by a drop of magne-

tization and a peak of the convergence time.
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has crucial influence on the dynamics of the system and the characteristics of
phases. These effects are described in the subsequent sections.

3.3 Nonlinear coevolving voter model

3.3.1 Global rewiring

The CVM is a very good framework to study influence of different mecha-
nisms on the behavior of a coevolving system, regardless of its interpretation.
Nevertheless, the model is mostly associated with social sciences and opin-
ion dynamics. From this perspective an interaction between two nodes, be it
rewiring or state copying, is a social interaction between two people, which
is not always linear, i.e. the effect of social pressure doesn’t have to be pro-
portional to the fraction of people having opposite opinion. This possibility
has been acknowledged in social impact theory [209], in language compe-
tition dynamics [210], [211], or in language evolution problems [212]. It is
therefore reasonable to analyze the effect on non-linearity in microscopic in-
teractions on the macroscopic characteristics of the system.

In order to enable nonlinear interactions the CVM is extended by a pa-
rameter q [213]. As always, we begin with a random graph of N nodes and
M edges. Every node is randomly assigned one of two states si = ±1. Then,
every time step consists of following operations:

1. select randomly an active node i from the network,

2. with probability ρ
q
i an interaction occurs (step 3); otherwise nothing

happens, i.e. with probability 1− ρ
q
i go to the next time step,

3. select randomly a node j from the neighbors of the node i in the oppo-
site state, then:

(a) with probability p the active node i disconnects from the node j
and connects to a randomly chosen node l with the same state,
i.e. sl = si,

(b) with probability 1− p the node i changes its state to become the
same as the node j, i.e. si → s′i = −si = sj.

The local interface density ρi gives the fraction of active links attached to the
node i, or in other words the fraction of neighbors in a different state. As
defined in Section 3.1.2, ρi = ai/ki, where ai is the number of active links
of the node i and ki is the total number of its links. For q = 1 the probabil-
ity of interaction is proportional to the fraction of neighbors in the opposite
state ai/ki. This is also the probability of choosing a neighbor in a different
state during a blind selection. Therefore, when q = 1 the model defined by
the above algorithm is fully equivalent to the ordinary linear CVM. For sub-
linear interactions (q < 1) the probability of an action occurring is higher
than in the linear case, since ρi ∈ [0, 1]. Consequently, the active nodes can be
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Figure 3.6: A schematic illustration of the nonlinear CVM al-
gorithm. After choosing the active node i an interaction occurs
with probability (ai/ki)

q. Then, one of the neighbors j in a dif-
ferent state is selected and rewiring is performed with a prob-
ability p, or state copying with a complementary probability

1− p.

influenced by a smaller fraction of neighbors in a different state. The oppo-
site happens for super-linear interactions when q > 1. The algorithm of the
model is illustrated in Figure 3.6.

Conceptually, the difference between the ordinary coevolving voter model
and the nonlinear CVM is similar to the difference between simple and com-
plex contagion processes [214], [215]. The influence on the active node comes
not from one randomly selected neighbor, but depends on the aggregated
state of the neighborhood.

When the parameter q takes an integer value the model becomes equiva-
lent to the q-voter model [199] mentioned in Section 3.1.2. In this variation q
neighbors are chosen at random with possible repetitions, and only if all of
them share the same state, they can influence the active node. Probability of
choosing a neighbor in a different state is equal ai/ki = ρi, and of doing so q
times with repetitions ρ

q
i , therefore the q-voter model is a special case of the

model defined above for integer q. However, the parameter q can take any
real value, in principle from the continuous range [0,+∞[. It was argued to
be smaller than 1 in social impact theory [209] and language evolution prob-
lems [212]. On the other hand, it was approximated to be 1.3 in language
extinction processes [210]. Thus it makes a perfect sense to analyze a contin-
uous spectrum of values.
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Using a pair-approximation approach [216], [217] we can describe dy-
namics of two basic order parameters, namely magnetization m and interface
density ρ. Since the network is structurally homogeneous due to the ran-
dom rewiring, we can assume each node to have the same average degree
µ = 2M/N. In the thermodynamic limit evolution of the system is described
by [213]:

∂m
∂t

= 2(1− p)(n−n−q − n+n+
q ),

∂ρ

∂t
=

2
µ

[
(1− p)(n+n+

q δ+ + n−n−q δ−)− p(n+n+
q + n−n−q )

]
,

(3.14)

where n+ = (1 + m)/2 and n− = (1− m)/2 are fractions of nodes in the
state +1 and −1 respectively, and n±q ≡ (ρ/2n±)q. The symbol δ± denotes
a change in the total number of active links given that a node i such that
si = ±1 flipped its state, and δ± = µ − 2q − 2(µ − q) ρ

2n± . More detailed
discussion of a generalized version of Equations 3.14 and their derivation is
given in Section 3.4, where also noise is taken into account.

Equations 3.14 have three kinds of steady state solution with ∂m
∂t = ∂ρ

∂t = 0,
which are (m, ρ) = (±1, 0), (0, ρ∗), and (m∗, 0). The last solution (m∗, 0),
where m∗ 6= ±1, corresponds to a fragmentation phase, because the only
possibility to obtain no active links and non-zero magnetization is by sepa-
rating nodes of opposite states in two clusters. However, the exact value of
m∗ depends on the initial conditions. In our case m0 = 0, leading to clus-
ters of the same size and consequently m∗ = 0. Therefore, the last stationary
solution becomes effectively (m, ρ) = (0, 0).

For m = 0 the density of +1 nodes and −1 nodes is the same n+ = n− =
1/2, giving n±q = ρq and δ± = µ− 2q− 2(µ− q)ρ. The stationary version of
the first equation from 3.14 is then always satisfied, as the right-hand side is
also zero. The second equation reduces to:

ρq{−p + (1− p)[µ− 2q− 2(µ− q)ρ]} = 0, (3.15)

what gives either already discussed ρ = 0 or a stationary value ρ∗:

ρ∗ =
(1− p)(µ− 2q)− p

2(1− p)(µ− q)
. (3.16)

Note that for q = 1 we recover the stationary solution for the linear CVM
(Equation 3.12) as expected. The value of ρ∗ decreases with p. Additionally,
we know that for p = 0, i.e. on a static network, the solution (m, ρ) = (0, 0)
can not exist, as the network can’t separate into two clusters. On the other
hand, for p = 1 there is only link rewiring in the system, which can’t change
the magnetization and must lead to (m, ρ) = (0, 0) state. Therefore, some-
where between these values for pc ∈]0, 1[ a phase transition must occur, in
which ρ∗ drops to zero. The value of pc can be obtained from Equation 3.16
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Figure 3.7: Flow diagram of the system dynamics in the (m, ρ)
space for µ = 8, q = 0.5, and different values of p. Arrows rep-
resent the dynamical direction of the system according to the
pair approximation solution (Equations 3.14). Fixed points are
represented by full circles (stable) or empty circles (unstable).

for ρ∗ = 0. It is equal:

pc =
µ− 2q

1 + µ− 2q
. (3.17)

Hence, the position of the phase transition depends on the non-linearity pa-
rameter q.

For p > pc the fragmentation phase (m, ρ) = (0, 0) is a stable solution for
any value of q (which has to be fixed first, because pc ≡ pc(q)). For p < pc
there are two possible solutions: (m, ρ) = (±1, 0), or (0, ρ∗). However, their
stability depends on the value of q. For q < 1 the solution (0, ρ∗) is stable,
corresponding to a dynamically active fully-mixing phase. It is illustrated
on a flow diagram in Figure 3.7. But for q > 1 the solution (±1, 0) becomes
stable, which describes an ordered full-consensus phase. Moreover, in the ac-
tive disordered phase (q < 1) ρ∗ decreases to become 0 at the transition point
p = pc and the magnetization is 0 for all values of p. This indicates a contin-
uous absorbing phase transition. However, for q > 1 the interface density is
0 for any value of p, but the magnetization is always equal±1 for p < pc and
zero for p > pc, indicating a discontinuous fragmentation transition in the
thermodynamic limit. As a result, the character of phase transitions strongly
depends on the non-linearity of interactions q. Described phenomena oc-
curring when changing p can be observed in numerical simulations as well,
what is shown in Figure 3.8. However, due to relatively small size of the net-
work it is difficult to conclude about the continuity of the transitions based
solely on these plots. The full scaling analysis was given in [213].

In conclusion, the nonlinear coevolving voter model has three distinct
phases (Figure 3.9). For p < pc and q ≥ 1 the solution is (m, ρ) = (±1, 0).
This corresponds to a consensus phase with all nodes in the same state and
the network having one big and connected component. When q < 1, still
being below pc, the solution is (m, ρ) = (0, ρ∗), which is a disordered fully-
mixing phase. Here both states +1 and −1 are equally distributed in the
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Figure 3.8: Size of the largest component S, magnetization |m|,
and interface density ρ for N = 500, µ = 8, averaged over 500
realizations in the steady state of the nonlinear CVM. All values

are normalized.
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Figure 3.9: Scheme of the phase diagram in the nonlinear coe-
volving voter model [213] for N = 104 and µ = 8. Differences
between phases are illustrated on smaller networks in a frozen
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uration. Green and red colors indicate opposite states of the

nodes.
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network, which is also connected with one component. Note, that this ac-
tive phase is predicted in the thermodynamic limit, since for a finite size of
the network it will always fall into an absorbing phase. However, as simula-
tions show (Section 3.3.2 and [213]), the convergence time τ in Monte Carlo
steps scales for the fully-mixing phase exponentially with the system size
τ ∼ eN, making the absorbing state unreachable in practice for relatively
small network sizes. For comparison, when q = 1 the scaling is linear τ ∼ N
or weaker for other phases. The active phase can also exhibit spontaneous
symmetry braking [218]. Finally, for p > pc the solution is (m, ρ) = (0, 0)
indicating a fragmentation phase for any value of q. The network splits into
two components of similar size and opposite state, as illustrated in Figure 3.9.

3.3.2 Local rewiring

The nonlinear coevolving voter model is a general framework, which can be
further extended to include particular effects. It takes into account important
features of real-world networked systems and produces results that can be
compared with empirical data. In its standard form, however, it lacks a very
important mechanism. So far, in described models rewiring was performed
randomly with equal probability for any node in the network to be chosen,
i.e. it was a global random rewiring. For small networks it is a reasonable
assumption, but when increasing the size of the system eventually the pos-
sibility of connecting two arbitrary vertices, despite the topological distance
between them, ceases to make sense. Then, it becomes natural to include
some kind of local rewiring, which narrows down the group of possible new
connections.

In the context of social sciences, a very important local mechanism of ac-
quiring new connections is so-called triadic closure, which reflects the ten-
dency of people to search for new contacts through the current neighbors.
It has been proven to play a decisive role in social interactions [87], [219],
[220] and has been observed in a variety of systems. It has been also incorpo-
rated in a number of models analyzing social dynamics having a significant
influence on the outcome [220]–[224].

The mechanism is simple – it assumes that an agent can create a new con-
nection only to a node distant by two edges, i.e. the path length l between the
agent and the potential new neighbor must be equal 2. Effectively, it means
that agents look for new links via existing ones and connect with neighbors
of their neighbors. As a consequence, triadic closure increases value of clus-
tering coefficient, as it literally closes triangles of nodes. This effect is par-
ticularly desirable, because social networks display high values of clustering
coefficient [63], [87], [88], [225]. Additionally, triadic closure has been recog-
nized as an important psychological and sociological mechanism [28], [29].
It has been also found in empirical studies on social systems [26], [27], [87],
[226]. Therefore, it is well motivated to study effects of triadic closure on the
behavior of network models, and so is done in this thesis. This section con-
tains original results obtained in the nonlinear CVM extended to account for
the triadic closure mechanism.
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Figure 3.10: Phase diagram in the (p, q) space for three main or-
der parameters: a) magnetization, b) size of the largest compo-
nent, and c) number of components. Results are obtained from
a simulation of networks with N = 5000, µ = 8, averaged over
500 realizations. Based on these order parameters, it is easy to
distinguish three phases: a consensus phase, a fragmentation

phase, and a shattered phase.

Technically, the nonlinear CVM with triadic closure [227] can be described
similarly to the ordinary one with a global rewiring. The main points of the
algorithm are the same as in Section 3.3, and Figure 3.6 sums up also this
model. The only difference is in the rewiring procedure. Here, if the active
node i cuts the connection to a neighbor j and looks for a new neighbor l in
the same state, it’s not chosen from the entire network. Instead, only nodes
distant by two edges are considered, so the node l must be a neighbor of a
neighbor of the node i. As previously, if there is no such node l that meets
these requirements, nothing happens – rewiring is skipped and algorithm
goes to the next time step. Multi-connections and auto-connections are pro-
hibited, as always.

Analytical description of a model with the triadic closure mechanism is
hard to obtain, if achievable at all. For this reason such models are analyzed
almost exclusively by numerical simulations, and so is done in this thesis.
Results can be described in terms of three quantities: the absolute magneti-
zation |m| the relative size of the largest connected component S of the net-
work, and the relative number of separate components nS. Phase diagrams
for these quantities in the (p, q) parameter space are shown in Figure 3.10.
Clearly, three distinct phases can be observed. For q > 1 and p < pc(q) an ab-
sorbing consensus phase, characterized by the maximal value of the absolute
magnetization and a single large component, is visible. Except much higher
clustering, this phase is equivalent to the one found in the previous section.
When q < 1 and p < pc(q) we obtain a shattered phase, where the absolute
magnetization drops to zero and the network is composed of an active com-
ponent and a number of nodes separated from the network (see Figure 3.11).
In this shattered phase many nodes that initially belong to the main com-
ponent are detached from the network during the evolution, resulting in a
big number of components. Therefore, the shattered phase can be identified
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Figure 3.11: Scheme of the phase diagram in the nonlinear CVM
with triadic closure, summarizing results form Figure 3.10. Dif-
ferences between phases are illustrated on smaller networks in
a frozen (consensus, fragmentation) or stationary (shattered)
configuration. Green and red colors indicate opposite states of
nodes. Note the new shattered phase, which was not observed

before.

using the new order parameter nS. Together with higher clustering, this is
the main difference between the model with local rewiring and the one with
global rewiring from the previous section. Increasing the value of plasticity
above pc for any q, we obtain a fragmentation phase. Here, the network splits
into two components of approximately the same size being in opposite con-
sensus states as previously. The absolute magnetization is therefore close to
zero and the size of the largest component around 1/2. Schematic illustration
of each phase can be found in Figure 3.11.

The new shattered phase is a result of local rewiring. When a node is con-
necting to a new neighbor it can only choose from among the nodes distant
by two edges. It means that a new candidate to be attached must have at
least one connection and be a part of the same component. Therefore, nodes
once detached from the main component cannot be attached to it again. Nev-
ertheless, the shattered phase has finite boundaries. That is because for q > 1
interaction is less frequent and does not occur so easily when ρi is small. This
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facilitates an increase of local homogeneity via state copying. On the other
hand, when p ≈ 1 rewiring is the leading mechanism, and it quickly causes
fragmentation. In consequence, the shattered phase encounters boundaries
when increasing q or p.

The biggest difference between the nonlinear CVM with and without tri-
adic closure is visible in the clustering and the number of components. When
looking at the transitions, however, one can see other more subtle, though
visible, differences. Comparison of both models is presented in Figure 3.12.
Disproportion in the number of components is clear, but we can see differ-
ences also in the magnetization and the size of the largest component. Some
of them are caused by a shift of the transition to other spectrum of q and
p parameters. Nonetheless, behavior at q = 1, for instance, is different. In
the presence of triadic closure the level of consensus in the consensus phase
depends on the plasticity and decreases with growing p.

For p = 0.6 (Figure 3.12e)) we can observe all three phases and two tran-
sitions when changing q. For small q we observe the active shattered phase.
Increasing q above 1 we first obtain a transition to the consensus phase with a
high magnetization and a big main component. The second transition occurs
for larger values of q to the fragmentation phase with low values of |m| and
S ≈ 1/2. When p increases further, i.e p = 0.7 (Figure 3.12f)), the consensus
phase disappears and the shattered phase changes directly into the fragmen-
tation phase with increasing q, what can be observed in the decreasing value
of nS at the transition point.

One may expect a strong dependence of the transition behavior on the
average degree in the network. As a matter of fact, for µ ≥ 4 the transition
is independent of µ in the super-linear region q > 1, while for q ≤ 1 results
for µ = 8 are representative for a broad range of average degrees. For too
sparse network µ ≈ 4 there is a large shift of the absorbing transition towards
smaller values of p [227].

A finite system is always bound to reach an absorbing state for any com-
bination of parameters in the limit of t → ∞. But for the shattered phase the
convergence time τ (in MC steps) to a frozen configuration grows exponen-
tially with the system size τ ∼ eN. That is why this phase is called active. In
practice, it is expected to remain active even for a relatively small network
due to the exponential divergence of τ. It is shown in Figure 3.13, together
with the behavior for other values of parameters. For q = 1, corresponding
to a linear interaction, and p < pc we reproduce a linear scaling with the
system size τ ∼ N, as reported in the ordinary CVM [189]. For the consensus
and fragmentation phases the growth of τ is sub-linear – either logarithmic
or power-law with a small exponent.

Triadic closure should lead to a significantly higher clustering coefficient
than random rewiring. This assumption is investigated in Figure 3.14 for
different values of p and q in the stationary state. For nodes having less than
two links local clustering coefficient is not well defined, therefore they are
excluded from the analysis. While the value of the clustering coefficient for
the global rewiring remains at similar level as for a random graph for all
tested parameter configurations, it clearly reaches values far from zero for
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Figure 3.12: Phase transition with respect to p and fixed values
of q, and with respect to q and fixed values of p. The size of the
largest component S (blue squares), the magnetization |m| (red
circles), and the number of components nS (green diamonds)
are calculated for N = 1000, µ = 8, averaged over 500 sim-
ulation runs. Every quantity for global rewiring (i.e. without
triadic closure) is also plotted with the same symbols in gray.
These plots can be understood as horizontal and vertical cross-

sections of the phase diagram from Figure 3.10.
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Figure 3.13: Convergence time τ in the number of Monte Carlo
steps to a frozen configuration as a function of the network size
N in different phases. Results are obtained for µ = 8 and av-
eraged over 500 realizations. Values of parameters are given in
the plots. Dashed lines represent the best power-law fit with

α ∈ [0.21, 0.25], which is slightly better than a logarithmic fit.
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Figure 3.14: Average local clustering coefficient 〈c〉 as a func-
tion of p and q parameters, for N = 1000, µ = 8, averaged over
500 simulation runs. Every quantity for global rewiring (i.e.
without triadic closure) is also plotted with the same symbols
in gray. Note significantly larger values of the clustering coef-
ficient in a presence of the triadic closure in comparison with

previous models.

the local rewiring, exceeding 0.3 in extreme cases. Additionally, the position
of peaks in 〈c〉 is coincident with transition points, meaning that a raise in
the clustering coefficient can be an indicator of a phase transition.

The nonlinear coevolving voter model with triadic closure displays new
interesting effects that were not reported before in voter-like models. We
can identify three different phases, namely consensus, fragmentation and dy-
namically active shattered phase. They are characterized by different topo-
logical properties and magnetization. Shattered phase, which doesn’t exist
for a global random rewiring, suggests that triadic closure is the origin of
many isolated parts in complex adaptive systems, such as social systems.
Keeping in mind the fact that real-world social systems are known to have
high clustering, the nonlinear CVM with triadic closure can provide a plau-
sible way to reconstruct such structures and describe social phenomena.

3.4 Nonlinear coevolving voter model with noise

So far we discussed the voter model starting from the simplest case on a static
complete graph up to a complex modification taking into account coevolu-
tion of structure and state, non-linearity of interactions and tridic closure lo-
cal rewiring. However, one very important feature of physical systems was
not covered yet. This feature is noise. Any large empirical system, espe-
cially a complex one, exhibits randomness of some kind. Even if noise comes
from the deterministic chaos, inevitably it is there. Therefore, regardless the
answer to a question about the true nature of the subject, whether it is deter-
ministic or stochastic, one should consider random fluctuations in the model.
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Certainly, fully deterministic networks don’t exist in social systems, where
noise is unquestionable [165], [228]. It can manifest itself on various levels.
First, people chose other people to interact with at random. The exact form of
this randomness can take different forms, nevertheless the structure’s evolu-
tion is never hard-coded. But the most fundamental part of randomness lays
probably within individual choices. Having exactly the same influence on
two people’s opinions we can not be sure of the outcome. This mechanism is
sometimes referred to as non-conformism [229].

The nonlinear CVM with noise is a natural extension accommodating
above considerations [230]. The model is an original contribution into the
landscape of voter models developed in this thesis. It’s the most general ver-
sion of the CVM. It can be seen as a unification of the nonlinear CVM [213]
and the CVM with noise [231]. The nonlinear CVM with noise extends the
first one by the noise rate ε and the second one by the non-linearity param-
eter q. All results presented in this section, numerical and analytical, were
obtained for the first time by myself. The model is defined as follows. Firstly,
a random graph of N nodes and M edges is generated and every node is as-
signed a state si = ±1 at random. Then, following operations are performed
in every time step:

1. select randomly an active node i from the network,

2. with a probability ρ
q
i an interaction occurs (step 3); otherwise nothing

happens, i.e. with a probability 1− ρ
q
i go to the step no. 4,

3. select randomly a node j from the neighbors of the node i in the oppo-
site state, then:

(a) with probability p the active node i disconnects from the node j
and connects to a randomly chosen node l with the same state,
i.e. sl = si,

(b) with probability 1− p the node i changes its state to become the
same as the node j, i.e. si → s′i = −si = sj,

4. with a probability ε the active node i draws a random state.

At the and of the time step, regardless of what happened before, the active
node with a probability ε draws a random state, so each state has in that case
the same probability equal 1/2. Note, that this is equivalent to changing the
current state with a probability ε/2. The algorithm of the model is illustrated
in Figure 3.15. The simulation is ran until a stationary configuration or a
frozen state is reached. Obviously, a frozen configuration can exist only for
ε = 0.

Numerical simulations of the model reveal a complex behavior patterns.
Figure 3.16 contains the (p, ε) phase diagram for three different values of the
q parameter – the sub-linear case q = 0.5, the ordinary linear case q = 1, and
the super-linear case q = 2. We can distinguish three general phases in the
model. The first one, indicated by the red area in the figure, is a consensus
phase. In this range of parameters magnetization m is close to ±1 and the
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Figure 3.15: A schematic illustration of the nonlinear CVM with
noise algorithm. After choosing the active node i an interaction
occurs with probability (ai/ki)

q. Then, one of the neighbors j
in a different state is selected and rewiring is performed with a
probability p, or state copying with a complementary probabil-
ity 1− p. At the end of each time step with a probability ε the

active node draws a random state.
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Figure 3.16: Phase diagram in (p, ε) space for µ = 4 and dif-
ferent values of N and q. Picture is made based on simulations
averaged over 500 realizations. Red area represents the con-
sensus phase, white the coexistence phase, and blue the dy-
namical fragmentation phase. The border between two first
phases is defined as a line of the medium absolute magnetiza-
tion |m| = 0.5. Accordingly, the border between two last phases
is a line of the medium size of the largest component S = 0.75.
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network is connected having one large component. If we increase the noise
rate ε or the plasticity p sufficiently, we obtain a coexistence phase, indicated
by the white area. Here, the magnetization drops to zero m = 0, hence there
is no consensus in the system anymore. But the network is still connected.
Finally, for high values of the rewiring probability above pc and not too big
noise rates fragmentation arises. It is marked by the blue area in the figure. In
this model, however, it is a dynamical fragmentation – the network consists
of two separate components being in the opposite states, but it is possible
that they get connected for a moment due to the noise and random rewiring,
creating again one big network. We can observe constant switching between
these two arrangements. If the network stays more than half of the time in
the disconnected configuration, we assume it is a (dynamical) fragmentation
phase.

As already reported [231], for the linear case q = 1 consensus and frag-
mentation phases exist only for a finite size of the network and their size in
the parameter space decreases with a growing number of nodes. As we can
see in Figure 3.16, the same holds for the sub-linear scenario for the fragmen-
tation phase. The consensus phase does not exist for q < 1 at all. The only
point where absolute magnetization raises slightly above zero is at pc and for
ε ≈ 0, due to stronger fluctuations. On the other hand, the fragmentation
phase prevails for even twice larger noise rate in comparison to the linear
scenario.

In the super-linear case q = 2 the fragmentation phase is much smaller
and disappears faster. But the consensus phase endures for much bigger
noise. We can observe the consensus state even for ε greater by almost two
orders of magnitude than in the linear model. Most importantly, the scaling
behavior is different for super-linear case. Indeed, non-linearity has a sig-
nificant influence on the nature of the consensus phase. For q < 1 it does
not exist, for q = 1 it exists only in finite networks, and for q > 1 the phase
persists in the thermodynamic limit, what shall be also proven analytically
in next paragraphs. We can further observe in Figure 3.16 that pc decreases
with q. All together it is a strong evidence that the character of interactions
in coevolving networks can be crucial for the shape and properties of the
stationary state.

As said before, we can easily distinguish three phases by looking at the
magnetization and the size of the largest component. However, the consen-
sus phase is significantly different for q = 1 and q > 1. It can be described by
a consensus in both cases, as the system displays m = ±1 most of the time.
But the stability of this state changes with varying q. It is clearly visible from
the probability distribution of magnetization in Figure 3.17 and individual
trajectories in Figure 3.18. For the linear case the magnetization is bimodal
with two equal peaks at values +1 and −1. Whilst the super-linear case dis-
plays a single peak of the magnetization at either of the boundary values,
depending on the run. Once the consensus is reached the system stays in it,
where for q = 1 the system goes back and forth between opposite consensus
states. Additionally, the consensus phase for q > 1 is independent from the
the system size, but it vanishes in the thermodynamic limit for the linear case



72 Chapter 3. The voter model

1.0 0.5 0.0 0.5 1.0
m

0

1

2

3

4

5
P
(m

)

p=0.1, ε=0.001

1.0 0.5 0.0 0.5 1.0
m

0

1

2

3

4

5
p=0.44, ε=0.0002

1.0 0.5 0.0 0.5 1.0
m

0

1

2

3

4

5

6
p=0.9, ε=0.002

a) q = 0.5

1.0 0.5 0.0 0.5 1.0
m

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

P
(m

)

p=0.1, ε=0.001

1.0 0.5 0.0 0.5 1.0
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0
p=0.3, ε=0.0025

1.0 0.5 0.0 0.5 1.0
m

0

1

2

3

4

5

6
p=0.9, ε=0.001

b) q = 1

1.0 0.5 0.0 0.5 1.0
m

0
2
4
6
8

10
12
14

P
(m

)

p=0.1, ε=0.004

1.0 0.5 0.0 0.5 1.0
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0
p=0.225, ε=0.002

1.0 0.5 0.0 0.5 1.0
m

0

1

2

3

4

5

6
p=0.9, ε=0.0005

c) q = 2

Figure 3.17: Probability distribution of the magnetization m for
N = 250 and µ = 4 averaged over 107 MC steps after thermal-
ization. a) For q = 0.5 magnetization always displays unimodal
distribution with a varying standard deviation. b) For q = 1
we can distinguish the consensus phase, where the distribution
is bimodal with maximum at ±1. c) For q = 2 the consensus
phase is also clearly visible, however it has a unimodal distribu-
tion with the peak at either of the boundary values (when sam-
pling over time). The difference between the consensus phase

for q = 1 and q = 2 is clearly visible.
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Figure 3.18: Exemplary trajectories of m, S, and ρ for N = 250
and µ = 4. For q = 0.5 we can see the dynamical fragmentation,
for q = 1 the plot shows the transition line with every value of
m equally possible, for q = 2 we can see the stability of m = −1

state.

[231] (see Figure 3.16).
The consensus phase does not exist in the sub-linear case (q < 1), thus

the magnetization always displays a single peak at 0. The variance, however,
may vary depending on the parameters combination and it takes the maxi-
mal value for noise going to zero and p = pc, i.e. close to the transition point
between coexistence and fragmentation phases in the nonlinear CVM [213].

The final indication of the strong influence of non-linearity on the sys-
tem’s behavior is the magnetization distribution for q > 1 at the transition
line. As we can see in Figure 3.17c), it becomes trimodal. A trimodal magne-
tization distribution was reported before in the noisy voter model on a static
network [232], but only for the non-linearity parameter equal 5 or larger.
Here it is obtained already for q = 2.

The fragmentation phase can be defined based on the size of the largest
component. In other phases it is equal to the size of the whole network
(S = 1), while the fragmentation is characterized by a dynamical separation
into two equal components of opposite states. Due to the noise manifested
in random changes of nodes’ states and the rewiring the two components are
constantly being reconnected and disconnected (see Figure 3.18). Following
[231], the phase boundary can be defined as the line at which the network is
half of the time fragmented and half of the time contains only one big compo-
nent. The probability distribution of the largest component size is presented
in Figure 3.19.

Similarly to the consensus phase, the coexistence phase can take different
forms as well. In general, it is defined by zero magnetization (also zero ab-
solute magnetization) and by existence of one big component. Nonetheless,
this description leaves room for different possible configurations. Previously,
in the linear model only fully-mixing phase was discovered, with nodes of
states +1 and −1 well mixed inside a random graph. On the other hand,
we can satisfy conditions for the coexistence phase having two evident com-
munities highly connected internally and of opposite states, with only a few
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Figure 3.19: Probability distribution of the size of the largest
component S for N = 250, µ = 4, and q = 0.5 averaged over 107

MC steps after thermalization. Results show how the network
goes from being connected (left panel) to being half of the time
fragmented at the transition line (middle panel), to finally stay

mostly disconnected (right panel).

inter-links between them. There is still zero magnetization and one cluster
in such configuration. One can clearly see the difference between these two
possibilities in Figure 3.20.

The difference between them can be also seen in the density of active
links, although it is not obvious what value of the density to chose for the
boundary. Another quantitative measure is an overlap between real com-
munities – defined by the state of the nodes – and topological communities
found by a community detection algorithm. Here a classical algorithm from
[233] is used, but the result does not differ much when using different ones.
Each node is assigned to the real community by its state and to a structural
community by the algorithm’s result. The relative overlap between these
two communities can uncover the difference between the structured coexis-
tence and the fully mixing configuration6. For a random assignment or no
community structure the overlap will be close to 0.5. This corresponds to
the fully-mixing coexistence phase. For the structured coexistence phase the
overlap should be close to 1 (Figure 3.20).

The dynamics of the system can be described using an approach similar
to the one for the nonlinear coevolving voter model [213] (Section 3.3.1). This
approach takes into account magnetization m and density of active links ρ,
therefore it can not detect the dynamical fragmentation phase, as it is defined
by the largest component size S. Since the network is structurally homoge-
neous due to the random rewiring, we can assume each node to have the
same average degree µ = 2M/N. Let us denote by n+ = (1 + m)/2 and
n− = (1− m)/2 the fraction of nodes in the state +1 and −1 respectively.

6Note that one has to take the maximum overlap from two possible community assign-
ments. If we have structural communities a and b, we can associate community a with the
state +1 and community b with −1, or the other way around. Therefore, in a perfect over-
lap with a wrong assignment one can get zero overlap. Trying both possibilities and taking
maximum solves this issue.
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a) Spins for p = 0.2 b) Communities for p = 0.2

c) Spins for p = 0.55 d) Communities for p = 0.55

Figure 3.20: Examples of the network in a stationary state of the
fully-mixing (a, b) and structured (c, d) coexistence phase. Spin
+1 is indicated by green color, −1 by red (a, c). Communities
found by the algorithm [233] are colored blue and yellow (b,
d). In the structured coexistence phase the real communities
defined by the state are well overlapping with the structural
communities. Networks obtained for q = 0.5, ε = 0.004, N =

250 and µ = 4.
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When we pick a node i in the state si = ±1 as the active node the probabil-
ity of choosing a neighbor in the opposite state is given by ρ/2n±. In other
words, the coefficient ρ

2n± gives the density of active links ρi for the node i be-
ing in the state si = ±1. Therefore, the probability of an interaction is given
by ρ

q
i = (ρ/2n±)q ≡ n±q , which is at the same time the probability of choosing

a neighbor in the opposite state q times. Hence, knowing that this probability
was fulfilled when an interaction occurs, we can approximate that there is at
least q neighbors in the opposite state. For the rest of them the probability
of being in a different state than the focal node is ρ/2n±, all together rising7

ai ≈ q + (µ− q) ρ
2n± , which is an approximate number of active links of the

node i under the condition that an interaction occurred.
To describe the evolution of the interface density ρ we must estimate con-

tributions of different events in the network, which can result in a change
of ρ. Analyzing the model’s algorithm given at the beginning of the section
we can distinguish four such events: (i) rewiring, followed by a change of
the state through noise, (ii) rewiring, without a change of the state through
noise, (iii) changing the state of the node through the state copying with no
further action from noise, and (iv) changing the state of the node only as a re-
sult of noise, with no state copying or rewiring before. Let δ± be the change
in the total number of active links given that a node i, such that si = ±1,
flipped its state. Then, the total change in the number of active links in the
four possible scenarios is: (i) 1 + δ±, (ii) −1, and for events (iii) and (iv) just
δ±. When changing the state all ai active links of the node i become inactive
and all other µ − ai inactive links become active, therefore the total change
in the number of active links is δ± = µ− 2ai. Using previous approximation
we can write δ± ≈ µ− 2q− 2(µ− q) ρ

2n± .
Magnetization changes only when the node’s state is flipped via copying

or noise in three possible scenarios: (i) state copying with no noise action, (ii)
link rewiring followed by the noise action, and (iii) no interaction – neither
state copying nor link rewiring – but the noise action alone. When the focal
node having a state si = ±1 flips, the total change in the magnetization is
equal ∆m = ∓2/N. Putting it all together, we can write down the formulas
for expected changes in m and ρ:

∆m =
2
N

{
(1− p)(1− ε

2
)(n−n−q − n+n+

q )

+ p
ε

2
(n−n−q − n+n+

q )

+
ε

2

[
n−(1− n−q )− n+(1− n+

q )
] }

,

(3.18)

7This is a rough estimate, more precise one could be obtained using Bayes’ theorem,
however it doesn’t display a significant difference in the results.



3.4. Nonlinear coevolving voter model with noise 77

where 1/N accounts for the fact that m is a normalized quantity. Similarly,
for the interface density we have:

∆ρ =
1
M

{
p

ε

2

[
n+n+

q (1 + δ+) + n−n−q (1 + δ−)
]

− p(1− ε

2
)(n+n+

q + n−n−q )

+ (1− p)(1− ε

2
)(n+n+

q δ+ + n−n−q δ−)

+
ε

2

[
n+(1− n+

q )δ+ + n−(1− n−q )δ−
] }

,

(3.19)

where 1/M is a change in ρ when one link becomes active, since it is also a
normalized quantity. Using the fact that ∆t = 1/N and dividing both sides
by it we obtain in the thermodynamic limit the following rate equations:

∂m
∂t

= 2(1− p)(1− ε

2
)(n−n−q − n+n+

q )

+ 2p
ε

2
(n−n−q − n+n+

q )

+ 2
ε

2

[
n−(1− n−q )− n+(1− n+

q )
]

,

(3.20)

and for the interface density:

∂ρ

∂t
=

2
µ

{
p

ε

2

[
n+n+

q (1 + δ+) + n−n−q (1 + δ−)
]

− p(1− ε

2
)(n+n+

q + n−n−q )

+ (1− p)(1− ε

2
)(n+n+

q δ+ + n−n−q δ−)

+
ε

2

[
n+(1− n+

q )δ+ + n−(1− n−q )δ−
] }

,

(3.21)

where we also used the relation M = µN/2. After few simple algebraic
transformations it can be rewritten as:

∂m
∂t

= 2(1− p)(1− ε)(n−n−q − n+n+
q ) + ε(n− − n+),

∂ρ

∂t
=

2
µ

[
(1− p)(1− ε)(n+n+

q δ+ + n−n−q δ−)− p(n+n+
q + n−n−q )

+
ε

2
(n+δ+ + n−δ−)

]
.

(3.22)

If we substitute magnetization m = 0, the first equation is automatically ful-
filled and the second one, after putting ∂ρ

∂t = 0, leads to a stationary equation
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Figure 3.21: Flow diagram of the system dynamics in the (m, ρ)
space for µ = 8, p = 0.1, and different values of q and ε. Arrows
represent the dynamical direction of the system according to
the pair approximation solution (Equations 3.22). Fixed points
are represented by full circles (stable) or empty circles (unsta-
ble). Note how non-linearity and noise can change the stability

and position of fixed points.

for the interface density:

−ρq+12(µ− q)(1− p)(1− ε) + ρq[(1− p)(1− ε)(µ− 2q)− p]

−ρε(µ− q) +
ε

2
(µ− 2q) = 0.

(3.23)

Solution of 3.22 for m = ±1 does not exist with a finite noise rate ε, whilst for
ε = 0 it raises ρ = 0 (see Section 3.3.1). Setting the noise rate to zero together
with the magnetization we obtain the stationary solution of the nonlinear
CVM:

ρ∗ε=0 =
(1− p)(µ− 2q)− p

2(1− p)(µ− q)
, (3.24)

which is consistent with Equation 3.16. For ε = 0 and q = 1 the solution of
the standard CVM is recovered (as in Equation 3.12):

ρ∗ε=0,q=1 =
(1− p)(µ− 1)− 1

2(1− p)(µ− 1)
. (3.25)

It is therefore justified to say that the analytical description developed in this
thesis is the most general one among those considering the coevolving voter
model. Previous models [189], [213], [231] are special cases of the nonlinear
CVM with noise and so Equations 3.22 include a description of these cases.

The stability of possible solutions (m∗, ρ∗) of Equations 3.22 depends on
the configuration of p, q, and ε. The best way to visualize the stability is by
drawing a flow diagram, as in Figure 3.21. The line of ρ = 0 is not nec-
essarily stable as in the nonlinear CVM, because it doesn’t create a frozen
configuration due to noise. Since the analytical description is derived for
the thermodynamic limit, we don’t observe stable fixed points at non-zero
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Figure 3.22: Numerical solutions of the pair approximation de-
scription of the system (Equation 3.22). a) Magnetization |m| for
µ = 5 and q = 2 in the (p, ε) phase diagram, showing existence
of the consensus phase in the thermodynamic limit. b) Magne-
tization |m| and interface density ρ in the static case p = 0 and
µ = 8. Solid lines represent solution for q = 2, dashed lines for

q = 1. A transition is visible for only for q = 2.

magnetization for q ≤ 1. This finding is consistent with the scaling behavior
of numerical results (Figure 3.16), indicating survival only of the coexistence
phase in the large network limit. For the super-linear case, although the fixed
points are placed at the same values of the magnetization (m = −1, 0, 1), their
stability is inverted – now only the solutions of |m| = 1 are stable. It is well
visible in the analytical prediction of the phase diagram in the Figure 3.22a).
This implies that the consensus phase should be observed for any N when
q > 1, which is in agreement with numerical results. Separate mean-field
prediction of the consensus phase disappearance in the thermodynamic limit
was given by Diakonova et. al. [231] for the special case of q = 1.

The non-linear noisy voter model (without the coevolution, on a static
network) has been thoroughly analytically studied [232] and q = 1 was re-
portedly the bordering value between unimodal and bimodal distribution of
the magnetization m. It other words, it is a border between existence and
nonexistence of the consensus phase. As the non-linear noisy voter model is
a special case of the model studied here, one should expect the same prop-
erties for p = 0. The agreement with this work is evident after analyzing
the border of phase diagrams for zero plasticity (indicating a static network).
This behavior is also separately illustrated in Figure 3.22b).

As mentioned before, the dynamical fragmentation phase becomes smaller
when increasing the system size to finally disappear in the limit of N → ∞.
It also becomes smaller for bigger values of the q parameter. This behavior
can be understood in a following way. Having two separate, but homoge-
neous inside, clusters of opposite state the only way of connecting them is by
a random change of a node’s state and one of its links rewiring to the second
component. Probability of the first event is independent of q and is simply
given by ε/2. When the contrasting node is selected as the active node the
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probability of an interaction is ρ
q
i . Since ρi ∈ [0, 1], for smaller q the proba-

bility of an interaction is higher, except for boundary cases of ρi = 0, 1. To
reconnect the clusters rewiring must occur, but this happens always with the
probability p, despite the value of q. Therefore, for a single node of the op-
posite state than the whole cluster the probability of connecting to the other
cluster is constant (since ρi = 1). However, once two clusters are connected,
the higher probability of an interaction for lower q means a higher probabil-
ity of rewiring causing fragmentation again. Consequently, we should expect
the fragmentation phase to persist for larger noise when q is lower.

In order to describe the behavior of dynamical fragmentation region more
precisely we shall first approximate probabilities of reconnecting two sepa-
rate clusters and disconnecting clusters sharing at most two links. In this
approach events of probability proportional to (1/N)3 or ε2 (and of higher
orders) are omitted.

Imagine two separate and internally homogeneous components of oppo-
site states, as it happens for the fragmentation phase phase. As said before,
the simplest way of connecting them under the rules of the nonlinear CVM
with noise involves two steps. Firstly, one of the nodes, call it i, must change
it’s state, what is possible only due to noise. Probability of this is equal ε/2.
Secondly, the node i that previously changed its state must rewire one of its
links to the opposite cluster, with which it currently shares the spin. This can
happen with a probability equal pρ

q
i /N, because we need to select this par-

ticular node as the active node (1/N), an interaction must occur (ρq
i ), and the

rewiring must be performed (p). Since the node i is the only node of a differ-
ent state in its component we have ρ

q
i = 1. Finally, it rises the probability of

reconnecting two components equal:

Pr =
ε

2
p
N

. (3.26)

Note, that there are other possible scenarios of reconnecting two components,
but they contain more steps, therefore are less probable.

Crossing the transition line between coexistence and fragmentation phases
from the other side we will see one large cluster disconnecting into two equal
components. As previously, imagine a situation two time steps before a pos-
sible fragmentation – the network consists of two components of opposite
states, but homogeneous within each other. This time, however, they are
connected by two links. One of the nodes i is a bridge, i.e. it is connected to
two nodes in the opposite cluster. Now, for the fragmentation to occur we
need both of the edges between the components to be rewired. The probabil-
ity of rewiring the first one is Pd1 = 1

N (2/µ)q p(1− ε
2) +

2
N (1/µ)q p. We have

to select the node i (1/N) or one of its two neighbors in the second cluster
(2/N). An interaction must occur, what happens with probability (aj/µ)q,
where number of active links is 2 for the node i and 1 for its neighbors. At
the end, the rewiring must be performed with a probability p, and addition-
ally if the node i was selected, it can not change its state due to noise (1− ε

2 ).
Otherwise fragmentation could not be achieved in two steps. The transition
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Figure 3.23: Analytical prediction from Equation 3.28 of the
phase transition between coexistence and dynamical fragmen-
tation phases. a) Comparison of the numerical results for N =
250, µ = 4, and q = 1 with the analytical prediction indicated
by a black line. b) Scaling with the network size for q = 0.5 (left

panel) and with the q parameter for N = 250 (right panel).

occurs, however, for very small values of noise and therefore we can approx-
imate 1 − ε

2 ≈ 1. To rewire the second link we have to select one of two
nodes (2/N) at its ends, an interaction must occur (1/µq), which must be a
rewiring (p). Therefore, the probability of losing the last connection between
two components is Pd2 = 2

N (1/µ)q p. Finally, we obtain the probability of
disconnecting two clusters sharing only two links:

Pd = Pd1 Pd2 =

[
1
N

(
2
µ

)q
p +

2
N

(
1
µ

)q
p
]

2
N

(
1
µ

)q
p. (3.27)

Along the transition line a constant disconnecting and reconnecting of the
network can be observed. By definition, it happens at such a rate that half
of the time the system consists of two separate components, and half of the
the time the network is connected. Therefore, at the transition line we expect
Pr = Pd, what leads to the equation for the critical density of noise:

εS(p) =
4
N

(
1
µ

)2q
(2q + 2)p. (3.28)

Based on this approximation we expect the fragmentation phase fading away
with growing non-linearity parameter q and with growing system size N, as
it is depicted in Figure 3.23. Both predictions are in a good agreement with
the phase diagram, where we can see the same nature of scaling (Figure 3.16).
A direct comparison of Equation 3.28 with numerical results is presented in
Figure 3.23a). This simple approach manages to asses the transition line. It
doesn’t predict the value of pc, but this is achieved by the pair approximation
(Equation 3.22), when putting ε = 0 (see Section 3.3.1).
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Depending on the values of the three parameters – the rewiring probabil-
ity p, the noise intensity ε, and the non-linearity parameter q – we can observe
three main phases previously reported separately: the consensus phase, the
coexistence phase, and the fragmentation phase. There are, however, signif-
icant differences within two first ones. The consensus phase has a different
behavior depending on the non-linearity parameter. For q = 1 it is a con-
sensus with absolute magnetization equal 1 on average, but real magnetiza-
tion switching between −1 and +1 states, leading to a bimodal distribution
within one realization. For q > 1 we have a constant consensus, i.e. states
+1 and −1 are stable. Therefore, during one realization the system stays at
either m = +1 or m = −1, rising unimodal distribution with a peak at the
boundary magnetization.

The coexistence phase can be also divided into two [230]. The first one
is the already reported fully-mixing phase with a random network structure
and random states of the nodes, giving zero magnetization. But for a higher
plasticity and low noise intensity we can observe the structured coexistence
phase, which has the same magnetization value, but different topology. In
this phase one can easily distinguish two communities of opposite states con-
nected by just a few inter-links. The structural difference can be confirmed
by community detection algorithms.

These findings fill a gap in the studies of the CVM. They provide a bind-
ing bridge between the CVM with noise [231] and the nonlinear CVM [213].
Additionally, the nonlinear noisy voter model [232] and the ordinary CVM
[189] can be seen as special cases of the model described in this section [230].
There is a full consistency with those limit cases. This work brings the anal-
ysis of the voter model to a greater complexity by taking into account many
possible effects. It may provide a tool in evaluation of the relevance of dif-
ferent factors in description of opinion dynamics, but can be also a reference
point in the study of coevolving network models.
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Chapter 4

The Axelrod model

We have seen already that models created to describe physical phenomena,
or more generally the way of reasoning developed in physics, can be applied
in social sciences. The very idea of linking micro and macro scale by studying
how local interaction rules shape the global characteristics of a system was
established in statistical physics. However, one can ask similar questions in
sociology, biology, ecology, economics. One of them could be – why do we
observe so much diversity in societies even though people tend to become
more similar when they interact? And that is exactly the question Robert
Axelrod asked.

Some scientists try to understand the way in which people pick up be-
havior patterns from others, or how the social influence can change habits
of individuals. On the other hand, researchers also seek to understand how
cultural diffusion shapes whole societies. How geographical, political, de-
mographic, or linguistic barriers are formed on a global scale. But it is par-
ticularly interesting to connect these two scales and find out how one can
determine the other. The global pattern, after all, must be a result of the local
rules, even if the connection is complex and hard to recognize.

Robert Axelrod came up with an idea to analyze it in a model of social in-
teractions [234] (which is also called a model of dissemination of culture). We
can see many examples of cultural influence and adaptation in the World.
The Moorish architecture in southern Spain, the style of Japanese woodblock
prints visible in paintings of van Gogh and Matisse, the rhythms of Latin
America on European dance floors etc. But there are also some minorities
resisting to merge with the surrounding culture, like Basque and Welsh lan-
guages [235]. Social scientists could give a long explanation of every single
example incorporating a historical background, geographical constraints, lo-
cal environment and many subtle variables one should take into account. The
Axelrod model, however, provides the answer to general questions of what
is more likely, what can we expect in a given situation, and what mechanisms
are the backbone of social change. It might not provide a precise answer for
a particular problem, but it helps understanding the overall phenomena.

One can ask how do we know that a model is trustworthy, if it depends
on assumptions we have made. And the assumptions can not be so easily
validated by experiment, as in say classical mechanics. Nevertheless, they
are based on empirical evidence and scientific reasoning. But this is also
a question how to distinguish a result of a particular model from a result
that every good model should produce. It sounds exactly like something



84 Chapter 4. The Axelrod model

that physics should know about. Perhaps for this reason Axelrod model was
greatly developed by physicists.

4.1 Static network

4.1.1 Original definition

Originally, the Axelrod model was defined for a static square lattice [234].
Every node in the network can be interpreted either as an individual or a
group of people being homogeneous enough to represent it as a single entity.
A connection between two nodes corresponds to the possibility of interac-
tion. Neighbors in the network can exchange their cultural traits becoming
more similar. The higher similarity they already exhibit, the more likely it
is to become even more alike. This mechanism is called homophily and was
argued to be a crucial element of social interactions [236], [237]. Connected
vertices can be interpreted as co-workers, friends, family or two neighboring
villages. Each of them is described by F features embedded in a state vector
σi = (σi,1, σi,2, ..., σi,F). Every features can take any integer value from 1 to
q, i.e. σi,j ∈ {1, 2, ..., q}. Therefore, there are qF distinct possible states of a
node. The resemblance to the Potts model [238], [239], especially in the case
of F = 1, can’t be unnoticed. However, the Potts model is an equilibrium
model and the Axelrod model is an algorithmic non-equilibrium model. Yet,
they can share common behavior in some circumstances, e.g. at the transition
point.

The features or traits of the nodes can be interpreted in different ways.
They can describe preferences, interests, attitude, opinion, language and so
on. Collectively, all of this is aggregated under a general term culture, and
so the model is said do describe the dissemination of culture. In words of the
author „culture is taken to be what social influence influences”. However, more
narrow interpretations are also possible and one of them treats the Axelrod
model as a model of language change. The author addressed this interpre-
tation in the original publication, as it caused serious problems. It shall be
described separately later on with a solution to the problem given in Sec-
tion 4.3.

The model is defined by its algorithm. First, we must randomly select
initial values of traits for every of N nodes. Each value from 1 to q have the
same probability. The linear size of the lattice is given by L, therefore N = L2.
Then, in every time step:

1. select randomly an active node i from the network,

2. select randomly a node j from the neighbors of the active node i,

3. compare the state σi with σj and determine the overlap m, i.e. the num-
ber of traits such that σi,k = σj,k,

(a) if all traits are equal (m = F), or all traits are different (m = 0),
nothing happens,
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(b) otherwise, with probability equal m/F a positive interaction oc-
curs, in which we randomly select one of not shared features f
(from among F − m) and the active node i adopts its value from
the node j, i. e. σi, f → σ′i, f = σj, f .

Simulation is ran until an absorbing state is obtained, what always happens
in finite-size networks. In this state every pair of neighbors shares either
none or all the traits, therefore nothing can change anymore. Sociological
evidence suggests that the more in common two groups have the more likely
is the transmission of next cultural ideas. It is reflected in the probability of
interaction m/F increasing with a bigger overlap. Axelrod doesn’t go into
details of how an interaction actually happens, what it exactly consists of.
Instead, he assumes that on average people tend to become more similar,
and the tendency increases with the amount of the already present common
ground.

The simplest way to describe heterogeneity of the system is by counting
nodes in the same state creating uniform areas. One of the coefficients de-
fined in Section 2.1.1 perfectly fits this task, namely the domain. Therefore,
a natural order parameter for the Axelrod model is the relative size of the
largest domain D and the number of domains nD. A domain might be inter-
preted as a culturally homogeneous region. Note, that there could be more
than one domain with the same state of nodes in the network, simply being
separated by regions with a different state.

What we could expect from a model defined as above is a gradual erosion
of cultural barriers and eventual convergence to a monoculture. This kind of
behavior can be observed in Figure 4.1. At the beginning of the simulation
almost every node has a different state, but there are many neighbors sharing
at least one common feature. This is enough to start the process of assimila-
tion, which ends with one big domain and three nodes possessing different
states. This is also the behavior many expect to eventually observe in the real
world – the convergence to one global culture. However, it doesn’t seem to
be happening and cultural diversity persists. This is exactly what the model
was supposed to prove, that despite the local convergence we can observe
global diversity. It is sufficient to increase q from 10 to 20 to observe what
the author was aiming to illustrate. In Figure 4.2 we can see another result
of a simulation leading to a quite different configuration. The dominant cul-
ture now takes less than a half of the population and there is ten times more
distinct domains.

It’s fair to say that one can predict the general increase of homogeneity
merely from the rules that govern the system’s evolution. But first of all, it
is a surprising outcome (yet awaited based on the empirical observations)
to preserve high level of diversity in the final configuration. And secondly,
we can use the model to obtain the dependence of the final diversity on the
initial configuration and parameters values. And so it was reported [234] that
the final homogeneity increases with F, decreases with q, increases with the
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a) t = 0 b) t = 2× 104

c) t = 5× 104 d) t = 105

Figure 4.1: Snapshots of the network during evolution of the
Axelrod model from a) the initial configuration to d) the ab-
sorbing state. Simulation was ran for N = 100, F = 5, and
q = 10. Time is given in a number of small time steps. Every

state is indicated by a different color.
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a) t = 0 b) t = 103

c) t = 2× 104 d) t = 5× 104

Figure 4.2: Snapshots of the network during evolution of the
Axelrod model from a) the initial configuration to d) the ab-
sorbing state. Simulation was ran for N = 100, F = 5, and
q = 20. Time is given in a number of small time steps. Every

state is indicated by a different color.
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number of neighbors1, and increases with the system size.
The first two dependencies can be deduced analysing the formula for the

probability of two neighbors sharing at least one common trait in the initial
configuration. Let Aij be an event where two vertices i and j share at least
one feature, Aij = {(σi, σj) | ∃ f σi, f = σj, f }. Then P(Aij) = 1 − P(A′ij),
where A′ij is the complementary event in which all features are different,
A′ij = {(σi, σj) | ∀ f σi, f 6= σj, f }. We have qF possible states for each node,
therefore there are q2F possibilities for a pair of them. If we want two nodes
not to share any trait, after choosing one of qF states for the first one, the
second one has only q − 1 allowed values for each trait excluding the one
chosen for the first node, hence there are (q− 1)F possibilities. All together,
it gives the complementary probability equal P(A′ij) = [(q− 1)/q]F and the
probability of two nodes sharing at least one common feature:

P(Aij) = 1−
(

q− 1
q

)F
. (4.1)

The higher this probability is the more homogeneous outcome we should
expect, because having a trait in common means that neighbors can start in-
teracting. And only interaction can lead to convergence. For instance, going
with q to infinity the initial configuration would be already frozen, since there
couldn’t be any overlap.

Assuming that there are no correlations, we can get a rough number of
partially matching pairs of neighbors by multiplying the probability 4.1 by
the number of connections. Looking at the relation 4.1 it is clear that this
number decreases with q and increases with F. And so does the final homo-
geneity of the system, as mentioned before. In the exemplary realisations the
value of P(Aij) was approximately 0.41 for Figure 4.1 and 0.23 for Figure 4.2.

The most unexpected and problematic behavior of the model is the de-
crease of heterogeneity with the system size. It means that the larger the
network, the fewer domains we will observe in the final configuration, as
we can see in Figure 4.3 and 4.4 with exception of the initial finite size ef-
fect2. Additionally, the relative size of the largest domain will increase with
growing N. Of course, for q large enough there would be a linear growth of
nD with the network size, simply because every node would create a sepa-
rate domain. However, this is a trivial dependence and we are interested in
a complex behavior where the interaction actually shapes the system. This
result is surprising, because one would expect higher cultural diversity for
bigger regions, when there is more niches to develop its own local culture.
After all, we do observe more distinct cultures on whole continents than on

1A square lattice was modified to increase the number of neighbors from 4 to 8 and 12,
maintaining its regular character.

2 Existence of the maximum number of domains for small networks can be easily ex-
plained. For a 2× 2 lattice there are 4 nodes and therefore maximally 4 domains, for 3× 3
lattice there can be 9 domains at most etc. Additionally, the maximal possible number of
domains is only obtained, if no interaction occurred. So there must be an initial growth of
the number of domains, simply because of the growing capacity to contain them.
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Figure 4.3: Absolute number of domains nD for different sys-
tem sizes N = L2 in the Axelrod model. Results obtained for
two parameter configurations and averaged over 250 realiza-
tions with periodic boundary conditions. For F = 3 we can see
a finite size effect causing the initial growth of nD for N < 300,

which quickly vanishes for bigger networks.
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Figure 4.4: Absolute number of domains nD for different sys-
tem sizes N = L2 in the Axelrod model. Results obtained
for two parameter configurations and averaged over 50 real-
izations with periodic boundary conditions. We can see a finite
size effect causing the initial growth of nD for N < 300, which

quickly vanishes for bigger networks.
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Figure 4.5: Number of domains nD (normalized) vs parame-
ter q for F = 5 and different network sizes. Results are aver-
aged over 50 simulation runs with periodic boundary condi-
tions. Two phases can be distinguished – for low values of q we
have only one domain (ordered phase), for high values of q we

observe many separate domains (disordered phase).

remote islands. The result is also problematic, because it is contradictory
to empirical data, what was actually noticed already in the very first pub-
lication [234]. This issue shall be addressed in Section 4.3 together with a
proposition of a simple solution. A short explanation of this phenomenon is
that increasing the size of the network we are increasing the number of possi-
ble paths of interaction between two regions. Imagine a frozen configuration
with small domains present at the border of the lattice, like in Figure 4.1d).
If we increased the lattice, it would introduce a new direction of possible
interaction with boundary domains. However, we can’t use the same argu-
ment for periodic boundary condition, yet it displays qualitatively the same
scaling behavior.

Later, a group of physicists thoroughly studied the Axelrod model and
discovered a discontinuous order-disorder phase transition [240]. Accord-
ing to the previous argumentation, when increasing q we should observe
decrease of homogeneity. However, it is not obvious that it would be an
abrupt drop as it is visible in Figure 4.5 and Figure 4.6 rather than a slow
decline. The phase transition in the number of domains nD and the size of
the largest domain D is clear. Both of them become steeper with bigger net-
work, but remain in the same position, indicating a discontinuous transition
in the thermodynamic limit. The transition point qc is characterized by the
highest fluctuation size and a power-law distribution of domain sizes, indi-
cating long distance correlations. Reportedly, the behavior of the model is
qualitatively the same for any F > 2 [240], whereas for F = 2 the transition
becomes continuous. Additionally, for all F > 2 the power of the domain
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Figure 4.6: Size of the largest domain D (normalized) vs pa-
rameter q for F = 5 and different network sizes. Results are
averaged over 50 simulation runs with periodic boundary con-
ditions. Two phases can be distinguished – for low values of
q the largest domain spans over the whole network (ordered
phase), for high values of q it is much smaller than the system

size (disordered phase).

size distribution is the same. These findings justify limiting further analysis
to F = 3, as it is computationally faster. And so was done in many following
extensions of the Axelrod model.

4.1.2 Selected extensions

The Axelrod model displayed interesting effects and most importantly ex-
plained how homophily can paradoxically lead to high diversity. The anal-
ysis, however, was restricted to square lattice. It is reasonable to ask how
much does the model behavior depend on the chosen topology, especially
since it was proved to be a major factor influencing results in most, if not all,
network models.

Following the original publication, many physicists has developed the
model and studied the dependencies further. It was discovered that the
character of the phase transition in the largest domain is determined by the
network’s structure. After narrowing the network to one dimension it be-
comes a second-order phase transition with the order parameter changing
continuously [241]. Originally, the transition was of the first order on a two-
dimensional lattice. The standard model was later precisely described ana-
lytically, but only for a simple case of F = q = 2 [242].

As underlined many times in this thesis, real-world social networks are
not square and regular, nor are they static. The second issue is addressed in
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Figure 4.7: Number of domains nD (normalized) vs parameter
q in the ER graphs for F = 5. Results are averaged over 50
simulation runs. Similarly to the square lattice, two phases can
be distinguished – for low values of q we have only one domain
(ordered phase), for high values of q we observe many separate

domains (disordered phase).

the next section, the first one has been resolved before. The model’s behav-
ior was investigated on ER random graphs, small-world networks, scale-free
and clustered scale-free networks [243], [244]. Not surprisingly, the topology
had a significant influence on the properties of the phase transition.

In random networks homogeneous ordered state persists for longer than
in square lattices when increasing q. Therefore, in the small-world networks
the transition point is being shifted to higher q when the ratio of random
rewirings grows. In Figure 4.7 we can see the transition in nD and in Fig-
ure 4.8 we can see the transition in D for a random ER graph compared with
a square lattice3. As these are boundary cases of the WS model the general
dependency can be deduced from it, but it was also explicitly simulated [243].
The higher the density of random long-distant connections, i.e. the less reg-
ular the network is, the further the transition is shifted to bigger values of q.

In scale-free networks generated by BA model scaling behavior suggests
that the transition disappears for large networks and only the ordered config-
uration can be obtained in the thermodynamic limit. However, in structured
scale-free networks, i.e. scale-free networks possessing high clustering, the
order-disorder phase transition is restored. This is a particularly interesting
result, because clustering is an important feature of social networks. There-
fore, it gives another reason to distinguish its special contribution in shaping
social interactions.

3 After [243], the size of the largest domain D (usually normalized) became the typical
order parameter for the Axelrod model, instead of the number of domains nD.
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Figure 4.8: Size of the largest domain D (normalized) vs pa-
rameter q in the ER graphs for F = 5. Results are averaged over
50 simulation runs. The gray line shows the same results for a
square lattice of N = 1024 vertices. The order-disorder phase
transition in the ER network is shifted towards higher values of

q, in comparison to the square lattice.

Axelrod suggested that his model could be extended to include cultural
drift, perhaps in a form of random state changes. Social influence is not the
only factor shaping culture. People can change their opinion, beliefs or habits
also without an interaction with others. This fact can be simple accounted for
by introducing noise into the model. It can be done in different ways, one of
them is to perform a single feature perturbation with a given probability af-
ter every time step. This probability is called a noise rate. Of course, for
any finite noise rate there can’t be a frozen configuration. As a result, the
heterogeneous multi-domain phase is no longer stable for fluctuations large
enough. After a certain amount of feature perturbations two completely dif-
ferent domains can start interacting again to eventually merge. On the other
hand, if the noise is too large it can on its own produce and sustain high di-
versity – simply by changing nodes states faster than they converge due to
interactions. Therefore, one can expect a new order-disorder phase transition
in the noise rate, and that is exactly what was discovered [245]–[247].

There have been other efforts to include noise in the model. One com-
bined the noise rate with a confidence threshold [248]. Confidence thresh-
old means that one common trait might not be enough to start interacting,
and the required overlap can be chosen arbitrarily. Results, however, were
qualitatively the same. Even an equilibrium version of the Axelrod model
has been proposed [249], [250], where order-disorder phase transition occurs
only at zero temperature.

As discussed in Section 3.3, a social interaction doesn’t have to be always
dyadic. It is not always one parson influencing the other, social pressure
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can come from a group of peers or the whole environment, possibly in non-
linear way. Non-dyadic interactions were studied producing more robust
cultural diversity [251]. Among extensions addressing real-world phenom-
ena, worth mentioning is also analysis of the influence of mass media with
different strategies [252], [253], introducing tolerance thresholds [254], [255],
adding acceptance or discussion in the interaction [256], applying conser-
vatism or nonconformity [257], [258], taking into account also physical dis-
tance between agents [259], [260], changing the topology to a multilayer net-
work [261].

Axelrod might have not accounted for every possible effect, but he did
introduce two new ingredients into modeling of social interactions – discrete
opinion and homophily. The second one being reflected in higher probability
of interaction with individuals more alike. With these two mechanisms he
showed how local convergence can produce global diversity, what had been
absolutely unforeseen. It was later discovered that actually homophily on its
own can produce heterogeneity in the macro scale [262], [263]. However, the
original results still stand accurate and remarkable.

4.2 Coevolving Axelrod model

4.2.1 Random rewiring

The next natural extension of the Axelrod model is allowing the structure of
the network to change over time. As stressed many times before, most of the
real-world networks are not static and in particular social networks change
their structure in the similar time scale as they change their state (the state
of nodes). First attempt to incorporate this observations into the model gave
birth to the coevolving Axelrod model [264], [265]. There were also further
extensions introducing for instance physical location of agents [259], but first
we shall discuss the basic definition.

In the coevolving Axelrod model we start with the same configuration as
for the static version on random networks. Initially, it is an ER graph with
randomly selected states of nodes σi. Then, in every time step:

1. select randomly an active node i from the network,

2. select randomly a node j from the neighbors of the active node i,

3. compare the state σi with σj and determine the overlap m, i.e. the num-
ber of traits such that σi,k = σj,k,

(a) if all traits are equal (m = F), nothing happens,

(b) if all traits are different (m = 0), the node i disconnects from the
node j and creates a new connection to a randomly chosen node l,

(c) in other cases, with probability equal m/F a positive interaction
occurs, in which we randomly select one of not shared features f
(from among F − m) and the active node i adopts its value from
the node j, i. e. σi, f → σ′i, f = σj, f .
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Figure 4.9: Schematic illustration of the coevolving Axelrod
model algorithm. After choosing the active node i and one of
its neighbors j their features are compared. Here, features are
represented by four quarters of each node and possible values
by four colors (red, green, blue, yellow). Therefore, F = 4 and
q = 4 in this example. a) Nodes i and j share two traits m = 2
(both on the left), so the probability of interaction is 0.5. Inter-
action occurs and the active node copies the bottom right trait
from the neighbor increasing similarity to m = 3. b) Nodes i
and j do not share any trait m = 0 (there are the same colors,
but on different positions) and so rewiring is performed. Node
i cuts the link to the node j and connects to a randomly chosen

node l.

A visual explanation of the algorithm is presented in Figure 4.9. Note, that
multi- and auto-connections are not allowed in the model. Initial topology
is not as important as in static models due to the rewiring procedure, which
ultimately defines the network’s structure.

In this version of the model network can become disconnected, small
separated components or individual lonely nodes can appear. That’s why
one should take into account additional order parameter sensitive to these
changes. Usually, it is either the number of components nS or size of the
largest component S (both normalized by the number of nodes). By defini-
tion, the number of domains can’t be smaller than the number of components
nD ≥ nS and the size of the largest domain can’t be bigger than the size of
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Figure 4.10: Average trajectories of the number of domains nD
and components nS during simulations for different values of q,
F = 3, N = 500 and 〈k〉 = 4. Note that depending on the q
value either nD or nS can settle at the final level first. Trajecto-

ries are averaged over 300 simulation runs.

the largest component D ≤ S. Figure 4.10 presents average trajectories of nD
and nS from the beginning until the end of the simulation, which is either
a frozen configuration or a dynamical stationary state. It follows from the
algorithm of the model that a frozen state can be obtained only if every link
is connecting two nodes of identical set of traits. In other words, every com-
ponent must contain exactly one domain. Otherwise, either trait copying or
rewiring would be still possible, which means configuration is not frozen.

Increasing q→ ∞ the probability of sharing any trait between two neigh-
bors drops to 0 and therefore we should observe infinite rewiring leading to
a stationary state described in Section 2.2.5. In this limit state of the nodes
can be neglected and the equilibrium configuration will be given by the for-
mula 2.41. However, the most interesting part is the interplay between both
aspects of the network.

In Figure 4.11 we can see a phase diagram of the coevolving Axelrod
model in respect to the q parameter. Three phases are easily distinguish-
able. The first one is a consensus phase with one big component containing
one domain – approximately all nodes have the same state. For intermediate
values of q we observe disordered phase with network disintegration. The
system divides into many small components, each being homogeneous in-
side, i.e having one domain. These two phases are characterized by a frozen
final configuration, that’s why we can see the same values for D and S in the
plot. Increasing q further makes the network recombine into one connected
component again, but with many different domains. In this dynamical phase
the system reaches a stationary state with no changes in the state of nodes
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Figure 4.11: Phase diagram of the coevolving Axelrod model in
respect to q. Transitions between phases are indicated by black
dashed lines based on the maximal fluctuations. Note that in
two first phases size of the largest component S is equal to the
size of the largest domain D. Results are obtained for N = 500,
〈k〉 = 4, and F = 3. Values are averaged over 400 realizations.

and constant rewiring. Both transition points are characterized by maximal
fluctuations. Additionally at the first one, from the consensus to the disinte-
gration phase, the distribution of component size becomes power-law [264].
At the second phase transition the clustering coefficient takes maximal value
[266]. That new property of the transition between the disintegration and the
recombination phase was discovered in this thesis. It is a universal indicator
of the transition across all versions of the coevolving Axelrod model.

Analysing the phase diagram one can come to a conclusion that for small
values of q (at least for the consensus phase) the dynamics of the system is
dominated by the trait copying and from some point onwards it is mostly
rewiring. A good way to investigate it is by looking at the thermalization
times for the system as a whole τ, for domains τD and for components τS,
as presented in Figure 4.12. From this plot is is clearly visible that there is a
region where components settle first and a region with the opposite situation.
Explanation of how it is possible to observe different thermalization times for
nS and nD is fairly simple. If q is small (and/or F big) practically all connected
pairs of nodes can share at least one trait. Therefore, there will be almost no
rewiring (low τS), but a lot of trait copying to reach the consensus (high τD).
For high values of q the opposite can happen – there is not much possibility
for interaction, therefore all trait copying will finish quickly (low τD), but the
links will keep rearranging to fit the domains (high τS). Interestingly, the
point at which thermalization times for both become equal is between the
transition points, at the beginning of the disintegration phase.
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Figure 4.12: Thermalization time τ = max{τS, τD} of the coe-
volving Axelrod model vs q for N = 500, 〈k〉 = 4, F = 3. Values

are averaged over 500 realization.

Coevolution in the voter model substantially changes behavior of the sys-
tem. Topology of the network is no longer limited to the initially chosen
configuration – now it is a result of the coupled dynamics of the states and
links. In the simplest formulation of random and uniform rewiring it creates
small communities in separate components (disordered phase) and causes
reintegration of the network for higher q. Nonetheless, the resulting degree
distribution is Poissonian, i.e. network has a structure of a random graph.
Moreover, the system displays mostly small values of clustering coefficient.
This two results are incoherent with empirical data about social networks.
Solution of this problem proposed in this thesis is described in the following
section.

4.2.2 Preferential attachment and triadic closure

Coevolving Axelrod model is certainly more realistic than its original defi-
nition on a static square lattice. It displays new effects and provides more
general framework for social networks modeling. Topology not only plays
a role by creating the playground for the interactions between individuals,
but now it can also change itself being influenced by the state of nodes. The
structures that are being created during the simulation is another aspect to
analyse. What should be the main feature to look for? It has been showed
many times that power-law degree distribution is a common characteristic
of empirical networks [267], [268]. Additionally, in the context of social net-
works high clustering is important. Real-world social networks display val-
ues of the clustering coefficient (global and local) even at the level of 0.5 [26],
[27], [63], [87], [88], [225], [226].
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Both mentioned properties are purely topological, therefore they can be
directly affected by the rewiring mechanism. Indirectly they are of course
coupled also with the state dynamics. In the first coevolving definition of
the model rewiring was random with uniform probability distribution for
every node to be chosen as a new neighbor of the active vertex (excluding
the active node itself and its existing neighbors). This led to a Poissonian de-
gree distribution and mostly low values of the clustering coefficient. In order
to improve this flaw four alternative possibilities are proposed in the the-
sis. This section contains original results obtained in mentioned alternative
versions of the coevolving Axelrod model.

The most well known mechanism leading to scale-free degree distribution
is preferential attachment [23], [109], [267], [268]. However, it does generate
power laws in growing networks when a node can not lose connections once
they are established. Situation in the coevolving networks is significantly dif-
ferent, because here the higher degree of a node means also a greater prob-
ability of loosing a connection due to choosing one of the neighbors as the
active node and rewiring. On the other hand, in the case of pure rewiring,
without taking into account states of nodes, linear preferential attachment
also leads to a power-law degree distribution, as showed in Section 2.2.5.
Importantly, the constant in this linear relation may decide between a power-
law and exponential outcome. Nonetheless, neither growing network nor
constant rewiring provides a precise description of a coevolving network,
since the feed-back loop between rewiring and the states is the driving fac-
tor, which renders the analytical description non-trivial. Therefore, different
types of preferential attachment are analysed in this work.

Second important structural aspect – high clustering – is addressed by
introducing triadic closure, which by definition increases the clustering co-
efficient with every rewired link (or at least keeps it constant) and has been
recognized as an important psychological and sociological mechanism [28],
[29]. Having these two goals in mind four different models are proposed
in this thesis. All the models are described by the same algorithm as the
standard coevolving Axelrod model (Section 4.2.1), except having different
rewiring procedures. When the active node cuts the connection to the neigh-
bor with zero overlap in traits a new neighbor is chosen not with a uniform
probability across the whole network, but according to a specific probability
distribution Π(ki) of choosing a node i [266]:

• model A with preferential attachment: Π(ki) ∼ ki,

• model B with preferential attachment: Π(ki) ∼ ki + 1,

• model C with strong preferential attachment: Π(ki) ∼ (ki + 1)2,

• model D with triadic closure – uniform distribution among neighbors
of neighbors.

As previously, multi- and auto-connections are prohibited. The model C
has a very strong preference of high degree to compensate for the higher
chances of losing connections by hubs. Note, that in models A and D once a
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Figure 4.13: Phase diagram of the four versions of the coevolv-
ing Axelrod model in respect to q. Transitions between phases
are indicated by black dashed lines based on the maximal fluc-
tuations. Note that in two first phases size of the largest compo-
nent S is equal to the size of the largest domain D. Results are
obtained for N = 500, 〈k〉 = 4, and F = 3. Values are averaged

over 400 realizations.
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Table 4.1: Degree distribution in different phases for four vari-
ants of the coevolving Axelrod model. The original model with
random rewiring always results in a Poissonian degree distri-

bution.

phase I phase II phase III
model A Poissonian/exponential exponential Gaussian
model B Poissonian/exponential exponential exponential
model C power-law power-law unclassified
model D Poissonian unclassified Gaussian

node loses all connections it can not be reconnected with the rest of the net-
work. Results obtained with alternative rewiring procedures are presented
in Figure 4.13. General behavior is similar in all cases. We can distinguish
three phases: the consensus phase with one big component and one domain
(Figure 4.14a) for the model D), the disintegration phase with many small
components containing one domain each (Figure 4.14b)), and the dynamical
recombination phase where the network recombines into one relatively big
component with the rest of the nodes scattered out (Figure 4.14c)). In case
of many lonely nodes, what happens in all but the model B, the last phase is
often called a shattered phase. It contains many small domains even in the
main component, therefore rewiring never stops.

Other common feature across the models is the characteristics of transi-
tion points. Both are of course described by the maximal fluctuations. Ad-
ditionally, at the first transition point qD, detectable in the size of the largest
domain and component, the distribution of component size is power-law, as
showed in Figure 4.15. The second transition point qS, observable only in
the size of the largest component, is characterized by a peak of the clustering
coefficient. This behavior could be expected in the model D, because at the
transition point the thermalization time is usually the longest and with each
time step there is a chance for rewiring and increasing the overall clustering.
However, the rest of the models in general do not increase clustering during
the rewiring procedure. The explanation of this phenomena can be found in
the conversion from a frozen final configuration to a dynamical one at qS. At
this point there is just enough pairs of compatible nodes to fit all links be-
tween them. Therefore all small components consisting of compatible nodes
will absorb as many links as possible, i.e. they will form complete graphs,
which have clustering coefficient equal to 1.

What is different between the four models and the original coevolving
Axelrod model is the position of transition points qD and qS, the level of
recombination in the dynamical phase, i.e. the size of the largest component,
and the value of the clustering coefficient out of the qS point. As expected,
the highest clustering is observed for the model D having C ≈ 〈c〉 ≈ 0.5
in two first phases. Moreover, we can observe various degree distributions
depending on the model and the phase (Figure 4.16). They are summarized
in Table 4.1.

In the limit of q → ∞ the coevolving Axelrod model can be described
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a) q = 2

b) q = 20

c) q = 400

Figure 4.14: Visualisation of the network for each of three
phases for the model D (with triadic closure), N = 500, 〈k〉 = 4,
and F = 3. Every color indicates a different set of traits of a

node, therefore domains can be seen as areas of one color.
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Figure 4.15: Size distribution of network components at the first
transition point qD for every model, N = 500, 〈k〉 = 4, F =
3, collected over 400 realizations. Dashed lines represent the
best fit of a power-law function with the power α given in the

panels.

as a coevolving network with constant rewiring and no states of nodes. In
such case the degree distribution is described by Equation 2.41. In particular,
according to this relation the model B should have exponential degree distri-
bution for q→ ∞ As we can see, this approximation works well also for finite
values of q. On the other hand it does not work well in case of the model A,
which does not display power-law distributions. It is worth mentioning that
for q = 5000, for example in the model B, during the simulation only in 75%
of time steps rewiring occurs. Therefore, states of nodes still influence the
system at this level of q.

As presented in Figure 4.16, the goal of a power-law degree distribution is
achieved in the model C with strong (quadratic) preferential attachment. In
this particular choice of the q parameter values the exponent is equal α = 3.3
in the first and α = 1.96 in the second phase. Additionally, the bigger the
network the longer is the straight slope in the log-log plot, indicating pure
power law in the thermodynamic limit. Looking at all the models we can see
a rich range of distributions.

It is clear that scale-free structures and high clustering can be obtained
in the coevolving Axelrod model with proper rewiring. Another common
feature of social networks is the small-world property, as described in Sec-
tion 2.2.3. It can be observed in the scaling of the average path length l with
the network size. This dependency is presented in Figure 4.17. Models A and
B possess the standard small-world property – the average path length grows
as a logarithm of the network size. The model C has a super small-world
property – l initially decreases to stabilize at the level of approximately 3.
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Figure 4.16: Degree distribution in the stationary state for N =
500 (blue circles), N = 1000 (red squares) and N = 2000 (green
triangles), for every model and phase, 〈k〉 = 4, F = 3, col-
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distribution.
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Figure 4.17: Average path length l vs. system size N for every
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Such behavior is caused by the creation of big hubs with degree comparable
to the number of nodes, but still smaller than N− 1, because hubs of this size
would decrease the average path length below 2. In the model D the average
path length grows linearly with the number of nodes N, therefore it can not
be described as small-world. Bigger distances between nodes are cased by
the local rewiring procedure, which replaces long-distant connections with
short links.

An additional difference between the model D and the rest of the models
lays in the scaling behavior. In the models A, B and C, as in the standard
coevolving Axelrod model, the first transition point qD shifts towards bigger
values of q when increasing the network size [264]. In the thermodynamic
limit a continuous order-disorder phase transition is therefore expected. In
the model D, however, the transition remains at the same value qD = 3,
regardless the system size, as visible in Figure 4.18. This indicates a discon-
tinuous phase transition at this point in the limit of large N. The second
transition point qS shifts towards high values of q in every model.

These findings provide yet another proof of how important is the inter-
play between the state of nodes and the rewiring procedure in coevolving
networks. Obtained results present a whole range of possible degree distri-
butions, various average path length behaviors and different scaling of tran-
sition points. In a context of social networks, the discovery of the clustering
coefficient peak at the second transition point is especially important, as well
as higher general clustering in the model D. Majority of these phenomena
is absent in static networks, what justifies generalizing network models to
incorporate coevolution.

4.3 A solution of the problem with empirical data

Language, as one of the most important aspects of our culture, has been
studied using numerous different approaches [269]. Significant part of the
research in quantitative linguistics applies methods and ideas developed in
physics. For instance, the classical gravity model explaining language change
and spatial diffusion [270], [271]. Also more recent works borrow from physi-
cal sciences and use tools like agent based modeling [272], or scaling analysis
[273]. Fokker-Planck equation, well known and studied in statistical physics,
has been applied to simulate changes in language over time [274]. The term
statistical physics of language dynamics is becoming popular as this branch of
science is being developed [228], [275]. Research ranges from diffusion of
modifications in spoken dialects [272], [276], to statistical and topological
properties of written language [277], [278].

The Axelrod model has two basic interpretations. In the general one states
of the nodes are assumed to describe culture in a broad meaning. It can be
opinion, habits, attitude, religion, customs etc. Without going into details, as
Robert Axelrod says „culture is what social influence influences” [234]. In this
sense traits on every vertex can describe anything that can change during a
social interaction.
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A more particular interpretation, suggested already in the original paper
[234], considers features of nodes as languages spoken by individuals. In
such interpretation every feature should be understood as a relatively big
part of a language, like a segment of vocabulary or general grammar rules.
Then, different values of traits imply using different words to describe the
same phenomena or different declination rules etc. It is worth noting that the
Schulze model [279], which is very similar to the case of q = 2 in the Axelrod
model, is considered a purely linguistic model describing language change.

The idea of social interactions driving the evolution and propagation of
languages is well supported [280]–[283]. Multilingual society can be seen
as a system of interacting agents [284]–[286], where the interaction leads to
a modification of the language spoken by the parties [287], [288]. People
interacting more often should reach the state of a linguistic compatibility.
On the other hand, if they speak completely different languages they will
not interact at all. Existence of these simple mechanisms makes the network
science a suitable framework to analyse language change [129], [279], [289].
Many phenomena have been already explained using such approach [130],
[210], [290], [291]. Therefore, it is a promising perspective to use the Axelrod
model in description of the language diversity [292].

Despite the fact that the Axelrod model captures the essence of social
interactions, its interpretation considering languages was abandoned after
very first publication [234] due to a contradiction with the empirical data.
Anthropological study of Solomon Islands in the late 70’s [293], which pro-
vided the only empirical results comparable with the model at the time,
showed that the number of languages existing on an island grows with the
island’s size. Behavior of the initial model defined on a static square lattice
was exactly opposite – the number of domains, interpreted as separate lan-
guages, was decreasing with increasing size of the network (see Figure 4.3).
Moreover, the first adaptive model [264], taking into account coevolution of
the nodes states and the topology of the network, did not solve this issue –
the number of domains was approximately constant for different sizes of the
network.

First question that arises is whether the empirical findings for Solomon
Islands still hold today and whether they are valid on a larger scale. Ex-
trapolating results from the 70’s we should expect a larger number of lan-
guages for bigger countries. In order to validate this dependency two inde-
pendent databases are analyzed in the thesis [292]. The first one from 1996
with 6866 languages registered together with their 9130 dialects from 209
different countries [294], and the second one from 2013 (updated in 2015)
consisting information about 2679 languages from 188 countries [295].

It should be noted that the difference between a language and a dialect is
often subtle [269], [296]. In general, a dialect originates from a language and
speakers of different dialects of the same language should be able to com-
municate without a big effort. There are measures invented to quantify the
differences between dialects/languages, for example mutual intelligibility.
Such criteria, however, are not foolproof and can classify different languages
as dialects of one language [297], [298]. Sociolinguistic context also has to
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Figure 4.19: Empirical dependence of the number of languages
on the size of a population. Red triangles represent languages
from WALS [295] and population sizes for 2015 [299]. Blue cir-
cles represent languages from Ethnologue [294] and population
sizes for 1996 [299], green squares represent all dialects from the

latter source.

be considered in many cases. Nevertheless, this discussion shall be left for
linguists. In this work, data on languages and dialects is used as given in the
cited sources.

The gathered data is presented in Figure 4.19 as a dependency of the num-
ber of functioning languages (or dialects) vs. the population size in a given
country. For each of the three datasets a general trend seems to be the same
– the bigger the country the more languages are spoken there. However, the
dependency is highly noisy. Social interactions is not the only factor driv-
ing language change. There are many others sometimes random factors, like
language policy and legislation, colonization, border changes, demolition of
the population during wars or epidemics, compulsory resettlement etc. Also
television, radio and social media have a significant impact on the language
diversity [300]–[302].

In order to see the average behavior it is better to aggregate the data. It is
done in Figure 4.20 excluding, for the sake of clarity, four countries that have
either the population size (China, India) or the number of languages (Indone-
sia, Papua New Guinea) grater by almost order of magnitude from the oth-
ers. From this plot the average tendency can be clearly concluded – number
of languages grows with the population size. The biggest dataset consider-
ing dialects displays a clear linear growth with a linear regression giving the
coefficient of determination equal R2 = 0.94. The language datasets can be
also described by a linear function with a fair precision – in both cases the
coefficient of determination is equal R2 = 0.85.

These empirical findings confirm results obtained for Solomon Islands.
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Figure 4.20: Dependence of the number of languages on the
size of a population. Aggregated data from Figure 4.19, colors
preserved. Height of a bar indicates the average number of lan-
guages in countries with a population lying within the width
of the bar. China, India, Indonesia, and Papua New Guinea are

excluded.

Unfortunately, it means they also confirm the problem of the Axelrod model.
The scaling of the domains number, which is interpreted as the number of
languages, with the system size is exactly opposite in the original model.
In the coevolving Axelrod model behavior slightly depends on the phase.
As described in Section 4.2.1, the model has three phases. The third one,
however, does not make physical sense in the context of language diversity
modeling, because traits of nodes do not play an important role there. In first
two phases, which are the most plausible to describe language change, the
number of domains remains approximately constant regardless the system
size. Again, this behavior is contradictory to empirical analysis performed
above.

However, the Axelrod model can be improved using modifications de-
scribed in Section 4.2.2. In addition to four models (A, B, C, and D) intro-
duced in that section a fifth one is proposed here. It is a combination of mod-
els C and D, therefore hereafter it is referred to as the model CD. As in the
model D the rewiring is performed only within neighbors of neighbors, i.e. it
is triadic closure. But in this set of nodes distant by two edges the probability
distribution for being chosen as a new neighbor is not uniform. Instead it has
the same form as in the model C: Π(ki) ∼ (ki + 1)2, but only if the node i is a
neighbor of neighbor of the active node, otherwise Π(ki) = 0.

Language scaling for all variants of the coevolving Axelrod model is pre-
sented in Figure 4.21 for q = 5. As we can see models A, C, D and CD have
much better behavior, in the context of empirical findings, than the model
with random rewiring. The model B displays similar results to the original
coevolving model. Notably, models D and CD significantly improve scaling
of the domains number. Therefore, this two models are analyzed further for
different values of q, as showed in Figure 4.22.

We can observe a steady growth of the domains number nD with the net-
work size N. For every result of models D and CD in Figure 4.22 a fit of a
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random rewiring (green diamonds) and all the modifications,
for 〈k〉 = 4, F = 3, and q = 5, averaged over 400 realizations.
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linear function gives a value of the coefficient of determination R2 > 0.99.
Therefore, we can observe qualitatively the same behavior as for the empiri-
cal data on languages and dialects in Figure 4.20. Moreover, the slope of the
function strongly depends on the q parameter, hence it can be adjusted to a
particular empirical example giving quantitative agreement. In this way the
contradiction between previous models [234], [264] and the Solomon Islands
case can be erased.

The disagreement between the Axelrod model and empirical scaling of
language diversity is eliminated for the first time in this thesis (based on
[292]), to my best knowledge. It demonstrates the importance of the interplay
between the topology of the network and states of the nodes, namely the
coevolution, as well as particular type of rewiring.

It is worth noting that the studies on language diversity are very diverse
themselves. For instance, properties of written texts are being extensively ex-
plored [303]–[305]. New words creation, language change or competition are
being modeled on networks [272], [275], [286]. Network science, however,
has its limitations in quantitative linguistics. It is hard, if possible, to take
into account such essential aspects as geographical distribution and spatial
diffusion in the process of language change [276], [306]–[308]. Nevertheless,
results obtained using coevolving network models can be seen as one of the
crucial parts of the complete description of language change or, more gener-
ally, of social interactions.
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Chapter 5

Statistical mechanics of coevolving
networks

So far models developed and described in this thesis belonged to the cate-
gory of non-equilibrium models, or – using the division from [62] – to the
category of algorithmic models. The voter model (see Chapter 3) and the Ax-
elrod model (see Chapter 4) are defined by specifying the set of rules for each
time step, i.e. by their algorithm. In both cases the system keeps evolving in
time eventually reaching a stationary state, where basic parameters fluctuate
around constant values, or a frozen configuration. The algorithmic approach
is particularly useful when describing complex systems. It allows to incor-
porate the dynamical evolution rules of a system directly in the model, and
complex systems are often naturally defined by such rules. It leads to a non-
equilibrium behavior – the system is not characterized by a probability distri-
bution over possible states realizing the most probable ones on average, but
it rather collapses just into one (frozen configuration) or continues to change
indefinitely, perhaps preserving certain quantities. For example, the voter
model on static finite networks always reaches a gridlock (see Section 3.1.2).
On the other hand, in the coevolving Axelrod model for high q values the
network keeps changing maintaining the size of the largest component and
domain (see Section 4.2.1).

Another way of looking at systems containing many elements comes di-
rectly from statistical mechanics and ideas of Ludwig Boltzmann [309]. We
can assume a probability distribution over every microscopic configuration,
as long as it satisfies constraints imposed by observation. This way we con-
struct a statistical ensemble of the system considering all possible micro-
scopic states at once. Of course, some of them might be extremely rare, other
much more probable. In order to describe the system one must compute ex-
pected values of quantities of interest. An important step here is assumption
that the ensemble does not change over time - the micro-states and the prob-
ability distribution put on them remain the same. For this reason such de-
scription is called equilibrium and models constructed in this manner analytic
[62]. In this approach we are not interested in the evolution of the system,
moreover we can not deduce any details of the evolution from the equilib-
rium approach. Instead, we obtain a description in terms of average values
corresponding to macroscopic states of the system.
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One may ask why to use the equilibrium approach in description of com-
plex systems, if we don’t obtain any knowledge about the evolution. Ad-
ditionally, some of them can be naturally expressed in algorithmic manner.
The main reason for this is limited availability of empirical realizations of
such systems. There is only one World Wide Web, only one Internet, one fi-
nancial network of bank loans, few examples of social online networks per
country etc. Statistical mechanics approach still allows us to say something
about the most probable realizations of these systems by means of construct-
ing the most ignorant probability distribution (see Section 5.1). The second
advantage is a natural analytical formulation, which gives a possibility of
precise description. In algorithmic models the analytical description many
times must be approximated by definition, since the model is described by
the algorithm. Equilibrium approach may prove difficult to be fully solved,
however is solvable in principle. It can also provide insight into quantities
not directly observed thanks to the constructed probability distribution.

Nevertheless, the statistical mechanics approach can be more complicated
when applied to complex systems than the algorithmic one. In certainly is for
coevolving networks. For that reason this framework is more rarely chosen
by researchers and is presented as the last one in this thesis.

5.1 Maximal entropy approach

The main problem in constructing a statistical ensemble is the proper choice
of the probability distribution over the set of possible configurations. First of
all, what does it mean that a distribution is proper? It is usually stated that
such probability distribution has to (i) satisfy imposed constraints and (ii) in-
clude the least possible amount of assumptions that are not included in the
constraints. The first point is rather straightforward. If we observe a particu-
lar average value 〈 f (x)〉 = ∑i f (xi)pi of some function f (xi) of the ensemble
elements xi, we want the distribution {pi} to recover the exact same value.
Otherwise it would be simply in contradiction to the empirical evidence. The
second point, however, is much more vague. It says that the distribution
should be as little biased or as ignorant as possible. But how does this help
to chose between two distributions both fulfilling the constraints?

This question dates back to the times of Jacob Bernoulli and and his prin-
ciple of insufficient reason and later Pierre-Simon de Laplace’s indifference prin-
ciple. These principles state that having no prior knowledge about a system,
except that is has n possible realizations, we should regard every realization
as equally likely, for there is no reason to believe that one is more probable
than any other one. Thus, in a situation with no information we should favor
a uniform probability distribution. However reasonable and intuitive this
principle sounds, the choice of the uniform distribution can be as arbitrary
as any other one. If there is truly no prior knowledge about the system, no
average value is known, why to put any distribution in front of the others?

The solution is provided by the maximal entropy principle (MaxEnt). One
can define a functional S({pi}) ≡ S(p1, p2, ..., pn), called entropy, taking as an
argument probability distribution {pi} and returning a number evaluating
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amount of assumption the distribution contains. Not willing to make unjusti-
fied assumptions, we should chose the distribution of the maximal entropy.
It would seem that this merely creates yet another issue of subjective crite-
ria, since we have to select a particular form of such functional. However, it
can be shown that the most reasonable form is the well-known Boltzmann-
Gibbs-Shannon (BGS) entropy [310]:

S({pi}) = −K
n

∑
i=1

pi ln pi, (5.1)

where K is a positive constant setting units, which can be omitted without
loss of generality.

The BGS entropy can be derived based on a set of axioms treating about
continuity, symmetry (or zero probability), maximum value and additivity
[311]. It can be proved that the only functional dependence that satisfies
these axioms is given by Equation 5.1 [310], [312]. Interestingly, the maxi-
mum value axiom states that entropy should have the maximal value for a
uniform distribution, therefore it makes exactly the same assumption as the
principle of insufficient reason. The maximal entropy approach, however,
has two advantages. It can be derived in a strictly combinatorial way, with-
out any reference to uncertainty or uninformativeness, just looking for the
most probable distribution describing observed evidences [313]. Addition-
ally, the entropy concentration theorem provides a quantitative justification
for choosing the probability distribution maximizing BGS entropy. More pre-
cisely, a certain fraction r of possible distributions {pi} will result in such
value of entropy S({pi}) that:

Smax − ∆S ≤ S({pi}) ≤ Smax, (5.2)

where Smax is the maximal possible value of the BGS entropy. The concentra-
tion theorem shows that for any fixed fraction r the margin decreases with the
system size as ∆S ∼ 1/N [314]. Take r = 0.99, for a large system it’s simply
unreasonable to believe that the true probability distribution is far from the
one maximizing the entropy. When N becomes very large, like Avogadro’s
number, deviations from the MaxEnt principle are so improbable that they
are just never observed. In this sense, the second law of thermodynamics
can be seen as purely combinatorial result, what paradoxically makes it even
stronger1 [312], [316].

It is important to make a distinction between the probability of a given
realization and the probability of observing a certain (probability) distribu-
tion. It’s often stated that all realizations of a system are equally possible, but
we observe only the regular or disordered ones because there is much more

1 Perhaps that’s why Arthur S. Eddington wrote: „The law that entropy always increases
holds, I think, the supreme position among the laws of Nature. If someone points out to you that your
pet theory of the universe is in disagreement with Maxwell’s equations – then so much the worse for
Maxwell’s equations. If it is found to be contradicted by observation – well, these experimentalists do
bungle things sometimes. But if your theory is found to be against the Second Law of Thermodynam-
ics I can give you no hope; there is nothing for it to collapse in deepest humiliation” [315].
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of them (e.g. homogeneous distribution of gas particles vs. high concentra-
tion in one place). This is basically assuming a priori the Laplace indifference
principle and uniform distribution. On the other hand, the maximal entropy
principle, supported by the concentration theorem, states that the outcome
very close to the uniform distribution (in absence of constraints) is so over-
whelmingly more probable that it’s unlikely to observe any other. In a way,
the MaxEnt principle is en extension of the principle of insufficient reason,
justifying choice of the uniform distribution and showing how to incorpo-
rate constraints in this reasoning.

Having agreed on this logical framework of statistical inference, the next
step is finding the probability distribution maximizing the formula 5.1. This
can be done using Lagrange multipliers. For the full derivation see Ap-
pendix A. Assuming a constraint fixing the value 〈H(x)〉 we will obtain a
probability distribution:

p(xi) =
1
Z

e−βH(xi), (5.3)

where Z = ∑n
i=1 e−βH(xi) is a partition function playing a role of normal-

ization factor. Function H(xi) is called Hamiltonian and represents energy
of the system in physics or likeliness of particular realizations xi in general.
Having the probability distribution gives a complete stochastic description
of the system and allows for prediction of quantities not observed directly.
It represents the best estimates that could have been made on the basis of
the available information. An example of application of this approach is the
Exponential Random Graphs Model (see Section 2.2.2).

The distribution obtained by the MaxEnt principle is exponential in Hamil-
tonian. However, it doesn’t always have to be of this form depending on
the imposed constraints [317]. The universality of this approach can be ob-
served in the range of its application. MaxEnt has been used not only in
originally associated fields, like statistical mechanics, information theory, or
statistical inference [62], [314], but also biology, economics and social sciences
[85], [318].

Despite the generality and unquestionable versatility of the Boltzmann-
Gibbs-Shannon entropy researchers have tried to extend it in order to obtain
different probability distribution, for instance a power law. MaxEnt principle
is usually maintained in such approaches, however, with different form of
the entropy. Popular examples are Rényi entropy [319] and Tsallis entropy
[320], both recovering BGS entropy as a special case. The latter one can be
even further generalized for a class of statistics, called superstatistics [321],
[322]. Nevertheless, the only entropy satisfying the additivity axiom is BGS.
Proposing any other functional form than in Equation 5.1 we must give up
on this condition. In fact, once we agree on violating additivity axiom we can
derive a whole class of entropies with different asymptotic behaviors [323],
[324]. Still, only BGS entropy has such strong justification. Any other form of
entropy will poses a bias not enforced by the data and should be used with
caution [325], [326].
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5.2 The Ising model

One of the most famous examples of the maximum entropy approach is the
Ising model [14], [15]. It’s a theoretical model inspired by the ferromagnetic
phenomena. At the same time it’s very useful in analysis of phase transitions
and critical phenomena. Additionally, it surprisingly well represents some
physical systems in a qualitative manner, and with certain extensions even
quantitative. The Ising model is a binary-state equilibrium model. It consists
of a set of spins {si} placed on a certain network – initially it was a one-
dimensional square lattice (a chain of spins). Each of the spins can take one
of two values si ∈ {−1,+1}. Two adjacent spins si and sj interact with each
other with a strength Jij promoting parallel alignment (Jij > 0, ferromagnetic
interactions), or anti-parallel alignment (Jij < 0, anti-ferromagnetic interac-
tions). Additionally, there might be an external field hi interacting with every
spin in not necessarily homogeneous manner. The model is then defined by
its Hamiltonian, describing the energy of the system, or the preference to-
wards particular configurations:

H({si}) = −∑
〈i,j〉

Jij sisj −∑
i

hisi, (5.4)

where 〈i, j〉 stands for summation over nearest neighbors.
This is somewhat inverse approach than the one described in the previ-

ous section. We are not given constraints upon which we construct proba-
bility distribution, by finding the proper Hamiltonian including those con-
straints. Here we first postulate the Hamiltonian arguing that it’s form re-
sembles the phenomena we are willing to describe, that it’s particular terms
are corresponding to the actual system’s behavior. Then, we take the Boltz-
mann statistics as the optimal one, based on the maximal entropy principle:

p({si}) =
1
Z

e−βH({si}), (5.5)

where Z = ∑{si} e−βH({si}) is a partition function and β is a Lagrange multi-
plier.

This approach can be understood as setting a "flexible" constraint on the
total energy E = H({si}) given by the Hamiltonian. However, instead of
finding a proper value of the Lagrange multiplier β corresponding to the
assumed energy, the energy is adjusted to a fixed value of β. In this way, by
varying the value of the Lagrange multiplier we can cover a whole range of
energies. Therefore, we can study the system under different circumstances.
In this approach the Lagrange multiplier has a physical interpretation. As
it accounts for the amount of fluctuations in the system, it can be associated
with the inverse temperature β = 1/T.

The most famous interpretation of the Ising model, being as well the orig-
inal one [327], is a ferromagnetic material. The lattice represents a crystal
structure and states of the nodes represent a quantum intrinsic angular mo-
mentum carried by electrons, i.e. the spin. That’s actually why we call states
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si in the Ising model spins. Jij stands then for the spin-spin interactions and
hi for an external magnetic field. Nonetheless, the definition of the model
is universal and it was used in description of other systems, like spin glass,
alloys, lattice gas, neural networks or even bacterial vortexes [328]–[330]. It
is worth to note that the voter model (Chapter 3) can be regarded as a non-
equilibrium algorithmic version of the Ising model.

The Hamiltonian 5.4 takes the simplest form under the assumption of
isotropic and homogeneous space:

H({si}) = −J ∑
〈i,j〉

sisj − h ∑
i

si, (5.6)

where additionally the external field is often excluded h = 0 and J = 1.
There is a fistful of questions to ask about a system described by such Hamil-
tonian, perhaps the main one being: how does a typical configuration look
like? Of course, the configuration of spins {si} may depend on the parame-
ters choice, therefore we can also wonder how does it depend on the temper-
ature T. Originally the model was analyzed only on a one-dimensional static
square lattice (a chain of spins) and only one phase was found [15], [331].
For any temperature T > 0 the system does not display any order and spins
do not prefer any direction. Therefore, there is no phase transition in finite
temperatures.

Although initially discarded due to uninteresting results, the Ising model
came back to favors after discovery of an order-disorder phase transition
[327]. First a proof of existence of an ordered phase was given by Rudolf
Peierls [332] and later a full analytical solution was provided by Lars Onsager
[333]. It was shown that for a square lattice (as for any higher dimension) a
critical temperature Tc exists, below which the system orders with most of
the spins pointing the same direction and magnetization |m| = |∑i si/N| ≈ 1
[334]. For two dimensions and isotropic homogeneous space the critical tem-
perature reads Tc = 2J/ln(1 +

√
2). In Figure 5.1 we can observe a time

evolution of the system for the ferromagnetic phase in a square lattice of a
linear size L = 200 (L2 = N).

Remarkably, the definition of the model is fully symmetrical (for the Hamil-
tonian 5.6), yet the outcome is not. This phenomenon is referred to as spon-
taneous symmetry breaking. Both directions +1 and −1 are equally likely, but
the system realises one of them.

A convenient quantity to use is a logarithm of the partition function called
free energy2 F = −T ln Z and the free energy per site F = limN→∞ F/N.
Then, the zero-field magnetisation is given by m = ∂F

∂h |h=0 [309], what for a
static square lattice results in [333]:

m =
(

1− sinh−4(2βJ)
)1/8

. (5.7)

Other quantities of interest can be also computed from the free energy, for

2The Boltzmann constant kB is assumed to be unity in these calculations.
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a) t = 0 b) t = 1

c) t = 5 d) t = 30

e) t = 100 f) t = 1000

Figure 5.1: Snapshots of the lattice during evolution of the Ising
model (Hamiltonian 5.6) from a random configuration at T <
Tc. Simulation was ran for L =

√
N = 200, J = 1, h = 0, and

T = 0.4. Time is given in a number of MC time steps. States +1
and −1 are indicated by different colors. Note the emergence

of macroscopic domains.
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Figure 5.2: Absolute magnetization |m|, energy E, specific heat
C, and magnetic susceptibility χ as a function of the tempera-
ture T = 1/β, for L = 25 (N = 625), J = 1, h = 0, averaged
over 104 MC time steps. Analytical solution (Equation 5.7) for
the magnetization is indicated by a solid black line. Critical
temperature Tc is marked with a dashed red line in every panel.
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Figure 5.3: Absolute magnetization |m| and energy E as a func-
tion of the temperature T = 1/β, for N = 100, M = 300,
J = 1, h = 0, averaged over 105 MC time steps. Results for
the model from [340] with not static network defined by the

Hamiltonian 5.8

instance the specific heat given by C = −T ∂2F
∂T2 and the magnetic suscep-

tibility χ = ∂2F
∂h2 |h=0. All of them are plotted vs temperature in Figure 5.2.

The data in the figure was obtained from a Monte Carlo simulations of the
Ising model using Metropolis algorithm [335]. As can be noted, the system
diplays special behavior at the critical temperature. Described quantities ex-
hibit power-law scaling close to the point Tc. If we define reduced temper-
ature as τ = (T − Tc)/Tc, we can define critical exponents from relations3:
m ∼ |τ|β for τ < 0, C ∼ |τ|α, and χ ∼ |τ|γ (note that the exponents may
differ depending on the sign of τ, i.e. the side from which the critical point is
approached). Additionally, the system possesses long-term correlations – the
correlation length also scales as a power law. However, a complete descrip-
tion of critical phenomena goes beyond the scope of this thesis. More on this
topic can be found in [336].

Since the Ising model uses the general framework of maximal entropy
principle and has a lot of spare room for parameters adjustment, it has been
extended into different more complex typologies. In many social, economi-
cal, financial, biological, ecological and technical systems a square lattice is
rare, if ever observed. However, the equilibrium approach with a binary state
and nearest neighbor interactions can be applied more widely. For that rea-
son the Ising model was studied on complex networks, like small-world and
scale-free [337]–[339]. In the small-world networks generated from square
lattice of two and three dimensions the transition depends on the rewiring
probability p as a power law, approaching mean-field description in the ther-
modynamic limit. In Barabási-Albert networks, as expected, hubs have a cru-
cial role being able to force the system into a particular ferromagnetic state.

Finally and most importantly in the context of this thesis, the Ising model

3 Unfortunately, it’s the usual convention to use the same latter for the critical exponent
describing the scaling behavior of magnetization as for the inverse temperature.
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was studied on coevolving networks [340] (it is worth mentioning that the
Potts model was considered with a similar approach [341]). The Hamilto-
nian of such model depends on the adjacency matrix as well as on the spin
configuration:

H({aij}, {si}) = −∑
i<j

aijsisj, (5.8)

where {aij} represents all possible configurations of the network with a fixed
number of nodes N and edges M. Links can be rewired, adding a new
possibility of interaction between spins. However, the dependence on the
topology is weak, since no particular topological structure is preferred. The
transition in this model is presented in Figure 5.3. The ferromagnetic phase
displays dependence on the average degree in such model. But the topol-
ogy of the system was not in the main focus of the article, since it produces
only ER graphs. Additionally, this approach should be perhaps called semi-
coevolution, because the feedback loop between the topology of the network
and spins is weak, although both can change. For instance, in low tempera-
tures the possibility of link rewiring can not change the outcome of the model
– all nodes are in the same state, therefore it doesn’t matter which node is
connected to which one. A generalization of this model, incorporating topo-
logical traits, was developed in this thesis and is described in Section 5.4.

5.3 Statistical mechanics of network’s topology

Maximal entropy approach was applied also in networks. The first example
was already discussed in Section 2.2.2. Exponential Random Graphs Model
(ERGM) is a direct application of the MaxEnt principle – first a constraint
(or constraints) is chosen, then a probability distribution over an ensemble
of graphs is constructed. Since the Boltzmann distribution in respect to the
energy is a general result, to find the particular form of the distribution one
must calculate values of Lagrange multipliers satisfying the constraint. It is
therefore a single-point distribution.

In the Ising model the approach is reversed in some sense. The Hamilto-
nian is of course constructed to depend on quantities of interest, but there is
no fixed constraint. For example, magnetization could be fixed and then, as
in the ERGM, temperature adjusted to satisfy the choice of the magnetization.
But this is not the usual method of analyzing the Ising model. Instead, the
Lagrange multiplier, which means temperature in this case, is varied to see
what outcomes it will produce. This direction of analysis is not only simpler
computationally, it also covers a whole range of parameters.

A concept similar to the one of the Ising model, and reverse to that from
the ERGM, has been applied in description of networks without any states of
the nodes. As only the topological traits are taken into account it can be seen
as statistical mechanics of network’s topology. Usually, this kind of models
consider a set of networks, which can be represented by all possible config-
urations {aij} of the adjacency matrix, with a fixed number of nodes N and
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edges M. In general, the partition function is given by [342]:

Z = ∏
i<j

1

∑
aij=0

δ(M− TrA2/2)e−βH({aij}), (5.9)

where A is an adjacency matrix, therefore TrA2/2 gives the actual number of
edges in the network.

The main point of this methodology is choosing a particular form of the
Hamiltonian reflecting properties of graphs or microscopic interactions, as
those between spins in the Ising model. Several possibilities have been stud-
ied in the literature. On one hand, Hamiltonians dependent on global fea-
tures of networks were proposed [343], for example:

H({aij}) = f (S), (5.10)

where f (S) is a function of the largest network component to be determined.
Also an extension to all the components of the network has been investigated:
H({aij}) = ∑i f (Si), where Si is the size of the i-th component. In this case
a fragmentation transition was reported between an ordered phase with one
network component and disordered phase with many small components.

On the other hand, Hamiltonians dependent on local topological features,
i.e. features of individual nodes, were studied. The main topological trait of
a node is it’s degree, therefore the postulated Hamiltonian took the following
form [343]–[345]:

H({aij}) =
N

∑
i=1

f (ki). (5.11)

Among analyzed functions were f (ki) = −k2
i and f (ki) = −ki ln ki. In this

way a preference of high (or low) degree can be incorporated in the model.
For Hamiltonians of the form 5.11 scale-free networks were reported, as well
as star configurations and random graphs.

Finally, correlations were taken into account [342]. Since many networks
are driven by interaction between neighbors the proposed general Hamilto-
nian was:

H({aij}) = ∑
i<j

aijg(ki, k j). (5.12)

An example of the function is g(ki, k j) = δki,1δkj,1 forcing the network to dis-
integrate into individual edges, or g(ki, k j) = δki,kj enhancing assortativity
mixing. Long distance correlations were considered as well by analyzing a
Hamiltonian dependent on path lengths:

H({aij}) = ∑
i<j

dij, (5.13)

where dij is the shortest path length between nodes i and j. These models, as
expected, produced much higher correlations between degrees of the nodes.
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Other aspects were also studied. Worth mentioning is an attempt to ob-
tain a systematic theory of clustering in networks [80]. However, equilib-
rium description doesn’t have to be always appropriate. Many real-world
networked systems are far from equilibrium or are literally defined by the
dynamical evolution (like in the models described in Chapters 3 and 4). Nev-
ertheless, studying equilibrium models, especially originating from the max-
imal entropy principle, is useful for at least two reasons. Firstly, this ap-
proach still can be fruitful in many cases. Even if not fully explaining the
process which led to a particular network configuration, it can well charac-
terize the configuration and give clues to what other possibilities one could
expect. Secondly, it is an interesting theoretical framework worth exploring.

5.4 Coevolution of spins and topology

We have already seen applications of the maximum entropy principle in spin
models (Section 5.2), as well as network models (Section 5.3). A natural ex-
tension of previous studies is to apply the same methodology in a model
with both: distinguishable states of the nodes and a variable topology, evolv-
ing together. That step is taken in this thesis, to my best knowledge, for the
first time [346]. The following section contains original results of a model
developed in the thesis.

As mentioned before, a semi-coevolving model of spins placed on a net-
work without a fixed structure has been already studied [340]. It is disputable
whether a network in an equilibrium model can be called coevolving. To talk
about coevolution there should be evolution (in time) in the first place, while
equilibrium models don’t say anything about the system’s evolution, solely
about the equilibrium state. Of course, some kind of evolution is often as-
sumed for the purpose of performing numerical simulations, for instance the
Metropolis-Hastings algorithm (or the Glauber algorithm) in the Ising model
[347], [348]. However, the rules of such evolution are not a part of the model
itself and are tailored in order to satisfy the detailed balance principle. There-
fore, all that matters is the equilibrium state reached after the thermalization,
not how it was reached, since the choice of the algorithm may be arbitrary.
Nevertheless, the most important feature of coevolving networks is the feed-
back between the topology and states of the nodes, and it can be obtained by
using a proper Hamiltonian of a general form:

H({aij}, {si}) = ∑
i<j

aij f (ki, k j, si, sj) + ∑
i

g(ki, si). (5.14)

With the presence of spins and topological traits of the nodes at the same
time the feedback can be achieved in a sense of the equilibrium state of the
network’s topology influencing the equilibrium state of the spins, and vice
versa. In this spirit, the Hamiltonian 5.14 represents equilibrium models of
coevolving networks or statistical mechanics of coevolving networks.
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Having a Hamiltonian we define the partition function as:

Z = ∑
{aij},{si}

e−βH({aij},{si}), (5.15)

where {aij} represents all possible configurations of the network with a fixed
number of nodes N and edges M. From the partition function one can obtain
quantities of interest. For instance, the energy E ≡ 〈H〉 which is the average
value of the Hamiltonian is given by:

E = − 1
Z

∂Z
∂β

= −∂ ln Z
∂β

, (5.16)

what is straightforward to prove by performing the differentiation. The re-
lation between average values and derivatives of the partition function is
derived in Appendix A.

A particular form of the Hamiltonian studied here can be written as [346]:

H({aij}, {si}) = −∑
i<j

aij

(
kik j

α

)φ

sisj −∑
i

kγ
i − h ∑

i
si, (5.17)

where φ and γ are the main model parameters, α is a normalization of the in-
teraction term and h is the external field interacting with spins. This simple
Hamiltonian allows to continuously switch from complex topological inter-
actions to the classical Ising model by tuning the parameters φ and γ. The
weight of interaction φ, in the Ising model framework, can be treated as a
non-homogeneous weight Jij assigned to an edge (i, j). A multiplication of
degrees is one of the simplest interaction expressions involving topological
traits. Moreover, Jij =

(
kik j/α

)φ is consistent with real-world weighted net-
works characteristics, as the weight can depend exactly as a power law on
the degrees product [42]. The normalization term α is added to make the in-
teraction and the external topological field effects comparable. Additionally,
it changes scaling behavior as we will see. The simplest choice is obviously
α = 1, however to be able to compare effects for φ = 1 and γ = 2 the best
choice is α = 〈k〉 = 2M/N, which sets both sums in the same order of mag-
nitude. In some cases it is more convenient to describe the network’s density
by the connectivity c = M/N = 〈k〉/2, instead of the average degree or the
number of edges. The second sum in the Hamiltonian can be seen as an ex-
ternal field γ interacting with topological traits of the nodes, i.e. the degree.
It introduces a preference for high or low degree in the system.

Finding exact solutions of the model in a form of average values for equi-
librium state is a difficult task. Therefore, in addition to the analytical ap-
proach it is worth exploring it by means of numerical simulations. It is, how-
ever, not obvious how to perform such simulations. In the Ising model the
most common approach is a Monte Carlo simulation with the Metropolis
algorithm [347], [348], which satisfies the detailed balance condition. But
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Figure 5.4: Absolute magnetization |m| and energy E as a func-
tion of temperature T for the Hamiltonian 5.18, for N = 100,
M = 300, averaged over 105 MC time steps. Results for differ-
ent probabilities r of edge rewiring are represented by different

colors.

in the standard Ising model only spins can change. Here we have an ad-
ditional degree of freedom associated with the possibility of realizing any
topology of the network. Hence, the algorithm of a simulation must include
edge rewiring to enable covering the whole space of possible configurations.
The question is how to perform the rewiring in practice.

In every time step there has to be a possibility for both – a spin update and
an edge update. The update of a spin means changing the spin of a randomly
chosen node to the opposite one. The update of an edge means rewiring a
randomly chosen link, what can be done by randomly changing either one
or two attachment points of it, i.e. only one side or the whole link can be
rewired. After any update the energy, given by the value of the Hamiltonian,
is compered between new and old configurations. If the energy change is
∆E ≤ 0 the new configuration is accepted. Otherwise, for ∆E > 0 the new
configuration is accepted only with a probability e−β∆E, where β = 1/T is
the inverse temperature. In practice, it doesn’t matter which type of rewiring
is performed, if both cover the whole space of possible configurations [64],
i.e. we can obtain any possible topology. However, rewiring the whole edge
leads to a shorter thermalization time, therefore it is used in this work for
computational efficiency reasons.

The next issue is choosing a proper ratio of edge update to spin update
frequency. Intuitively, it should not matter. If both are performed at any finite
ratio, any configuration of spins and topology can be obtained, perhaps after
longer time. Nevertheless, it is an important aspect and in order to have
certainty that the algorithm will reflect the equilibrium state given by the
Hamiltonian it should be investigated. We shall compare results generated
for γ = 0, φ = 0, and h = 0, what gives a Hamiltonian consistent with the
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one from Equation 5.8 [340]:

H({aij}, {si}) = −∑
i<j

aijsisj − N, (5.18)

where N is an additional factor coming from the second sum in 5.17. How-
ever, the equilibrium state is invariant under additive constants in the Hamil-
tonian, because they do not change the energy difference ∆E between config-
urations. Similarly, γ = 1 would result in the second sum in 5.17 giving a
constant factor equal 2M instead of N, therefore this parameter has two neu-
tral values. The model described by the Hamiltonian 5.18 is simulated with a
probability r of edge rewiring in every time step and 1− r of spin update. If
r = 0 the network is static and we obtain the Ising model on a random graph
(every simulation is initialized with a random network and random spins).
On the other hand, for r = 1 there is only edge rewiring, hence the magne-
tization can not change. The results are shown in Figure 5.4. As we can see,
the outcome is the same for all ratios except r = 1. Additionally, for r = 0
the topology can not evolve, therefore this value also has to be excluded in
analysis of the complex Hamiltonian 5.17. However, the thermalization time
differs significantly between different values of r, raising abruptly close to
the boundary values. For this reason in the final algorithm edge rewiring is
performed as frequently as spin update – both once in every time step. In
equilibrium models it is especially important to specify the algorithm used
for simulations to enable repeating and verification of obtained results (in
algorithmic models the algorithm is the definition of the model). Therefore,
the algorithm used to simulate models described in this section is provided
in Appendix C written in a pseudo-code.

Figure 5.4 leads to yet another conclusion. The magnetization and energy
are perfectly the same for r = 0 as for 0 < r < 1. In other words, the
freedom to realize any topology (with constant N and M) does not change the
outcome of the Ising model on a static random network, if topological traits
are not present in the Hamiltonian. It doesn’t even change the topology of the
network, as in both cases it is a random graph. This is why such approach
was referred to as semi-coevolution previously – topology and spins evolve
on the same network, but without a strong feedback loop between them. The
picture, however, changes dramatically after including the topological effects
of the Hamiltonian 5.17. Not only the structure of the network can differ, but
also the magnetization, since it is coupled with the topology through the
interaction term.

5.4.1 Topological field and spins

In order to better understand the behavior of the system the topological ef-
fects corresponding to parameters γ and φ are studied separately. In this
section we will focus on the topological external field interacting with the
degree of the nodes. After setting the interaction parameter to the neutral
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value φ = 0, and removing the magnetic field h = 0 for the sake of simplic-
ity, the resulting Hamiltonian is:

H({aij}, {si}) = −∑
i<j

aijsisj −∑
i

kγ
i . (5.19)

In Figure 5.5 we can see the behavior of typical order parameters4 at dif-
ferent temperatures for γ = 2, corresponding to a preference of high degree.
We can clearly observe a transition in every one of them, however the relative
change in the number of components nS and the size of the largest compo-
nent S is marginal. The density of active links ρ is anti-correlated with the
absolute magnetization. Therefore we will focus on three parameters which
can comprehensively describe the system: the absolute magnetization |m|,
the energy E, and the largest degree kmax.

Magnetization exhibits a continuous transition from an ordered ferro-
magnetic phase (|m| = 1) to a disordered paramagnetic phase (|m| = 0),
except a small jump at T ≈ 15. Energy displays exceptional behavior – it
has four levels of approximately constant values and at certain temperatures
jumps between them. First of these discontinuous changes takes place at the
same temperature as the small jump of the magnetization. The largest degree
also discontinuously changes from a maximal possible value (kmax = 1) for
low temperatures to a small value corresponding to a random graph. The
jump of kmax overlaps with the last jump of the energy.

The discontinuous jumps visible in the order parameters can be explained
by assuming that star configurations are formed – hubs with a degree compa-
rable to the size of the whole network emerge. The number of edges M = 300
being three times bigger than the number of nodes N = 100 allows for at
most 3 stars to emerge. Consequently, 4 different levels of energy in Fig-
ure 5.5 correspond to, going from low to high temperatures, 3 stars, 2 stars,
1 star, and no hubs. This description is consistent with observed values of
the largest degree – it drops from maximal possible value at the last jump of
energy. Three possible star configurations are presented in Figure 5.6. The
snapshots of the network state show how the links from destroyed stars are
distributed among the rest of the nodes. Note also, that the magnetization
is influenced by the disappearance of of the first star when decreasing T. It
exhibits a small drop, what is in accordance with results of the Ising model
on scale-free networks, where it was proved that hubs can drive the ferro-
magnetic state of the system [338].

Finally, the hypothesis of star formation is confirmed by the behavior of
the system for a changing connectivity. In Figure 5.7 we have three main
order parameters plotted for the same network size N = 100 and different
numbers of edges M = 100, 300, and 600. For M = 100 only one jump
in the energy is observed, for M = 300 three jumps, and for M = 600 six
jumps, i.e. the number of jumps in the energy corresponds to the maximal
number of stars possible to obtain in the network. Additionally, the drop

4Note that, as everywhere in this thesis, order parameters except the energy are normal-
ized to fit the range [0, 1]. The energy is given in arbitrary units.
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Figure 5.5: Absolute magnetization |m|, energy E, interface
density ρ, the largest component S, number of components nS,
and the largest degree kmax as a function of temperature T for
the Hamiltonian 5.19, for γ = 2, N = 100, M = 300, averaged
over 105 MC time steps. Analytical approximations for the en-
ergy are given by Equations 5.20 (blue dashed line), 5.21 (blue
solid line), 5.26 (black dashed line), 5.29 (black solid line). Ap-
proximation of the largest degree (solid black line) comes from

Equation 5.31.
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a) T = 0.5 b) T = 18 c) T = 20

Figure 5.6: Network configurations for different temperatures
with γ = 2, N = 100, M = 300. Red color indicates spin −1,
green +1. Note that the number of hubs in the middle changes

from a) three, through b) two, to c) one.
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Figure 5.7: Absolute magnetization |m|, energy E, and the
largest degree kmax as a function of temperature T, for γ = 2,
N = 100, averaged over 105 MC time steps. Number of edges
M is indicated by marker and color: M = 100 squares (brightest
color), M = 300 circles, M = 600 triangles (darkest color). An-
alytical approximation for the energy is given by Equation 5.29
and for the largest degree by Equation 5.31. Solid line repre-

sents M = 100, dashed M = 300, dotted M = 600.
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in the largest degree always overlaps with the last jump of the energy. In
general, connectivity has a significant influence on the model’s outcome.

Having the empirical knowledge, we can construct analytical approxima-
tion. Starting from the simplest task, we shall approximate the energy level
for high temperatures. The magnetization is zero for T → ∞, hence the first
sum in the Hamiltonian 5.19 does not provide any contribution to the en-
ergy. There is the same number of connections between different spins as
between identical ones (it can be also seen looking at ρ in Figure 5.5). There-
fore, one must find the contribution from the second sum only. In the most
naive mean-field approach we can assume that every node has the same de-
gree equal to the average degree in the network 〈k〉 = 2M/N. In such case
we immediately find the formula for the energy:

E = N〈k〉γ. (5.20)

This result is represented by the blue dashed line in Figure 5.5. It slightly
overestimates the energy level in T → ∞. To improve it we should take
into account the real degree distribution P(k), which for random graphs is
binomial or Poissonian in the limit of big network. The number of nodes
with a degree k is equal NP(k), and after summing over all possible degrees
we obtain:

E = −
N−1

∑
k=0

NP(k)kγ = −
N−1

∑
k=0

N
〈k〉ke−〈k〉

k!
kγ, (5.21)

which is represented by the blue solid line in Figure 5.5. It slightly better
predicts the energy level for high temperatures, however the main challenge
is to explain the behavior of the system for low temperatures.

The next step is to compute the partition function Z (or approximate it),
because then we would obtain the probability distribution of the ensem-
ble and we could calculate average value of any quantity of interest. For
instance, energy can be calculated from the relation 5.16. Analyzing the
Hamiltonian 5.19 we can conclude that the biggest contribution to it’s value
comes from the hubs placed in the center of stars and having degree equal
km = N − 1. Neglecting other contributions we can approximate the Hamil-
tonian by:

H ≈ −nhkγ
m, (5.22)

where nh is the number of hubs with the maximum possible degree km. Note
that nh ≤ bcc = bM/Nc. In order to find the partition function, we must
calculate all possible configurations corresponding to a given energy value.
However, the energy level is fully determined by the number of stars nh
in this approach, so we can find all possible configurations for every given
value of nh. The spin configuration is easy to get – assuming it doesn’t de-
pend on the number of hubs we just have 2N different possible configura-
tions. The nodes to be placed in the center of stars can be chosen in (N

nh
)

different ways. Every hub has a determined degree km, being connected to
every other node. Therefore, the last element differentiating between config-
urations in the distribution of remaining edges between the rest of the nodes.
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There is N − nh of them. To calculate the remaining links (those not con-
nected to hubs) it’s sufficient to notice that the first hub takes km edges, the
second one km − 1, since one edge is shared with the first hub, and so on.
Finally, nh hubs will take L(nh) edges:

L(nh) = km + km − 1 + ... + km − (nh − 1) = nh
km + km − (nh − 1)

2

= nh
2km + 1− nh

2
= nh

2N − 1− nh
2

.
(5.23)

Therefore, there is M− L(nh) free edges to be placed among N− nh vertices.
The number of pairs among those vertices, which is the number of possible
placements for the edges, is equal (N − nh)(N − nh − 1)/2. Consequently,
there are R(nh) possible ways of placing remaining edges:

R(nh) =

(
(N − nh)(N − nh − 1)/2

M− L(nh)

)
. (5.24)

With the exception of nh = bcc, this approximation overestimates the num-
ber of configurations, due to including a possibility of existence of another
hub except those related to nh stars [45]. However, there is much fewer such
heterogeneous configurations than the random disordered ones, and there-
fore the overestimation is negligible. Collecting all above factors together,
the Hamiltonian 5.22 leads to a following partition function:

Z = 2N
bcc

∑
nh=0

(
N
nh

)
R(nh)eβnhkγ

m , (5.25)

and using Equation 5.16 we immediately obtain a formula for the average
energy of the system:

E = − 1
Z

∂Z
∂β

= −2N

Z

bcc

∑
nh=0

(
N
nh

)
A(nh)nhkγ

meβnhkγ
m

= −2N

Z
(N − 1)γ

bcc

∑
nh=0

(
N
nh

)
A(nh)nheβnh(N−1)γ

.

(5.26)

The energy given by 5.26 is presented in Figure 5.5 with a black dashed
line. It captures stairs-like behavior of the energy, but predicts lower than
observed absolute values of the energy for each level. Discrepancy increases
with temperature and for T & 35, when there are no hubs, the absolute level
of E is significantly underestimated. This is because in that regime there is no
contribution into the Hamiltonian 5.22, as it doesn’t take into account nodes
with a degree smaller than N − 1.

To improve the analytical approximation we should include the contribu-
tion from nodes with a small degree as well. A simple way to achieve it is by
assuming that all nodes except the hubs have the same degree equal ka and
taking into account their interaction with the topological field. In this way
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we obtain a new Hamiltonian:

H ≈ −nhkγ
m − (N − nh)k

γ
a , (5.27)

where ka depends on the number of hubs and ka ≡ ka(nh) = nh +
2(M−L(nh))

N−nh
.

This dependence comes from the fact that every node is connected to every
star and the free edges contribute to the degree of two nodes each. Possible
configurations are the same as in the previous approach, hence we only need
to incorporate the new Hamiltonian 5.27. Doing so we obtain a partition
function:

Z = 2N
bcc

∑
nh=0

(
N
nh

)
R(nh)eβ[nhkγ

m+(N−nh)k
γ
a ], (5.28)

and using Equation 5.16 once again we arrive at a formula for the energy:

E =− 1
Z

∂Z
∂β

= −2N

Z

bcc

∑
nh=0

(
N
nh

)
R(nh)

[
nhkγ

m + (N − nh)k
γ
a
]

eβ[nhkγ
m+(N−nh)k

γ
a ]

=− 2N

Z

bcc

∑
nh=0

(
N
nh

)
R(nh)

[
nh(N − 1)γ + (N − nh)k

γ
a
]

eβ[nh(N−1)γ+(N−nh)k
γ
a ]

=− 2N

Z

[
(N − 1)γ

bcc

∑
nh=0

(
N
nh

)
R(nh)nheβ[nh(N−1)γ+(N−nh)k

γ
a ]

+
bcc

∑
nh=0

(
N
nh

)
R(nh)(N − nh)k

γ
a eβ[nh(N−1)γ+(N−nh)k

γ
a ]

]
.

(5.29)

This result is plotted with a black solid line in Figure 5.5. It now not only
captures the jumps of the energy, but also properly predicts energy levels for
all temperatures, with a small shift in T in relation to the simulation results.
From Figure 5.7 we can see that the approximation works for different values
of the average degree and shift becomes smaller with growing 〈k〉.

It is possible to approximate behavior of the largest degree in the same
manner. When nh > 0 there is at least one star, thus the maximal degree is
equal N − 1. When nh = 0 there is no star. The simulation suggests that the
structure of network in this regime is random. Therefore, we can approxi-
mate the degree distribution to be Poissonian. Dependence of the maximal
degree k̄(nh) in the network on the number of stars can be summarized by:

k̄(nh) =

{
N − 1 for nh > 0
F−1

Poiss,λ(1−
1
N ) for nh = 0 , (5.30)

where F−1
Poiss,λ is an inverse of the Poisson cumulative distribution function

with a parameter λ = 〈k〉. Together with the partition function 5.28 it yields
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Figure 5.8: Absolute magnetization |m| and the largest de-
gree kmax as a function of temperature T and parameter γ, for
N = 1000 and M = 3000, averaged over 5 · 105 MC time steps.
Analytical approximation for the phase transition comes from
Equation 5.31 (orange dashed line). Phase transitions can be

observed in both order parameters.

a formula for the average maximum degree:

〈kmax〉 =
2N

Z

bcc

∑
nh=0

(
N
nh

)
R(nh)k̄(nh)eβ[nhkγ

m+(N−nh)k
γ
a ]

=
2N

Z

{
R(0)F−1

Poiss,λ

(
1− 1

N

)
eβN(2M/N)γ

+ (N − 1)
bcc

∑
nh=1

(
N
nh

)
R(nh)eβ[nh(N−1)γ+(N−nh)k

γ
a ]

}
.

(5.31)

This approximation was presented in Figures 5.5 and 5.7. It properly cap-
tures the discontinuous behavior of the largest degree. The approximation
becomes more accurate with increasing density of the network.

Finally, we can ask a question how does the system behave under differ-
ent values of γ. This aspect is studied numerically and results are presented
in Figure 5.8. In this two-dimensional phase diagram we can distinguish
four phases. They are described by: (i) full magnetization with star config-
urations, (ii) zero magnetization with star configurations, (iii) full magneti-
zation with a random network, and (iv) zero magnetization with a random
network. Note, that there are transitions of the magnetization without any
influence from the topology, but also transitions driven by the change of the
topology. It underlines the importance of the coevolution, i.e. the feedback
loop between the topology and state of the nodes, which can not be obtained
without presence of both in the Hamiltonian.

An important aspect of the model is it’s scaling behavior with varying
network sizes, since we want to know what to expect in large real-world
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Figure 5.9: Absolute magnetization |m|, energy E, and the
largest degree kmax as a function of temperature T, for γ = 1.6,
c = M/N = 3, averaged over 106 MC time steps. Size of the
networks N is indicated by marker and color: N = 500 circles
(brightest color), N = 750 squares, N = 1000 triangles (dark-
est color). Analytical approximation for the energy is given by
Equation 5.29 and for the largest degree by Equation 5.31. Solid

line represents N = 500, dashed N = 750, dotted N = 1000.

systems. The scaling is presented in Figure 5.9. Interestingly, order param-
eters remain at the same positions indicating a discontinuous phase transi-
tion in kmax and a continuous phase transition in m in the thermodynamic
limit. Unfortunately, the analytical approximation does not capture this be-
havior properly. It can be caused by either the approximation simply being
too rough, or a hysteresis in the system. It is possible that starting simula-
tions from a random configuration we end up on one side of the hysteresis
and the analytical approximation describes the other side. It is a phenomena
worth exploring in future extensions of the work.

5.4.2 Topological correlations and spins

In this section we will focus on the topological interactions between nodes
fused with the interaction between the spins. After setting the topological
field parameter to the neutral value γ = 0 (or γ = 1), and removing the
magnetic field h = 0, the resulting Hamiltonian is:

H({aij}, {si}) = −∑
i<j

aij

(
kik j

α

)φ

sisj. (5.32)

To be precise, for neutral values of γ in the Hamiltonian 5.17 we obtain ad-
ditional constant. However, a constant value added to a Hamiltonian does
not change the outcome of the model in any way (except shifting the energy
values by the said constant), therefore it is omitted in 5.32 for the sake of
simplicity.

In Figure 5.10 we can see the behavior of order parameters at different
temperatures for the Hamiltonian 5.32 without normalization, i.e. α = 1.
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A phase transition can be observed in every one of them. Note that in ab-
sence of normalization the temperature range necessary to observe the tran-
sitions is of order of magnitude greater than for the topological field (Hamil-
tonian 5.19). Here, the magnetization has two transitions – from a stable
value of approximately 0.3 for low temperatures it abruptly increases to 0.7,
and then a continuous transition towards |m| = 0 follows. The abrupt change
can be also observed in the energy, as well as nS and S. A very interesting
behavior is visible in the plot of the largest degree kmax. From a stable value
around 0.25 it changes into small values corresponding to a random graph,
however at the transition point it raises and takes the maximal value.

Configuration of the network at low temperatures can be deduced form
Figure 5.10. From the small size of the largest component S and high number
of components nS we should expect a shattered network. The largest de-
gree kmax ≈ 0.25 indicates a relatively big main component and many very
small ones. Magnetization is low and the density of active links is ρ ≈ 0.
It implies that the main component must be homogeneous containing spins
of the same orientation. These predictions are confirmed when looking at
snapshots of the network in the equilibrium state in Figure 5.11. There is
one clique in the network possessing all the links. Its structure is close to
a complete graph. With increasing temperature the clique grows obtaining
more nodes and becoming more sparse to finally become a random graph at
T → ∞. The dense main component displays very strong homogeneity. Sur-
prisingly, at the transition point when the network becomes fully connected
the degree distribution becomes highly heterogeneous, as the value of the
largest degree raises significantly. Behavior of the model is qualitatively the
same for normalization α = 〈k〉, although scaling with the number of edges
is different.

Value of the average degree 〈k〉 has a very strong impact on the system’s
behavior. In Figure 5.12 we can see three main order parameters for different
values of the connectivity. For the same number of edges as nodes magneti-
zation doesn’t raise above approximately 0.2. This is caused by a big number
of lonely separated nodes, since the main component attracting all the links
is very small. Separated nodes can not interact, therefore their spins can
not align. For 〈k〉 = 12, however, magnetization can reach almost the full
ferromagnetic state. Transition in the largest degree is qualitatively similar
across different connectivities, but the maximal obtained value grows with
the number of edges. In other words, bigger hubs are generated for more
dense networks. Notably, the transition point is being shifted towards higher
and higher temperatures when increasing the average degree. To avoid this,
the normalization in the Hamiltonian 5.32 is set to α = 〈k〉. For a constant
value of α it can be extracted from the sum in the Hamiltonian and effectively
rescale the temperature in the equilibrium distribution.

Previous observations provide a starting point in developing an analyt-
ical description of the system. As previously, the method will be based on
approximating the Hamiltonian 5.32, taking into account only the most im-
portant effects. For low temperatures we observe a shattered network with
one component having all the links and many lonely nodes. These nodes,
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Figure 5.10: Absolute magnetization |m|, energy E, interface
density ρ, the largest component S, number of components nS,
and the largest degree kmax as a function of temperature T for
the Hamiltonian 5.32, for φ = 1, α = 1, N = 100, M = 300, av-
eraged over 105 MC time steps. Analytical approximation for
the energy is given by Equation 5.37 and for the largest degree

comes from Equation 5.39 (solid black lines).
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a) T = 1 b) T = 120 c) T = 175

Figure 5.11: Network configurations for different temperatures
with φ = 1, α = 1, N = 100, M = 300. Red color indicates spin
−1, green +1. Note that for low temperatures a very dense

clique is formed, close to a complete subgraph.
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Figure 5.12: Absolute magnetization |m|, energy E, and the
largest degree kmax as a function of temperature T, for φ = 1,
α = 1, N = 100, averaged over 105 MC time steps. Number
of edges M is indicated by marker and color: M = 100 squares
(brightest color), M = 300 circles, M = 600 triangles (dark-
est color). Analytical approximation for the energy is given by
Equation 5.37 and for the largest degree by Equation 5.39. Solid

line represents M = 100, dashed M = 300, dotted M = 600.
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having degree equal 0, do not provide any contribution to the energy. There-
fore, we need to estimate the contribution from the component. In order to
distinguish this component from the topological meaning of the word com-
ponent we shall call it the active component. The active component is a set of
nodes that can obtain links, in contrast to the shattered inactive ones. As-
suming it has a structure of a random graph it can be approximated in a
mean-field spirit, treating all nodes as if they had the same degree ka. Then,
the Hamiltonian 5.32 reduces to:

H ≈ −M
k2φ

a

αφ . (5.33)

The active component contains all edges, so there is M pairs of interacting
nodes in it.

Let na denote the number of nodes the active component contains. Ob-
viously, this number is restricted to na ∈ {dnmine, dnmine+ 1, . . . , N}, where
nmin = (1 +

√
1 + 8M)/2. The minimal value nmin comes from the fact that

all connections must fit in the active component and the limit of compressing
them is a complete graph with na(na− 1)/2 connections. The average degree
in the active component is related to the number of nodes as ka = 2M/na,
what allows to rewrite the Hamiltonian 5.33 in a different form:

H ≈ −22φM2φ+1α−φn−2φ
a , (5.34)

what for α = 〈k〉 would result in H ≈ −2φMφ+1Nφn−2φ
a . The energy of the

system is determined by the number of nodes in the active component na.
To calculate the partition function we also need the number of topological
configurations that can be realized for a given size of the active component.
Links within the active component can be arranged in R(na) ways:

R(na) =

(na(na−1)
2

M

)
. (5.35)

Additionally, we need to take into account all possible assignments of nodes
into the active component, what can be done in (N

na
) ways. We also assume

that the active component is homogeneous inside having only two possible
configuration of spins – all spins positive or all negative. The rest of the spins
can be arranged in 2N−na ways. Putting all these parts together we obtain the
partition function:

Z =
N

∑
na=dnmine

2N−na+1
(

N
na

)
R(na)eβ22φ M2φ+1α−φn−2φ

a . (5.36)
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From Equation 5.16 we calculate the energy:

E = − 1
Z

N

∑
na=dnmine

2N−na+1+2φM2φ+1α−φn−2φ
a

(
N
na

)(na(na−1)
2

M

)
eβ22φ M2φ+1α−φn−2φ

a .

(5.37)
The maximum degree kmax in the network is the maximum degree in

the active component. We assumed the active component to be a random
graph, so we can approximate its maximum degree in the same way as in
Section 5.4.1 for high temperatures, using the inverse of the Poisson cumula-
tive distribution function F−1

Poiss,λ, where the parameter λ = ka. The maximal
degree of the active component is obviously limited by na − 1, hence its full
formula is:

k̄(na) = min
{

na − 1, F−1
Poiss,λ

(
1− 1

na

)}
. (5.38)

Using this equation and the partition function 5.36 we obtain the average
maximal degree in the model:

〈kmax〉 =
1
Z

N

∑
na=dnmine

k̄(na) 2N−na+1
(

N
na

)(na(na−1)
2

M

)
eβ22φ M2φ+1α−φn−2φ

a . (5.39)

Analytical approximation for the energy (Equation 5.37) and the largest
degree (Equation 5.39) are compared with the simulation results in Figure 5.10.
As we can see, it predicates the transition point very well. In the approxima-
tion of kmax we can even observe a small peak at the transition, as in the
numerical results. However, its size is much smaller. Values of the maximal
degree and energy for high and low temperatures are also well described by
the analytical approximation. Only at the transition the discrepancy becomes
significant. From Figure 5.12 we see that the approximation works better for
sparse networks.

The next step in the analysis of the model defined by the Hamiltonian 5.32
is studying its behavior for different values of the parameter φ. Numerically
it is done in Figure 5.13, where a two-dimensional phase diagram is pre-
sented. We can distinguish four phases: (i) with a small and dense active
component and relatively small magnetization, (ii) with a random network
structure and high magnetization, (iii) with a random network structure and
zero magnetization, and (iv) with full magnetization and kmax ≈ 1. The last
phase was previously undetected, because it does not exist for φ = 1. From
the value of the largest degree in the network we can deduce that in the phase
(iv) we obtain star configurations as in the case of the external topological
field γ. Interestingly, the critical value φc above which the star configuration
is preferred over the clique does not depend on the temperature.

In order to find an analytical formula for φc we shall approximate the
energy of the system below and above it. The energy of a configuration cor-
responds to the probability of realizing it, therefore at the critical line both
energies should be equal. For φ > φc the energy is dominated by the hubs of
a degree equal N− 1. As previously, let us denote the number of hubs by nh.
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Figure 5.13: Absolute magnetization |m| and the largest degree
kmax as a function of temperature T and parameter φ, for α =
〈k〉, N = 1000 and M = 3000, averaged over 5 · 105 MC time
steps. Analytical approximation for the phase transition comes
from Equation 5.39 (orange dashed line) and the critical value
φc (Equation 5.42) is indicated by a black dashed line. Phase

transitions can be observed in both order parameters.

In the first approximation we can take into account interactions between the
hubs (there is nh(nh − 1)/2 such interactions) and interactions between the
hubs and the rest of the nodes (there is nh(N − nh) of them). We can also as-
sume that the only links that non-star nodes have are those connecting them
to the hubs. In other words, the degree of all nodes except hubs is equal nh.
This assumption is precise for number of links being multiplication of the
number of nodes. Since the magnetization is equal 1 for φ > φc, every inter-
action increases absolute energy. Putting all of these considerations together
we obtain the energy above the critical point:

Eφ>φc =−
nh(nh−1)

2

∑
i=1

α−φ(N − 1)2φ −
nh(N−nh)

∑
j=1

α−φ(N − 1)φnφ
h

=− nh(nh − 1)
2

α−φ(N − 1)2φ − nh(N − nh)α
−φ(N − 1)φnφ

h

=− nh(N − 1)φα−φ

[
nh − 1

2
(N − 1)φ + nφ

h (N − nh)

]
,

(5.40)

where i iterates over the links between hubs and j over the links between the
hubs and the rest of the nodes. When T → 0 we have nh = bM/Nc = bcc.
Using a continuous approximation we can assume that nh ≈ c.

For φ < φc and low temperatures we have the clique configuration de-
scribed before. The clique contains na nodes. We can assume that all nodes
in the cluster are connected and of the same spin, therefore every one of them
has degree na− 1. Disconnected nodes do not provide any contribution to the
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Figure 5.14: Absolute magnetization |m|, energy E, and the
largest degree kmax as a function of temperature T, for φ = 0.6,
α = 〈k〉, c = M/N = 3, averaged over 106 MC time steps. Size
of the networks N is indicated by marker and color: N = 500
circles (brightest color), N = 750 squares, N = 1000 trian-
gles (darkest color). Analytical approximation for the energy
is given by Equation 5.37 and for the largest degree by Equa-
tion 5.39. Solid line represents N = 500, dashed N = 750, dot-

ted N = 1000.

energy, because they have degree equal zero. Consequently, we obtain:

Eφ<φc =−
na(na−1)

2

∑
i=1

α−φ(na − 1)2φ = −na(na − 1)
2

α−φ(na − 1)2φ. (5.41)

where i iterates over all connections in the active component. For T → 0 we
have na = dnmine = d(1 +

√
1 + 8M)/2e. Again, we can use a continuous

approximation and assume na ≈ nmin = (1 +
√

1 + 8M)/2, or equivalently
M ≈ na(na − 1)/2. At the critical line between the clique phase and the star
phase probabilities of realizing them should be equal, hence energies as well.
Assuming that Eφ<φc = Eφ>φc we obtain:

Mα−φc(nmin − 1)2φc = c(N − 1)φc α−φc

[
c− 1

2
(N − 1)φc + cφc(N − c)

]
,

M
c

(
(nmin − 1)2

N − 1

)φc

=
c− 1

2
(N − 1)φc + cφc(N − c),

φc ln
(nmin − 1)2

N − 1
+ ln

M
c

= ln
(

c− 1
2

(N − 1)φc + cφc(N − c)
)

.

(5.42)

From this equation we can compute the value of φc for a given combination
of parameters. As we can see in Figure 5.13 the approximation works very
well.

Last element necessary for a comprehensive study of the model is scaling
analysis. It is presented in Figure 5.14. Both transitions in the magnetization
|m|, the discontinuous raise and continuous decrease, are present at the same
point for different network sizes. The transition in the largest degree kmax
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also remains at the same position with the maximal value obtained always
at the transition point. Therefore, in the thermodynamic limit we should ex-
pect those transitions to exist. Analytical approximation scales differently –
transitions are being shifted towards higher temperatures with growing net-
work. However, the discrepancy is smaller than in the case of the topological
field γ.

As we could see, statistical mechanics approach to coevolving networks
may lead to intriguing results and generate complex structures. On the ab-
stract level, we can observe an interplay between the topology of the network
and state of the nodes resulting in different transitions. The crucial obser-
vation is that those transitions can influence each other, i.e. a transition in
magnetization can be triggered by a topological transition. It is yet another
argument for using coevolving network models in order to grasp the nu-
anced phenomena coming from the feedback loop. On the practical level, the
most important result is emergence of structures similar to the empirical ones
and to those generated in algorithmic models. In statistical mechanics of coe-
volving networks we observed big hubs being created, as it happens in many
real-world networks. We obtained a shattered network phase very similar to
the shattered phase from the nonlinear coevolving voter model (Section 3.3)
or the coevolving Axelrod model (Section 4.2). There was emergence of con-
sensus (high magnetization) in the system. These results confirm previously
argued importance of equilibrium models and their analysis.
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Chapter 6

Summary

6.1 Review of obtained results

Many complex systems can be naturally described using network science due
to their inherent discrete nature. This approach proved successful regardless
of the system’s origin – it can be physical, biological, socio-technical, eco-
nomical, financial, ecological... In most of the empirical systems coevolution
of the network’s topology and states of the nodes is a crucial aspect. There-
fore, coevolving network models are of a broad interest. The aim of this thesis
was to explore them.

Complex systems are also large. They are made of many separate el-
ements interacting which each other. From the microscopic dynamics the
macroscopic patterns emerge. This connection between the micro and macro
scale is long known in statistical physics. Physicists have developed math-
ematical and numerical methods for studying it. Hence, it is a natural step
to merge both approaches from network science and statistical physics in
description of complex systems. This is the origin of statistical physics of coe-
volving networks. The goal was to provide a relatively broad coverage of co-
evolving network models with emphasis on development of three particular
ones.

Chapter 1 of the thesis is a conceptual introduction to the further content.
It discusses connections between physics and network science, provides em-
pirical examples of networks, and describes the foundations of the theory on
the abstract level. At the end of the chapter an outline of the work is pro-
vided.

Chapter 2 contains a proper introduction to network science. In Sec-
tion 2.1 the basics of graph theory are presented – from mathematical tools
used in the description of networks to different measures and types of graphs.
In Section 2.2 the fundamental network models are described, together with
a reconstruction of the most important analytical and computational results.
These basics of network science are put in a context of the state-of-the-art re-
search and assisted by a range of references. Finally, in Section 2.3 the mech-
anism of coevolution is described and an overview of coevolving network
models is given.

In Chapter 3 the voter model is introduced. Different interpretations and
the original definition of the model are discussed. In Section 3.1 the voter
model on static networks is covered. Its early version on a complete graph
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is characterized. The behavior in this example can be well explained using
Fokker-Planck equation, as presented in the section. The picture is completed
in Appendix B, where the stationary solution of the Fokker-Planck equation
is derived. The extension to complex networks is also depicted. In Section 3.2
the coevolving voter model with its basic properties is described. Section 3.3
provides further extensions taking into account a possible non-linearity of
interactions and the triadic closure rewiring. It contains original results ob-
tained in this thesis. The last Section 3.4 extends the previously proposed
nonlinear coevolving voter model by including noisy state updates. This is
one of the most general versions of the voter model taking into account three
important aspects of real-world networks – coevolution, non-linearity, and
noise. Together with previously analyzed triadic closure, Chapter 3 provides
a comprehensive study of the voter model and its extensions. The main re-
sults obtained by myself in this context are:

• discovery of a new phase in the nonlinear CVM with triadic closure –
a shattered phased not observed before,

• characterization of phases and convergence times in the nonlinear CVM
with triadic closure,

• achievement of high clustering values in the nonlinear CVM,

• development of a new and general version of the voter model – the non-
linear CVM with noise,

• discovery of two different types of the consensus phase in the nonlinear
CVM with noise,

• discovery of internal differences in the coexistence phase of the nonlin-
ear CVM with noise,

• discovery of topological community structures driven by the state of
the nodes,

• derivation of the analytical approximation of the nonlinear CVM with
noise,

• derivation of the analytical approximation of the behavior of the dy-
namical fragmentation phase in the nonlinear CVM with noise.

Chapter 4 treats about another important algorithmic model – the Axel-
rod model. The historical development of the model is briefly covered in
Section 4.1, as well as its motivation and interpretation. Basic simulation
results are reproduced for the original version of the model and selected ex-
tensions. Section 4.2 introduces the coevolving Axelrod model, first with
random rewiring, then with preferential attachment and triadic closure. This
section contains new results obtained by me. A possibility of generating com-
plex structures and real-world networks features in the Axelrod model is
discussed. In Section 4.3 a long standing issue of the Axelrod model is re-
viewed and solved. Firstly, an analysis of empirical data is performed. Then,
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modifications of the model incorporating empirical results are proposed. The
original results obtained by myself in this chapter are:

• development of the coevolving Axelrod model incorporating real-world
dynamics, i.e. preferential attachment and triadic closure,

• achievement of high clustering values in the coevolving Axelrod model,

• achievement of a power-law degree distribution in the coevolving Ax-
elrod model,

• achievement of the small-world effect in the coevolving Axelrod model,

• characterization of phases in the coevolving Axelrod model and dis-
covery of a new characteristic of the second transition point,

• collection and analysis of empirical data for validation of the model,

• modification of the model solving a long standing contradiction with
the empirical data.

In Chapter 5 the equilibrium description of coevolving networks is intro-
duced. Section 5.1 gives a general description of the maximal entropy princi-
ple and its applications. Appendix A supplements this description providing
a step-by-step entropy maximization method via Lagrange multipliers. In
Section 5.2 one of the most famous applications of said approach is covered,
i.e. the Ising model. Basic results are reproduced and selected extensions are
discussed. Section 5.3 covers the same methodology applied to the network’s
topology, instead of state of the nodes. Finally, in Section 5.4 the original
model developed in this thesis is introduced. The model provides equilib-
rium description of coevolving networks with a Hamiltonian depending on
both: state of the nodes and their topological traits. It’s the first model of this
kind to my best knowledge. The model is explored by means of extensive
numerical simulations. Appendix C provides a detailed description of the
algorithm used for simulations. Additionally, precise analytical approxima-
tions of observed phenomena are derived. The main original achievements
obtained in this chapter are:

• application of the statistical mechanics approach in description of coe-
volving networks,

• development of an equilibrium model of coevolving networks incorpo-
rating state of the nodes and topology of the network in the Hamilto-
nian,

• achievement of complex structures, often observed in algorithmic mod-
els, in the equilibrium model,

• characterization of the phase diagrams of the model,

• derivation of the analytical description of the system’s behavior.
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For every model analyzed in this thesis I reproduce the most important
historical results, usually together with several extensions. Motivation, ap-
plications, interpretation, and meaning of every model are broadly discussed.
All descriptions are supported by an extensive list of references to the essen-
tial articles and books in the field. The thesis contains also a comprehensive
introduction to the field for non-specialists.

6.2 Conclusions

Based on the review of obtained results, the main goal of the thesis has been
achieved. Effects of coevolution in network models were thoroughly stud-
ied in algorithmic and analytical approach. The influence of coevolution on
two important non-equilibrium models was examined and a new equilib-
rium model of coevolving networks was proposed. By including effects in-
spired by real-world networks in the models, the thesis brings the network
analysis closer to the empirical observation. It provides a binding between
the macroscopic dynamics and the macroscopic effects observed in networks.

When creating a model defined by microscopic rules it is important to
relate these rules to the empirical observation, but also to generate a macro-
scopic outcome consistent with the observation as well. In a sense, both
scales should be associated with the real-world phenomena. This gives a
strong argument for the relevance of a new phenomena observed in the model,
suggesting it can be realized as well empirically. The models studied in the
thesis were developed in that spirit. The microscopic effects like the triadic
closure or preferential attachment have a strong justification in numerous
fields where network science is applied. Additionally, the macroscopic pat-
terns like high clustering, power-law degree distribution, or the small-world
effect are obtained.

Coevolving network models are still a young branch of science, gaining
more interest recently. The assumption justifying coevolution is simple – in
real-world networks it is usually impossible to separate time scales of the
evolution of states the nodes and of the topology. These two aspects of every
network coevolve together creating a feed back loop, which may and mostly
does influence the outcome of the model in a complex way. In order to fully
describe complex systems, inclusion of coevolution in network models is in-
evitable. For that reason it is crucial to determine the essential characteristics
of coevolving network models. This thesis adds a new brick in the founda-
tions of a general theory of coevolving networks.
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Appendix A

Entropy maximization via
Lagrange multipliers

The task is to maximize the Boltzmann-Gibbs-Shannon entropy:

S({pi}) = −
n

∑
i=1

pi ln pi (A.1)

by finding the optimal probability distribution p(xi) = pi of a random vari-
able x ∈ {x1, x2, ..., xn}with n possible realizations. We will restrict the analy-
sis to the discrete case, as it is relevant to the content of the thesis. Obviously,
the distribution must be normalized:

n

∑
i=1

pi = 1. (A.2)

Additionally, we want to impose m constraints of the form:

n

∑
i=1

f j(xi)pi = 〈 f j(x)〉, (A.3)

where the right-hand side is a fixed value and j = 1, 2, ..., m. These constraints
can be understood as the available information about the system. Together
with the normalization it gives m + 1 constraints.

A standard method of solving an optimization problem of this form is by
using Lagrange multipliers. Let us define a function L as:

L({pi}, µ, λ1, ..., λm) = S({pi})− µh({pi})−
m

∑
j=1

λjgj({pi}), (A.4)

where µ and λj are Lagrange multipliers, h({pi}) is a function representing
normalization and gj({pi}) are functions representing the rest of constraints:

h({pi}) =
n

∑
i=1

pi − 1,

gj({pi}) =
n

∑
i=1

f j(xi)pi − 〈 f j(x)〉.
(A.5)
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Therefore all constraints can be represented by a condition:

h({pi}) = gj({pi}) = 0. (A.6)

Finally, it can be shown that a set of n equations:

∂L
∂pi

= 0 (A.7)

provides a necessary condition for the maximum of S({pi}) under constraints
A.2 and A.3 [349]. Using A.1, A.4 and A.5 the equations A.7 give us:

− ln(pi)− 1− µ−
m

∑
j=1

λj f j(xi) = 0, (A.8)

which yields a solution:

pi = e−1−µ−∑m
j=1 λj f j(xi). (A.9)

The constants µ and λj are recovered from the constraints. From A.2 we have:

1 =
n

∑
i=1

e−1−µ−∑m
j=1 λj f j(xi) = e−1−µ

n

∑
i=1

e−∑m
j=1 λj f j(xi), (A.10)

therefore:

e1+µ =
n

∑
i=1

e−∑m
j=1 λj f j(xi) ≡ Z, (A.11)

where Z is called partition function [312]. We can now rewrite the equation
for the probability distribution as:

pi =
1
Z

e−∑m
j=1 λj f j(xi). (A.12)

From the remaining constraints A.3 we obtain m equations for m constants λj:

∑n
i=1 f j(xi)e

−∑m
j=1 λj f j(xi)

∑n
i=1 e−∑m

j=1 λj f j(xi)
= 〈 f j(x)〉. (A.13)

Note, that it can be rewritten as:

〈 f j(x)〉 = ∂ ln Z
∂λj

, (A.14)

which is often a particularly useful form. Finally, one can easily find that the
maximal value of entropy reads:

Smax = 1 + µ +
m

∑
j=1

λj〈 f j(x)〉. (A.15)
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If we impose a constraint on the average value of a function 〈H(x)〉 and
denote the related Lagrange multiplier as β we obtain:

pi =
1
Z

e−βH(xi). (A.16)

In this way we recover Boltzmann’s statistics of a canonical ensemble, where
the function H(x) represents energy of the system and is called Hamiltonian,
while the constant β is related to the inverse temperature.
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Appendix B

Stationary solution of the
Fokker-Planck equation

The Fokker-Planck equation, also known as Smoluchowski equation in ap-
plications to Brownian motion, is a special type of master equation for the
evolution of probability distribution density P(x, t) of a random variable x in
time t [177]. It’s general form in one dimension is:

∂P(x, t)
∂t

= − ∂

∂x

[
µ(x)P(x, t)

]
+

1
2

∂2

∂x2

[
D(x)P(x, t)

]
, (B.1)

where µ(x) and D(x) are real differentiable functions with a restriction of
D(x) > 0. Function µ(x) is usually referred to as drift coefficient and D(m)
as diffusion coefficient. The equation can be written in a from of continuity
equation for probability density:

∂P(x, t)
∂t

= −∂j(x, t)
∂x

, (B.2)

where j(x, t) is the probability current (or flux). It is therefore obvious that
the probability current must be given by:

j(x, t) = µ(x)P(x, t)− 1
2

∂

∂x

[
D(x)P(x, t)

]
. (B.3)

Condition for the stationary solution of the Fokker-Planck equation is disap-
pearance of the probability current j(x, t) = 0, what leads to the equation for
the stationary probability distribution Pst(x):

µ(x)Pst(x) =
1
2

∂

∂x

[
D(x)Pst(x)

]
. (B.4)

Dividing both sides by D(x)Pst(x) we get:

µ(x)
D(x)

=
1

2D(x)Pst(x)
∂

∂x

[
D(x)Pst(x)

]
=

1
2

∂

∂x
ln
[

D(x)Pst(x)
]
, (B.5)

and further by integrating both sides in respect to x we obtain:

ln
[

D(x)Pst(x)
]
= 2

∫ x

x0

µ(x′)
D(x′)

dx′ + const., (B.6)
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what after applying exponential function to both sides and simple rearrange-
ment takes the well known form of the stationary solution:

Pst(x) =
const.
D(x)

exp
[

2
∫ x

x0

µ(x′)
D(x′)

dx′
]

. (B.7)

After substituting particular forms of µ(x) and D(x) for a given problem and
calculating the integral we obtain the analytical formula for the stationary so-
lution Pst(x) of the Fokker-Planck equation. The last requirement for the ex-
istence of the solution is that Pst(x) is integrable so that it can be normalized
to represent a probability distribution.



155

Appendix C

Main algorithm of the coevolving
spin system

The main part of the algorithm for simulations of the coevolving spin system
from Section 5.4 written in pseudo-code. It presents the initialization of the
network and procedures performed in every time step.

// generate random graph
graph = random_Erdos_Renyi_graph(n, m)
for i in [0, ..., n-1]:

// assign random spin to every node
graph[i][spin] = random_chice(-1, +1)

for step in time_steps:
v_index = rand_int(n) // chose one of n nodes
e_index = rand_int(m) // chose one of m edges

// spin switching
neighbors = graph.get_neighbors(v_index)
// compute energy difference
delta = graph.energy_change_spin(v_index, neighbors)
if delta <= 0 or rand() < exp(- delta / T):

// flip spin according to Metropolis rule
graph[i][spin] = graph[i][spin] * -1

// edge rewiring
old_from, old_to = graph.get_edge_ends(e_index)
new_from, new_to = graph.draw_new_edge(exclude_existing=true)
// compute energy difference
delta = graph.energy_change_edge(old_from, old_to, new_from, new_to)
if delta <= 0 or rand() < exp(- delta / T):

// rewire edge according to Metropolis rule
graph.delete_edge([v_from, v_to])
graph.add_edge([new_from, new_to])
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