Dirac Algebroids

Janusz Grabowski*, Katarzyna Grabowska†

*Polish Academy of Sciences
† University of Warsaw

March 23, 2011
Introduction

- Dirac structures
- Double vector bundles
- Dirac algebroids
- Examples and applications
- References
Introduction

- Dirac structures
- Double vector bundles
 - Dirac algebroids
 - Examples and applications
- References
Introduction

- Dirac structures
- Double vector bundles
- Dirac algebroids
 - Examples and applications
- References
Introduction

- Dirac structures
- Double vector bundles
- Dirac algebroids
- Examples and applications

 References
Introduction

- Dirac structures
- Double vector bundles
- Dirac algebroids
- Examples and applications
- References
Dirac structures

- There is a symmetric pairing on the bundle $\mathcal{T}N = TN \oplus_N T^*N$:

$$
(X_1 + \alpha_1 \mid X_2 + \alpha_2) = \frac{1}{2} (\alpha_1(X_2) + \alpha_2(X_1)).
$$

- Courant-Dorfman bracket on the space of $\text{Sec}(\mathcal{T}N)$:

$$
[[X_1 + \alpha_1, X_2 + \alpha_2]] = [X_1, X_2] + \mathcal{L}_{X_1} \alpha_2 - \iota_{X_2} d\alpha_1.
$$

Definition

An almost Dirac structure on the smooth manifold N is a subbundle D of $\mathcal{T}N$ which is maximally isotropic with respect to the symmetric pairing $(\cdot | \cdot)$. If additionally the space of sections of D is closed under the Courant-Dorfman bracket, we speak about a Dirac structure.

Note that here a subbundle D may be supported on a submanifold $N_0 \subset N$.
Dirac structures

- There is a symmetric pairing on the bundle $\mathcal{T}N = TN \oplus_N T^*N$:

$$\langle X_1 + \alpha_1 | X_2 + \alpha_2 \rangle = \frac{1}{2} (\alpha_1(X_2) + \alpha_2(X_1)).$$

- Courant-Dorfman bracket on the space of $Sec(\mathcal{T}N)$:

$$[[X_1 + \alpha_1, X_2 + \alpha_2]] = [X_1, X_2] + \mathcal{L}_{X_1} \alpha_2 - \iota_{X_2} d\alpha_1.$$

Definition

An almost Dirac structure on the smooth manifold N is a subbundle D of $\mathcal{T}N$ which is maximally isotropic with respect to the symmetric pairing $\langle \cdot | \cdot \rangle$. If additionally the space of sections of D is closed under the Courant-Dorfman bracket, we speak about a Dirac structure.

Note that here a subbundle D may be supported on a submanifold $N_0 \subset N$.
Dirac structures

- There is a symmetric pairing on the bundle $\mathcal{T}N = TN \oplus N^* N$:
 \[(X_1 + \alpha_1 \mid X_2 + \alpha_2) = \frac{1}{2} (\alpha_1(X_2) + \alpha_2(X_1)) .\]

- Courant-Dorfman bracket on the space of $\text{Sec}(\mathcal{T}N)$:
 \[[[X_1 + \alpha_1, X_2 + \alpha_2]] = [X_1, X_2] + \mathcal{L}_{X_1} \alpha_2 - \iota_{X_2} d\alpha_1 .\]

Definition

An **almost Dirac structure** on the smooth manifold N is a subbundle D of $\mathcal{T}N$ which is maximally isotropic with respect to the symmetric pairing $(\cdot \mid \cdot)$. If additionally the space of sections of D is closed under the Courant-Dorfman bracket, we speak about a **Dirac structure**.

Note that here a subbundle D may be supported on a submanifold $N_0 \subset N$.
Dirac structures

- There is a symmetric pairing on the bundle $\mathcal{T}N = TN \oplus_N T^*N$:

$$ (X_1 + \alpha_1 \mid X_2 + \alpha_2) = \frac{1}{2} (\alpha_1(X_2) + \alpha_2(X_1)) . $$

- Courant-Dorfman bracket on the space of $\text{Sec}(\mathcal{T}N)$:

$$ [\lbrack X_1 + \alpha_1, X_2 + \alpha_2 \rbrack] = [X_1, X_2] + \mathcal{L}_{X_1} \alpha_2 - \iota_{X_2} d\alpha_1 . $$

Definition

An almost Dirac structure on the smooth manifold N is a subbundle D of $\mathcal{T}N$ which is maximally isotropic with respect to the symmetric pairing $(\cdot \mid \cdot)$. If additionally the space of sections of D is closed under the Courant-Dorfman bracket, we speak about a Dirac structure.

Note that here a subbundle D may be supported on a submanifold $N_0 \subset N$.
The first integrability condition for the almost Dirac structure says that

\[pr_{TN}(D) \subset TN_0, \]

so the Courant-Dorfman bracket reduces to a well-defined bracket \([\cdot, \cdot]_D\) on sections of \(D\).

The second integrability condition says that \([\cdot, \cdot]_D\) takes values in \(\text{Sec}(D)\):

\[[\cdot, \cdot]_D : \text{Sec}(D) \times \text{Sec}(D) \to \text{Sec}(D) \subset \text{Sec}((TN)|_{N_0}). \]

By definition, an almost Dirac structure is a Dirac structure if and only if it satisfies both the integrability conditions.
The *first integrability condition* for the almost Dirac structure says that

\[pr_{TN}(D) \subset TN_0, \]

so the Courant-Dorfman bracket reduces to a well-defined bracket \([\cdot, \cdot]_D\) on sections of \(D\).

The *second integrability* condition says that \([\cdot, \cdot]_D\) takes values in \(\text{Sec}(D)\):

\[[\cdot, \cdot]_D : \text{Sec}(D) \times \text{Sec}(D) \to \text{Sec}(D) \subset \text{Sec}((TN)|_{N_0}). \]

By definition, an almost Dirac structure is a Dirac structure if and only if it satisfies both the integrability conditions.
The first integrability condition for the almost Dirac structure says that
\[pr_{TN}(D) \subset TN_0, \]
so the Courant-Dorfman bracket reduces to a well-defined bracket \([\cdot, \cdot]_D\) on sections of \(D\).

The second integrability condition says that \([\cdot, \cdot]_D\) takes values in \(\text{Sec}(D)\):
\[[\cdot, \cdot]_D : \text{Sec}(D) \times \text{Sec}(D) \to \text{Sec}(D) \subset \text{Sec}((TN)|_{N_0}). \]

By definition, an almost Dirac structure is a Dirac structure if and only if it satisfies both the integrability conditions.
• For $\Pi \in \text{Sec}(\bigwedge^2 TN)$, $\tilde{\Pi} : T^*N \ni \alpha \mapsto _{\alpha}\Pi \in TN$,

\[
\text{graph}(\tilde{\Pi}) \subset TN \quad \text{is an almost Dirac structure.}
\]

If Π is a Poisson tensor, then it is a Dirac structure.

• For $\omega \in \text{Sec}(\bigwedge^2 T^*N)$, $\tilde{\omega} : TN \ni X \mapsto _{X}\omega \in T^*N$,

\[
\text{graph}(\tilde{\omega}) \subset TN \quad \text{is an almost Dirac structure.}
\]

If ω is a closed 2-form, then it is a Dirac structure.

• For a distribution Δ on N,

\[
\Delta \oplus \Delta^\circ \subset TN \quad \text{is an almost Dirac structure.}
\]

If Δ is integrable, then it is a Dirac structure.
For $\Pi \in \text{Sec}(\bigwedge^2 TN)$, $\tilde{\Pi} : T^*N \ni \alpha \longmapsto \iota_\alpha \Pi \in TN$,

$$\text{graph}(\tilde{\Pi}) \subset TN$$
is an almost Dirac structure.

If Π is a Poisson tensor, then it is a Dirac structure.

For $\omega \in \text{Sec}(\bigwedge^2 T^*N)$, $\tilde{\omega} : TN \ni X \longmapsto \iota_X \omega \in T^*N$,

$$\text{graph}(\tilde{\omega}) \subset TN$$
is an almost Dirac structure.

If ω is a closed 2-form, then it is a Dirac structure.

For a distribution Δ on N,

$$\Delta \oplus \Delta^\circ \subset TN$$
is an almost Dirac structure.

If Δ is integrable, then it is a Dirac structure.
For $\Pi \in \text{Sec}(\bigwedge^2 T^*N)$, $\tilde{\Pi} : T^*N \ni \alpha \mapsto \iota_\alpha \Pi \in TN$,

$$\text{graph}(\tilde{\Pi}) \subset TN$$

is an almost Dirac structure.

If Π is a Poisson tensor, then it is a Dirac structure.

For $\omega \in \text{Sec}(\bigwedge^2 T^*N)$, $\tilde{\omega} : TN \ni X \mapsto \iota_X \omega \in T^*N$,

$$\text{graph}(\tilde{\omega}) \subset TN$$

is an almost Dirac structure.

If ω is a closed 2-form, then it is a Dirac structure.

For a distribution Δ on N,

$$\Delta \oplus \Delta^\circ \subset TN$$

is an almost Dirac structure.

If Δ is integrable, then it is a Dirac structure.
Double vector bundles

Definition

A **double vector bundle** is a manifold with two compatible vector bundle structures. Compatibility means that the Euler vector fields associated with the two structures commute.

- \(\tau_1, \tau_2, \tau'_1, \tau'_2 \) are v.b.
- The core

\[
C = \{ k \in K : \tau_1(k) = 0, \tau_2(k) = 0 \},
\]

\(\tau_0 \) is a v.b.

- \((\tau_1 \cdot \tau'_1), (\tau_2 \cdot \tau'_2)\) are v.b. morphisms

- There is one more (affine) bundle

\[
\tau_1 \times \tau_2 : K \rightarrow K_1 \times_M K_2
\]

modeled on the pull-back of the core

\[
K_1 \times_M K_2 \times_M C \rightarrow K_1 \times_M K_2
\]
Double vector bundles

Definition

A double vector bundle is a manifold with two compatible vector bundle structures. Compatibility means that the Euler vector fields associated with the two structures commute.

- τ_1, τ_2, τ'_1, τ'_2 are v.b.
- The core $C = \{ k \in K : \tau_1(k) = 0, \tau_2(k) = 0 \}$
- τ_0 is a v.b.
- $(\tau_1 \cdot \tau'_1)$, $(\tau_2 \cdot \tau'_2)$ are v.b. morphisms
- There is one more (affine) bundle $\tau_1 \times \tau_2 : K \rightarrow K_1 \times_M K_2$

modeled on the pull-back of the core $K_1 \times_M K_2 \times_M C \rightarrow K_1 \times_M K_2$
Double vector bundles

Definition
A double vector bundle is a manifold with two compatible vector bundle structures. Compatibility means that the Euler vector fields associated with the two structures commute.

- $\tau_1, \tau_2, \tau'_1, \tau'_2$ are v.b.
- The core
 \[C = \{ k \in K : \tau_1(k) = 0, \tau_2(k) = 0 \} , \]
- τ_0 is a v.b.
- $(\tau_1 \cdot \tau'_1), (\tau_2 \cdot \tau'_2)$ are v.b. morphisms
- There is one more (affine) bundle
 \[\tau_1 \times \tau_2 : K \longrightarrow K_1 \times_M K_2 \]
 modeled on the pull-back of the core
 \[K_1 \times_M K_2 \times_M C \longrightarrow K_1 \times_M K_2 \]
Double vector bundles

Definition

A double vector bundle is a manifold with two compatible vector bundle structures. Compatibility means that the Euler vector fields associated with the two structures commute.

\[\tau_1, \tau_2, \tau'_1, \tau'_2 \text{ are v.b.} \]

\[\text{The core} \]

\[C = \{ k \in K : \tau_1(k) = 0, \tau_2(k) = 0 \}, \]

\[\tau_0 \text{ is a v.b.} \]

\[(\tau_1 \cdot \tau'_1), (\tau_2 \cdot \tau'_2) \text{ are v.b. morphisms} \]

\[\text{There is one more (affine) bundle} \]

\[\tau_1 \times \tau_2 : K \to K_1 \times_M K_2 \]

modeled on the pull-back of the core

\[K_1 \times_M K_2 \times_M C \to K_1 \times_M K_2 \]
Double vector bundles

Definition

A double vector bundle is a manifold with two compatible vector bundle structures. Compatibility means that the Euler vector fields associated with the two structures commute.

- $\tau_1, \tau_2, \tau'_1, \tau'_2$ are v.b.
- The core

$$C = \{k \in K : \tau_1(k) = 0, \tau_2(k) = 0\},$$

τ_0 is a v.b.

- $(\tau_1 \cdot \tau'_1), (\tau_2 \cdot \tau'_2)$ are v.b. morphisms

- There is one more (affine) bundle

$$\tau_1 \times \tau_2 : K \to K_1 \times_M K_2$$

modeled on the pull-back of the core

$$K_1 \times_M K_2 \times_M C \to K_1 \times_M K_2$$
Double vector bundles

Definition

A double vector bundle is a manifold with two compatible vector bundle structures. Compatibility means that the Euler vector fields associated with the two structures commute.

- \(\tau_1, \tau_2, \tau'_1, \tau'_2 \) are v.b.
- The core
 \[
 C = \{ k \in K : \tau_1(k) = 0, \tau_2(k) = 0 \},
 \]
- \(\tau_0 \) is a v.b.
- \((\tau_1 \cdot \tau'_1), (\tau_2 \cdot \tau'_2) \) are v.b. morphisms
- There is one more (affine) bundle
 \[
 \tau_1 \times \tau_2 : K \longrightarrow K_1 \times_M K_2
 \]
 modeled on the pull-back of the core
 \[
 K_1 \times_M K_2 \times_M C \longrightarrow K_1 \times_M K_2
 \]
First example is usually $TE...$

\[\tau : E \longrightarrow M\]
\[(x^a, y^i) \longmapsto (x^a)\]

\[\tau_M : TM \longrightarrow M\]
\[(x^a, \dot{x}^b) \longmapsto (x^a)\]

\[\pi : E^* \longrightarrow M\]
\[(x^a, \xi_i) \longmapsto (x^a)\]

\[\pi_M : T^*M \longrightarrow M\]
\[(x^a, p_b) \longmapsto (x^a)\]

\[\nabla_1 = \dot{x}^a \partial_{\dot{x}^a} + \dot{\xi}_i \partial_{\dot{\xi}_i}\]

\[\nabla_2 = \xi_i \partial_{\xi_i} + \dot{\xi}_j \partial_{\dot{\xi}_j}\]
First example: TE^*.

\[
\begin{align*}
\tau &: E \to M \\
(x^a, y^i) &\mapsto (x^a) \\
\tau_M &: TM \to M \\
(x^a, \dot{x}^b) &\mapsto (x^a)
\end{align*}
\]

\[
\begin{align*}
\pi &: E^* \to M \\
(x^a, \xi_i) &\mapsto (x^a) \\
\pi_M &: T^*M \to M \\
(x^a, p_b) &\mapsto (x^a)
\end{align*}
\]

\[
\nabla_1 = \dot{x}^a \partial_{x^a} + \dot{\xi}_i \partial_{\xi_i}
\]

\[
\nabla_2 = \xi_i \partial_{\xi_i} + \dot{\xi}_j \partial_{\dot{\xi}_j}
\]
First example: TE^*.

\[\tau : E \to M \]
\[(x^a, y^i) \mapsto (x^a) \]

\[\tau_M : TM \to M \]
\[(x^a, \dot{x}^b) \mapsto (x^a) \]

\[\tau_{E^*} : TE^* \to E^* \]
\[(x^a, \xi_i, \dot{x}^b, \dot{\xi}_j) \mapsto (x^a, \xi_i) \]

\[\pi : E^* \to M \]
\[(x^a, \xi_i) \mapsto (x^a) \]

\[\pi_M : T^*M \to M \]
\[(x^a, p_b) \mapsto (x^a) \]

\[\nabla_1 = \dot{x}^a \partial_{x^a} + \dot{\xi}_i \partial_{\xi_i} \]

\[\nabla_2 = \xi_i \partial_{\xi_i} + \dot{\xi}_j \partial_{\dot{\xi}_j} \]
First example: TE^*.

\[
\tau : E \longrightarrow M
\]
\[
(\chi^a, y^i) \longmapsto (\chi^a)
\]

\[
\tau_M : TM \longrightarrow M
\]
\[
(\chi^a, \dot{\chi}^b) \longmapsto (\chi^a)
\]

\[
\pi : E^* \longrightarrow M
\]
\[
(\chi^a, \xi_i) \longmapsto (\chi^a)
\]

\[
\pi_M : T^*M \longrightarrow M
\]
\[
(\chi^a, p_b) \longmapsto (\chi^a)
\]

\[
\tau_{E^*} : TE^* \longrightarrow E^*
\]
\[
(\chi^a, \xi_i, \dot{\chi}^b, \dot{\xi}_j) \longmapsto (\chi^a, \xi_i)
\]

\[
\nabla_1 = \dot{\chi}^a \partial_{\dot{\chi}^a} + \dot{\xi}_i \partial_{\dot{\xi}_i}
\]

\[
\nabla_2 = \xi_i \partial_{\xi_i} + \dot{\xi}_j \partial_{\dot{\xi}_j}
\]

\[
\nabla_{TM} : TE^* \longrightarrow TM
\]
\[
(\chi^a, \xi_i, \dot{\chi}^b, \dot{\xi}_j) \longmapsto (\chi^a, \dot{\chi}^b)
\]
First example: TE^*.

\[\tau : E \longrightarrow M \]
\[(x^a, y^i) \longmapsto (x^a) \]

\[\tau_M : TM \longrightarrow M \]
\[(x^a, \dot{x}^b) \longmapsto (x^a) \]

\[\pi : E^* \longrightarrow M \]
\[(x^a, \xi_i) \longmapsto (x^a) \]

\[\pi_M : T^*M \longrightarrow M \]
\[(x^a, p_b) \longmapsto (x^a) \]

\[\nabla_1 = \dot{x}^a \partial_{\dot{x}^a} + \dot{\xi}_i \partial_{\dot{\xi}_i} \]

\[\nabla_2 = \xi_i \partial_{\xi_i} + \dot{\xi}_j \partial_{\dot{\xi}_j} \]
First example: TE^*.

$\tau : E \longrightarrow M$
$(x^a, y^i) \longmapsto (x^a)$

$\pi : E^* \longrightarrow M$
$(x^a, \xi_i) \longmapsto (x^a)$

$\tau_M : TM \longrightarrow M$
$(x^a, \dot{x}^b) \longmapsto (x^a)$

$\pi_M : T^*M \longrightarrow M$
$(x^a, p_b) \longmapsto (x^a)$

\[
\nabla_1 = \dot{x}^a \partial_{x^a} + \dot{\xi}_i \partial_{\xi_i}
\]

\[
\nabla_2 = \xi_i \partial_{\xi_i} + \dot{\xi}_j \partial_{\dot{\xi}_j}
\]
We can add vectors v, w such that

$$T\pi(v) = T\pi(w).$$

For v, w take curves γ_v, γ_w:

$$\pi \circ \gamma_v = \pi \circ \gamma_w.$$

$v + w$ is tangent to

$$t \mapsto \gamma_v(t) + \gamma_w(t).$$
We can add vectors v, w such that

$$T\pi(v) = T\pi(w).$$

For v, w take curves γ_v, γ_w:

$$\pi \circ \gamma_v = \pi \circ \gamma_w.$$

$v + w$ is tangent to

$$t \mapsto \gamma_v(t) + \gamma_w(t).$$
We can add vectors v, w such that

$$T\pi(v) = T\pi(w).$$

For v, w take curves γ_v, γ_w:

$$\pi \circ \gamma_v = \pi \circ \gamma_w.$$

$v+w$ is tangent to

$$t \mapsto \gamma_v(t) + \gamma_w(t).$$
We can add vectors v, w such that
\[T\pi(v) = T\pi(w). \]

For v, w take curves γ_v, γ_w:
\[\pi \circ \gamma_v = \pi \circ \gamma_w. \]

$v + w$ is tangent to
\[t \mapsto \gamma_v(t) + \gamma_w(t). \]
Second example: T^*E^*.

\[\pi_{E^*} : T^*E^* \rightarrow E^* \]
\[(x^a, \xi_i, p_b, y^j) \mapsto (x^a, \xi_i) \]

\[\zeta : T^*E^* \rightarrow E \]
\[(x^a, \xi_i, p_b, y^j) \mapsto (x^a, y^j) \]

\[\nabla_1 = p_a \partial_{p_a} + y^i \partial_{y^i} \]

\[\nabla_2 = p_a \partial_{p_a} + \xi_i \partial_{\xi_i} \]
Second example: T^*E^*.

\[\nabla_1 = p_a \partial_{p_a} + y^i \partial_{y^i} \]

\[\nabla_2 = p_a \partial_{p_a} + \xi_i \partial_{\xi_i} \]
Second example: T^*E^*.

$$0_{E^*} \sim E^* \sim E^* \sim TM$$

$$E^* \xrightarrow{\sim} E^* \xrightarrow{\sim} E^*$$

$$T_0E^* \simeq E^*_x \oplus T_xM$$

$$T^*E^* \simeq E^*_x \oplus T^*_xM$$

$$\nabla_1 = p_a \partial_{p_a} + y^i \partial_{y^i}$$

$$\nabla_2 = p_a \partial_{p_a} + \xi_i \partial_{\xi_i}$$
Second example: T^*E^*.

T^*E^* is isomorphic to T^*E. The graph of the canonical isomorphism \mathcal{R} is the lagrangian submanifold generated in

$$T^*(E^* \times E) \cong T^*E^* \times T^*E \quad \text{by} \quad E^* \times_M E \ni (\xi, y) \longmapsto \xi(y) \in \mathbb{R}.$$
Second example: $T^* E^*$.

\[T^* E^* \xrightarrow{\pi_{E^*}} E^* \quad \xrightarrow{\pi_M \tau} T^* M \quad \xrightarrow{\zeta} E \]

\[E^* \xrightarrow{\pi} M \]

\[T^* (E^* \times E) \cong T^* E^* \times T^* E \quad \text{by} \quad E^* \times_M E \ni (\xi, y) \mapsto \xi(y) \in \mathbb{R}. \]

\[\mathcal{R} : (x^a, y^i, p_b, \xi_j) \longmapsto (x^a, \xi_i, -p_b, y^j) \]
Second example: T^*E^*.

\[
\begin{array}{ccc}
T^*E^* & \xrightarrow{\pi_{E^*}} & E^* \\
\downarrow \zeta & & \downarrow \pi \\
T^*M & \xrightarrow{\pi_M} & M
\end{array}
\quad
\begin{array}{ccc}
T^*E & \xrightarrow{\eta} & E \\
\downarrow \pi & & \downarrow \pi_E \\
T^*M & \xrightarrow{\pi_M} & M
\end{array}
\]

(x^a, ξ_i, p_b, y^j)
\hspace{1cm} (x^a, y^i, p_b, ξ_j)

T^*E^* is isomorphic to T^*E. The graph of the canonical isomorphism \mathcal{R} is the lagrangian submanifold generated in

\[T^*(E^* \times E) \simeq T^*E^* \times T^*E \quad \text{by} \quad E^* \times_M E \ni (\xi, y) \mapsto \xi(y) \in \mathbb{R}.
\]

\[
\mathcal{R} : (x^a, y^i, p_b, \xi_j) \mapsto (x^a, \xi_i, -p_b, y^j)
\]
Definition

A vector subbundle of a vector bundle $\tau : E \to M$ is a submanifold $F \subset E$ such that it is invariant with respect to the family of homotheties defined by the vector bundle structure τ.

- Euler vector field is tangent to F;
- F can be supported on a submanifold $M_0 \subset M$.

Definition

A double vector subbundle of a double vector bundle K is a submanifold $D \subset K$ such that it is invariant with respect to both families of homotheties defined by the vector bundle structures τ_1 and τ_2.

- Both Euler vector fields are tangent to D;
- D defines subbundles $F_1 \subset K_1$, $F_2 \subset K_2$ supported on $M_0 \subset M$.
Definition

A vector subbundle of a vector bundle $\tau : E \to M$ is a submanifold $F \subset E$ such that it is invariant with respect to the family of homotheties defined by the vector bundle structure τ.

- Euler vector field is tangent to F;
- F can be supported on a submanifold $M_0 \subset M$.

Definition

A double vector subbundle of a double vector bundle K is a submanifold $D \subset K$ such that it is invariant with respect to both families of homotheties defined by the vector bundle structures τ_1 and τ_2.

- Both Euler vector fields are tangent to D;
- D defines subbundles $F_1 \subset K_1$, $F_2 \subset K_2$ supported on $M_0 \subset M$.
Definition

A vector subbundle of a vector bundle $\tau: E \to M$ is a submanifold $F \subset E$ such that it is invariant with respect to the family of homotheties defined by the vector bundle structure τ.

- Euler vector field is tangent to F;
- F can be supported on a submanifold $M_0 \subset M$.

Definition

A double vector subbundle of a double vector bundle K is a submanifold $D \subset K$ such that it is invariant with respect to both families of homotheties defined by the vector bundle structures τ_1 and τ_2.

- Both Euler vector fields are tangent to D;
- D defines subbundles $F_1 \subset K_1$, $F_2 \subset K_2$ supported on $M_0 \subset M$.
Definition
A vector subbundle of a vector bundle $\tau : E \to M$ is a submanifold $F \subset E$ such that it is invariant with respect to the family of homotheties defined by the vector bundle structure τ.

- Euler vector field is tangent to F;
- F can be supported on a submanifold $M_0 \subset M$.

Definition
A double vector subbundle of a double vector bundle K is a submanifold $D \subset K$ such that it is invariant with respect to both families of homotheties defined by the vector bundle structures τ_1 and τ_2.

- Both Euler vector fields are tangent to D;
- D defines subbundles $F_1 \subset K_1$, $F_2 \subset K_2$ supported on $M_0 \subset M$.
Definition

A vector subbundle of a vector bundle $\tau : E \rightarrow M$ is a submanifold $F \subset E$ such that it is invariant with respect to the family of homotheties defined by the vector bundle structure τ.

- Euler vector field is tangent to F;
- F can be supported on a submanifold $M_0 \subset M$.

Definition

A double vector subbundle of a double vector bundle K is a submanifold $D \subset K$ such that it is invariant with respect to both families of homotheties defined by the vector bundle structures τ_1 and τ_2.

- Both Euler vector fields are tangent to D;
- D defines subbundles $F_1 \subset K_1$, $F_2 \subset K_2$ supported on $M_0 \subset M$.
Definition

A vector subbundle of a vector bundle $\tau : E \to M$ is a submanifold $F \subset E$ such that it is invariant with respect to the family of homotheties defined by the vector bundle structure τ.

- Euler vector field is tangent to F;
- F can be supported on a submanifold $M_0 \subset M$.

Definition

A double vector subbundle of a double vector bundle K is a submanifold $D \subset K$ such that it is invariant with respect to both families of homotheties defined by the vector bundle structures τ_1 and τ_2.

- Both Euler vector fields are tangent to D;
- D defines subbundles $F_1 \subset K_1$, $F_2 \subset K_2$ supported on $M_0 \subset M$.
Dirac algebroids

Linearity of different geometrical structures is connected with double vector bundles.

- A connection Γ on a vector bundle $F \to M$ is *linear* if the map

$$\tilde{\Gamma} : TF \longrightarrow VF \oplus_F (F \times_M TM) = F \times_M F \times_M TM$$

is a double vector bundle morphism.

- A Poisson tensor Π on a vector bundle F is linear if the corresponding map

$$\tilde{\Pi} : T^*F \longrightarrow TF$$

is a double vector bundle morphism.
Linearity of different geometrical structures is connected with double vector bundles.

- A connection Γ on a vector bundle $F \to M$ is linear if the map

$$\tilde{\Gamma} : TF \longrightarrow VF \oplus_F (F \times_M TM) = F \times_M F \times_M TM$$

is a double vector bundle morphism.

- A Poisson tensor Π on a vector bundle F is linear if the corresponding map

$$\tilde{\Pi} : T^*F \longrightarrow TF$$

is a double vector bundle morphism.

- ...
A connection Γ on a vector bundle $F \to M$ is linear if the map

$$\tilde{\Gamma} : TF \longrightarrow VF \oplus_F (F \times_M TM) = F \times_M F \times_M TM$$

is a double vector bundle morphism.

A Poisson tensor Π on a vector bundle F is linear if the corresponding map

$$\tilde{\Pi} : T^*F \longrightarrow TF$$

is a double vector bundle morphism.
Linearity of different geometrical structures is connected with double vector bundles.

- A connection Γ on a vector bundle $F \to M$ is linear if the map
 \[
 \tilde{\Gamma} : TF \longrightarrow VF \oplus_F (F \times_M TM) = F \times_M F \times_M TM
 \]
 is a double vector bundle morphism.

- A Poisson tensor Π on a vector bundle F is linear if the corresponding map
 \[
 \tilde{\Pi} : T^*F \longrightarrow TF
 \]
 is a double vector bundle morphism.

- \ldots
A general algebroid is a double vector bundle morphism covering the identity on E^*:

$$
\begin{align*}
\varepsilon(x^a, y^i, p_b, \xi_j) &= (x^a, \xi_i, p_b(x)y^k, c^{k}_{ij}(x)y^i\xi_k + \sigma^{a}_{j}(x)\rho_a) \\
\Pi_{\varepsilon} &= c^{k}_{ij}(x)\xi_k \partial_{\xi_i} \otimes \partial_{\xi_j} + \rho^{b}_{i}(x)\partial_{\xi_i} \otimes \partial_{x^b} - \sigma^{a}_{j}(x)\partial_{x^a} \otimes \partial_{\xi_j}.
\end{align*}
$$
A general algebroid is a double vector bundle morphism covering the identity on E^*:

$$\varepsilon(x^a, y^i, p_b, \xi_j) = (x^a, \xi_i, \rho^b_k(x)y^k, c^k_{ij}(x)y^i\xi_k + \sigma^a_j(x)p_a)$$

$$\Pi_\varepsilon = c^k_{ij}(x)\xi_k \partial_{\xi_i} \otimes \partial_{\xi_j} + \rho^b_i(x)\partial_{\xi_i} \otimes \partial x^b - \sigma^a_j(x)\partial x^a \otimes \partial_{\xi_j}.$$
A general algebroid is a double vector bundle morphism covering the identity on E^*:

$$
\begin{align*}
\varepsilon(x^a, y^i, p_b, \xi_j) &= (x^a, \xi_i, \rho^b_k(x)y^k, c_{ij}^k(x)y^i\xi_k + \sigma^a_j(x)p_a) \\
\Pi_\varepsilon &= c_{ij}^k(x)\xi_k \partial_{\xi_i} \otimes \partial_{\xi_j} + \rho^b_i(x)\partial_{\xi_i} \otimes \partial_{x^b} - \sigma^a_j(x)\partial_{x^a} \otimes \partial_{\xi_j}.
\end{align*}
$$
A general algebroid is a double vector bundle morphism covering the identity on E^*:

\[\varepsilon(x^a, y^i, p_b, \xi_j) = (x^a, \xi_i, \rho^b_k(x)y^k, c_{ij}^k(x)y^i\xi_k + \sigma^a_j(x)p_a)\]

\[\Pi_{\varepsilon} = c_{ij}^k(x)\xi_k \partial_{\xi_i} \otimes \partial_{\xi_j} + \rho^b_i(x)\partial_{\xi_i} \otimes \partial_{x^b} - \sigma^a_j(x)\partial_{x^a} \otimes \partial_{\xi_j}.\]
\[\tau_1 : (x^a, \xi_i, \dot{x}^b, \dot{\xi}_j, p_c, y^k) \mapsto (x^a, \xi_i), \]
\[\tau_2 : (x^a, \xi_i, \dot{x}^b, \dot{\xi}_j, p_c, y^k) \mapsto (x^a, \dot{x}^b, y^k), \]

\[\nabla_1 = p_a \partial_{p_b} + \dot{\xi}_j \partial_{\dot{\xi}_j} + y^i \partial_{y^i} + \dot{x}^b \partial_{\dot{x}^b}, \]
\[\nabla_2 = p_a \partial_{p_b} + \xi_i \partial_{\xi_i} + \dot{\xi}_j \partial_{\dot{\xi}_j} \]

Definition

A Dirac algebroid (resp., Dirac-Lie algebroid) structure on a vector bundle \(E \) is an almost Dirac (resp., Dirac) subbundle \(D \) of \(TE^* \) being a double vector subbundle, i.e., \(D \) is not only a subbundle of \(\tau_1 : TE^* \to E^* \) but also a vector subbundle of the vector bundle \(\tau_2 : TE^* \to TM \oplus_M E \).
A Dirac algebroid (resp., Dirac-Lie algebroid) structure on a vector bundle E is an almost Dirac (resp., Dirac) subbundle D of TE^* being a double vector subbundle, i.e., D is not only a subbundle of $\tau_1 : TE^* \to E^*$ but also a vector subbundle of the vector bundle $\tau_2 : TE^* \to TM \oplus_M E$.

\begin{align*}
\tau_1 : (x^a, \xi_i, \dot{x}^b, \dot{\xi}_j, p_c, y^k) &\mapsto (x^a, \xi_i), \\
\tau_2 : (x^a, \xi_i, \dot{x}^b, \dot{\xi}_j, p_c, y^k) &\mapsto (x^a, \dot{x}^b, y^k), \\
\nabla_1 &= p_a \partial_{p_b} + \dot{\xi}_j \partial_{\dot{\xi}_j} + y^i \partial_{y^i} + \dot{x}^b \partial_{\dot{x}^b}, \\
\nabla_2 &= p_a \partial_{p_b} + \xi_i \partial_{\xi_i} + \dot{\xi}_j \partial_{\dot{\xi}_j}
\end{align*}
A Dirac algebroid (resp., Dirac-Lie algebroid) structure on a vector bundle E is an almost Dirac (resp., Dirac) subbundle D of TE^* being a double vector subbundle, i.e., D is not only a subbundle of $\tau_1 : TE^* \rightarrow E^*$ but also a vector subbundle of the vector bundle $\tau_2 : TE^* \rightarrow TM \oplus_M E$.

\begin{align*}
\nabla_1 &= p_a \partial_{p_b} + \dot{\xi}_j \partial_{\dot{\xi}_j} + y_i \partial_{y_i} + \dot{x}_b \partial_{\dot{x}_b}, \\
\nabla_2 &= p_a \partial_{p_b} + \xi_i \partial_{\xi_i} + \dot{\xi}_j \partial_{\dot{\xi}_j},
\end{align*}
A Dirac algebroid (resp., Dirac-Lie algebroid) structure on a vector bundle E is an almost Dirac (resp., Dirac) subbundle D of $\mathcal{T}E^*$ being a double vector subbundle, i.e., D is not only a subbundle of $\tau_1 : \mathcal{T}E^* \to E^*$ but also a vector subbundle of the vector bundle $\tau_2 : \mathcal{T}E^* \to TM \oplus_M E$.

\[\nabla_1 = p_a \partial_{p_b} + \dot{x}^j \partial_{\dot{x}^j} + y^i \partial_{y^i} + \dot{x}^b \partial_{\dot{x}^b}, \]
\[\nabla_2 = p_a \partial_{p_b} + \dot{x}^i \partial_{\dot{x}^i} + \dot{x}^j \partial_{\dot{x}^j}. \]
Definition

A Dirac algebroid (resp., Dirac-Lie algebroid) structure on a vector bundle E is an almost Dirac (resp., Dirac) subbundle D of $\mathcal{T}E^*$ being a double vector subbundle, i.e., D is not only a subbundle of $\tau_1 : \mathcal{T}E^* \to E^*$ but also a vector subbundle of the vector bundle $\tau_2 : \mathcal{T}E^* \to TM \oplus_M E$.

\[
\nabla_1 = p_a \partial_{p_b} + \dot{\xi}_j \partial_{\dot{\xi}_j} + y^i \partial_{y^i} + \dot{x}_b \partial_{\dot{x}_b}, \\
\nabla_2 = p_a \partial_{p_b} + \xi_i \partial_{\xi_i} + \dot{\xi}_j \partial_{\dot{\xi}_j},
\]

\[
\tau_1 : (x^a, \xi_i, \dot{x}^b, \dot{\xi}_j, p_c, y^k) \mapsto (x^a, \xi_i), \\
\tau_2 : (x^a, \xi_i, \dot{x}^b, \dot{\xi}_j, p_c, y^k) \mapsto (x^a, \dot{x}^b, y^k),
\]
A Dirac algebroid (resp., Dirac-Lie algebroid) structure on a vector bundle E is an almost Dirac (resp., Dirac) subbundle D of $\mathcal{T}E^*$ being a double vector subbundle, i.e., D is not only a subbundle of $\tau_1 : \mathcal{T}E^* \rightarrow E^*$ but also a vector subbundle of the vector bundle $\tau_2 : \mathcal{T}E^* \rightarrow TM \oplus_M E$.

\[\nabla_1 = p_a \partial_{p_b} + \dot{\xi}_j \partial_{\dot{\xi}_j} + y^i \partial_{y^i} + \dot{x}^b \partial_{\dot{x}^b}, \]

\[\nabla_2 = p_a \partial_{p_b} + \xi_i \partial_{\xi_i} + \dot{\xi}_j \partial_{\dot{\xi}_j} \]
- $Ph_D = \tau_1(D)$ - phase bundle
- $Vel_D = \tau_2(D)$ - velocity bundle (anchor relation)
- $C_D \subset E^* \oplus_M T^* M$ - core bundle for D
The graph of any linear bivector field is a Dirac algebroid,

\[\Pi = \frac{1}{2} c_{ij}^k(x) \xi_k \partial_{\xi_i} \wedge \partial_{\xi_j} + \rho_i^b(x) \partial_{\xi_i} \wedge \partial_x^b, \quad c_{ij}^k(x) = -c_{ji}^k(x), \]

\[D\Pi = \{(x^a, \xi_i, \dot{x}^b, \dot{\xi}_j, p_c, y^k) : \dot{x}^b = \rho_i^b(x)y^k, \quad \dot{\xi}_j = c_{ij}^k(x)y^i \xi_k - \rho_j^a(x)p_a\}. \]

The phase bundle is \(E^* \), the velocity bundle is the graph of \(\rho : E \to TM \), the core bundle is the graph of \(-\rho^* \).

The graph of any linear two-form is a Dirac algebroid,

\[\omega = \frac{1}{2} c_{ab}^k(x) \xi_k dx^a \wedge dx^b + \rho_i^b(x)d\xi_i \wedge dx^b, \quad c_{ab}^k(x) = -c_{ba}^k(x), \]

\[D\omega = \{(x^a, \xi_i, \dot{x}^b, \dot{\xi}_j, p_c, y^k) : y^i = \rho_i^a(x)\dot{x}^a, \quad p_a = c_{ab}^k(x)\xi_k\dot{x}^b - \rho_i^a(x)\dot{\xi}_i\}. \]

The phase bundle is \(E^* \), the velocity bundle is the graph of \(\rho : TM \to E \), the core bundle is the graph of \(-\rho^* \).
The graph of any linear bivector field is a Dirac algebroid,

\[
\Pi = \frac{1}{2} c_{ij}^{k}(x) \xi_k \partial_{\xi i} \wedge \partial_{\xi j} + \rho_{i}^{b}(x) \partial_{\xi i} \wedge \partial_{x b}, \quad c_{ij}^{k}(x) = -c_{ji}^{k}(x),
\]

\[
D_{\Pi} = \{(x^a, \xi_i, \dot{x}^b, \dot{\xi}_j, p_c, y^k) : \dot{x}^b = \rho_{k}^{b}(x)y^k, \ \dot{\xi}_j = c_{ij}^{k}(x)y^i \xi_k - \rho_{j}^{a}(x)p_a\}.
\]

The phase bundle is \(E^*\), the velocity bundle is the graph of \(\rho : E \to TM\), the core bundle is the graph of \(-\rho^*\).

The graph of any linear two-form is a Dirac algebroid,

\[
\omega = \frac{1}{2} c_{ab}^{k}(x) \xi_k dx^a \wedge dx^b + \rho_{i}^{b}(x)d\xi_i \wedge dx^b, \quad c_{ab}^{k}(x) = -c_{ba}^{k}(x),
\]

\[
D_{\omega} = \{(x^a, \xi_i, \dot{x}^b, \dot{\xi}_j, p_c, y^k) : y^i = \rho_{a}^{i}(x)\dot{x}^a, \ p_a = c_{ab}^{k}(x)\xi_k \dot{x}^b - \rho_{a}^{i}(x)\dot{\xi}_i\}.
\]

The phase bundle is \(E^*\), the velocity bundle is the graph of \(\rho : TM \to E\), the core bundle is the graph of \(-\rho^*\).
Due to isotropy condition for D we have the following.

Theorem

The core bundle of a Dirac algebroid D is the annihilator subbundle $\text{Vel}_D^0 \subset T^* M \oplus M E^*$ of the anchor relation Vel_D:

$$\mathcal{C}_D = \text{Vel}_D^0.$$

For Dirac-Lie algebroids we have the following.

Theorem

If D is a Dirac-Lie algebroid, then it induces a Lie algebroid structure on the bundle Vel_D.

JG, KG (IMPAN, UW)

Dirac Algebroids

23/03/2011 17 / 25
Due to isotropy condition for D we have the following.

Theorem

The core bundle of a Dirac algebroid D is the annihilator subbundle $\text{Vel}_D^0 \subset T^ M \oplus_M E^*$ of the anchor relation Vel_D:

$$\mathcal{C}_D = \text{Vel}_D^0.$$*

For Dirac-Lie algebroids we have the following.

Theorem

*If D is a Dirac-Lie algebroid, then it induces a Lie algebroid structure on the bundle Vel_D.***
\[\begin{align*}
TE^* \oplus_{E^*} T^*E^* & \\
\tau_1 & \quad \tau_2 \\
E^* \oplus_M T^*M & \quad TM \oplus_M E \\
\pi & \\
M & \\
\end{align*} \]

\[\begin{align*}
TE^* \oplus_{E^*} T^*E^* \\
\downarrow \\
E^* \times_M (E \oplus_M TM) \\
\downarrow \\
E^* \times_M (E \oplus_M TM) \\
\end{align*} \]

\[\begin{align*}
\tau_1 & \quad \tau_2 \\
\pi & \\
E^* \oplus_M T^*M & \quad TM \oplus_M E \\
\downarrow \\
E^* \times_M (E \oplus_M TM) \\
\downarrow \\
E^* \times_M (E \oplus_M TM) \\
\end{align*} \]

\[\begin{align*}
(x, \xi, \dot{x}, \dot{\xi}, p, y) \\
\downarrow \\
(x, \xi, \dot{x}, y) \\
\end{align*} \]
\[TE^* \oplus_{E^*} T^*E^* \]
\[\tau_1 \]
\[\tau_2 \]
\[E^* \]
\[E^* \oplus_M T^*M \]
\[TM \oplus_M E \]
\[\pi \]
\[M \]

\[E^* \times_M (E \oplus_M TM) \times_M (T^*M \oplus_M E^*) \]

\[(x, \xi, \dot{x}, \dot{\xi}, p, y) \]

\[E^* \times_M (E \oplus_M TM) \]

\[(x, \xi, \dot{x}, y) \]
\[
E^* \times_M (E \oplus_M TM) \times_M (T^* M \oplus_M E^*) \\
\downarrow \\
E^* \times_M (E \oplus_M TM) \\
\]

\[(x, \xi, \dot{x}, \dot{\xi}, p, y) \longleftrightarrow (x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta})\]

- Coordinates in \(E \oplus_M TM = \text{Vel}_D \oplus V \),
 \[(x, \eta, \hat{\eta}) : \quad \text{Vel}_D = \{\hat{\eta} = 0\} \, .\]

- Dual coordinates in \(T^* M \oplus_M E = V^0 \oplus \text{Vel}_D^0 \),
 \[(x, \zeta, \hat{\zeta}) : \quad \text{Vel}_D^0 = \{\zeta = 0\} \, .\]

- For \(D \) we have now
 \[(x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta}) : \quad \hat{\eta} = 0, \quad \hat{\zeta} \text{ arbitrary}, \ldots \]
\[E^* \times_M (E \oplus_M TM) \times_M (T^* M \oplus_M E^*) \]

\[\downarrow \]

\[E^* \times_M (E \oplus_M TM) \]

\[(x, \xi, \dot{x}, \dot{\xi}, p, y) \leftrightarrow (x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta})\]

- Coordinates in \(E \oplus_M TM = \text{Vel}_D \oplus V, \)
 \[(x, \eta, \hat{\eta}) : \quad \text{Vel}_D = \{\hat{\eta} = 0\}.\]

- Dual coordinates in \(T^* M \oplus_M E = V^0 \oplus \text{Vel}_D^0, \)
 \[(x, \zeta, \hat{\zeta}) : \quad \text{Vel}_D^0 = \{\zeta = 0\}.\]

- For \(D \) we have now
 \[(x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta}) : \quad \hat{\eta} = 0, \quad \hat{\zeta} \text{ arbitrary, } \ldots\]
\[
E^* \times_M (E \oplus_M TM) \times_M (T^* M \oplus_M E^*)
\]

\[
\downarrow
\]

\[
E^* \times_M (E \oplus_M TM)
\]

\[
(x, \xi, \dot{x}, \dot{\xi}, p, y) \leftrightarrow (x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta})
\]

- Coordinates in \(E \oplus_M TM = Vel_D \oplus V\),

 \[
 (x, \eta, \hat{\eta}) : \quad Vel_D = \{\hat{\eta} = 0\}.
 \]

- Dual coordinates in \(T^* M \oplus_M E = V^0 \oplus Vel_D^0\),

 \[
 (x, \zeta, \hat{\zeta}) : \quad Vel_D^0 = \{\zeta = 0\}.
 \]

- For \(D\) we have now

 \[
 (x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta}) : \quad \hat{\eta} = 0, \quad \hat{\zeta} \text{ arbitrary}, \ldots
 \]
\[E^* \times_M (E \oplus_M TM) \times_M (T^* M \oplus_M E^*) \]

\[E^* \times_M (E \oplus_M TM) \]

\((x, \xi, \dot{x}, \dot{\xi}, p, y) \leftrightarrow (x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta})\)

- Coordinates in \(E \oplus_M TM = Vel_D \oplus V\),
 \((x, \eta, \hat{\eta}) : \quad Vel_D = \{\hat{\eta} = 0\} .\)

- Dual coordinates in \(T^* M \oplus_M E = V^0 \oplus Vel_D^0\),
 \((x, \zeta, \hat{\zeta}) : \quad Vel_D^0 = \{\zeta = 0\} .\)

- For \(D\) we have now
 \((x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta}) : \quad \hat{\eta} = 0, \quad \hat{\zeta} \text{ arbitrary}, \ldots\)
\[
E^* \times_M (E \oplus_M TM) \times_M (T^* M \oplus_M E^*) \to E^* \times_M (E \oplus_M TM)
\]

\[
(x, \xi, \dot{x}, \dot{\xi}, p, y) \leftrightarrow (x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta})
\]

- Coordinates in \(E \oplus_M TM = \text{Vel}_D \oplus V \),
 \[
 (x, \eta, \hat{\eta}) : \quad \text{Vel}_D = \{ \hat{\eta} = 0 \}.
 \]

- Dual coordinates in \(T^* M \oplus_M E = V^0 \oplus \text{Vel}_D^0 \),
 \[
 (x, \zeta, \hat{\zeta}) : \quad \text{Vel}_D^0 = \{ \zeta = 0 \}.
 \]

- For \(D \) we have now
 \[
 (x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta}) : \quad \hat{\eta} = 0, \quad \hat{\zeta} \text{ arbitrary}, \ldots
 \]

JG, KG (IMPAN, UW)
For D we have now

$$(x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta}) : \hat{\eta} = 0, \quad \hat{\zeta} \text{ arbitrary}, \ldots$$

More conditions

$$\zeta_k = c^i_{jk}(x)\eta^i\xi_i, \quad \text{isotropy gives} \quad c^i_{jk}(x) = -c^i_{kj}(x).$$

If $Ph_D \subsetneq E^*$

$$(x, \hat{x}, \xi, \hat{\xi}) : \quad M_D = \{\hat{x} = 0\}, \quad Ph_D = \{\hat{x} = 0, \hat{\xi} = 0\}.$$
• For D we have now

$$(x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta}) : \quad \hat{\eta} = 0, \quad \hat{\zeta} \text{ arbitrary}, \quad \ldots$$

• More conditions

$$\zeta_k = c^i_{jk}(x) \eta^j \xi_i, \quad \text{isotropy gives} \quad c^i_{jk}(x) = -c^i_{kj}(x).$$

• If $Ph_D \subsetneq E^*$

$$(x, \hat{x}, \xi, \hat{\xi}) : \quad M_D = \{\hat{x} = 0\}, \quad Ph_D = \{\hat{x} = 0, \hat{\xi} = 0\}.$$
For D we have now

$$(x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta}) : \hat{\eta} = 0, \hat{\zeta} \text{ arbitrary}, \ldots$$

More conditions

$$\zeta_k = c^i_{jk}(x)\eta^j\xi_i, \text{ isotropy gives } c^i_{jk}(x) = -c^i_{kj}(x).$$

If $Ph_D \subsetneq E^*$

$$(x, \hat{x}, \xi, \hat{\xi}) : M_D = \{\hat{x} = 0\}, \ Ph_D = \{\hat{x} = 0, \hat{\xi} = 0\}.$$

Theorem

In the introduced coordinates we have

$$D = \{(x, \hat{x}, \xi, \hat{\xi}, \eta, \hat{\eta}, \zeta, \hat{\zeta}) : \hat{x} = 0, \hat{\xi} = 0, \hat{\eta} = 0, \zeta_k = c^i_{jk}(x)\eta^j\xi_i\}.$$
For D we have now

$$(x, \xi, \eta, \hat{\eta}, \zeta, \hat{\zeta}) : \quad \hat{\eta} = 0, \quad \hat{\zeta} \text{ arbitrary, } \ldots$$

More conditions

$$\zeta_k = c^i_{jk}(x) \eta^j \xi_i, \quad \text{isotropy gives } \quad c^i_{jk}(x) = -c^i_{kj}(x).$$

If $Ph_D \subseteq E^*$

$$(x, \hat{x}, \xi, \hat{\xi}) : \quad M_D = \{\hat{x} = 0\}, \quad Ph_D = \{\hat{x} = 0, \hat{\xi} = 0\}.$$

Theorem

In the introduced coordinates we have

$$D = \{(x, \hat{x}, \xi, \hat{\xi}, \eta, \hat{\eta}, \zeta, \hat{\zeta}) : \quad \hat{x} = 0, \quad \hat{\xi} = 0, \quad \hat{\eta} = 0, \quad \zeta_k = c^i_{jk}(x) \eta^j \xi_i\}.$$
Example with application

We start with a Dirac algebroid D and a vector subbundle $V \subset Vel_D$.

- $V \subset Vel_D \subset E \oplus_M TM$
- $\tilde{V} = (\tau_2^D)^{-1}(V)$;
- $V^0 \subset T^*M \oplus_M E^*$, $V^0 \supset C_D$
- $D^V = \tilde{V} + V^0$

Definition

The Dirac algebroid D^V is called induced from D by the subbundle V.
Example with application

We start with a Dirac algebroid D and a vector subbundle $V \subset Vel_D$.

Definition

The Dirac algebroid D^V is called induced from D by the subbundle V.

- $V \subset Vel_D \subset E \oplus_M TM$
- $\tilde{V} = (\tau^D_2)^{-1}(V)$;
- $V^0 \subset T^*M \oplus_M E^*$, $V^0 \supset C_D$
- $D^V = \tilde{V} + V^0$
Example with application

We start with a Dirac algebroid D and a vector subbundle $V \subset Vel_D$.

- $V \subset Vel_D \subset E \oplus_M TM$
- $\tilde{V} = (\tau_2^D)^{-1}(V)$;
- $V^0 \subset T^*M \oplus_M E^*$, $V^0 \supset C_D$
- $D^V = \tilde{V} + V^0$

Definition

The Dirac algebroid D^V is called induced from D by the subbundle V.

JG, KG (IMPAN, UW)
Dirac Algebroids
23/03/2011 21 / 25
Example with application

We start with a Dirac algebroid D and a vector subbundle $V \subset Vel_D$.

\begin{itemize}
 \item $V \subset Vel_D \subset E \oplus_M TM$
 \item $\tilde{V} = (\tau_2^D)^{-1}(V)$;
 \item $V^0 \subset T^*M \oplus_M E^*$, $V^0 \supset C_D$
 \item $D^V = \tilde{V} + V^0$
\end{itemize}

Definition

The Dirac algebroid D^V is called induced from D by the subbundle V.
Example with application

We start with a Dirac algebroid D and a vector subbundle $V \subset Vel_D$.

\begin{itemize}
 \item $V \subset Vel_D \subset E \oplus_M TM$
 \item $\tilde{V} = (\tau_2^D)^{-1}(V)$;
 \item $V^0 \subset T^*M \oplus_M E^*$, $V^0 \supset C_D$
 \item $D^V = \tilde{V} + V^0$
\end{itemize}

Definition

The Dirac algebroid D^V is called induced from D by the subbundle V.

\begin{itemize}
 \item τ_1^D
 \item τ_2^D
 \item π^D
 \item τ_1^D
 \item τ_2^D
 \item π^D
\end{itemize}
Example with application
We start with a Dirac algebroid D and a vector subbundle $V \subset \text{Vel}_D$.

\[\begin{align*}
& \text{Definition} \\
& \text{The Dirac algebroid } D^V \text{ is called } \text{induced} \text{ from } D \text{ by the subbundle } V.
\end{align*} \]
Dirac algebroids in mechanics

How to obtain phase equations from a Lagrangian (or Hamiltonian):

- Bundle of configurations: T^*M, phase bundle: T^*T^*M.

$$D_L = \alpha^{-1}_M(dL(TM)), \quad D_H = \tilde{\omega}^{-1}_M(dH(T^*M)).$$
Dirac algebroids in mechanics

How to obtain phase equations from a Lagrangian (or Hamiltonian):

- Bundle of configurations: TM, phase bundle: T^*M.

\[
D_L = \alpha_M^{-1}(dL(TM)), \quad D_H = \tilde{\omega}_M^{-1}(dH(T^*M)).
\]
Bundle of configurations: E (skew-algebroid), phase bundle: E^*.

\[DL = \varepsilon(dL(E)), \quad DH = \tilde{\Pi}(dH(E^*)). \]
Bundle of configurations: E (skew-algebroid), constraints $W \subset E$.

- W defines $V = \{y + v \in E \oplus_M TM : y \in W, \ v = \rho(y)\} \subset Vel_{D\pi}$.
- We induce D^V_{π}.
- D^V_{π} gives the relations

$$\varepsilon_V : T^*E \longrightarrow TE^*, \quad \beta_V : T^*E^* \longrightarrow TE^*.$$

J. Pradines: Fibrés vectoriels doubles et calcul des jets non holonomes (French), Notes polycopiées, Amiens, 1974.

J. Pradines: Fibrés vectoriels doubles et calcul des jets non holonomes (French), Notes polycopiées, Amiens, 1974.

I. Y. Dorfman: Dirac structures of integrable evolution equations.

J. Pradines: Fibrés vectoriels doubles et calcul des jets non holonomes (French), Notes polycopiées, Amiens, 1974.

J. Pradines: Fibrés vectoriels doubles et calcul des jets non holonomes (French), Notes polycopiées, Amiens, 1974.

