A SYMPLETIC APPROACH TO FIELD
THEORY OF ELLIPTIC TYPE

by

P. URBANSKI
Department of Mathematical Methods in Physics
UNIVERSITY OF WARSAW

Text presented for publication in December 1981



g

Rt

B sl Lk

RS AR SRR




INTRODUCTION

Until recently symplectic methods have been used almost exclusive
ly in comnection with the study of time evolution of physical systems.
Symplectic formulations of Hami Ltonian mechanies have been well popular-—
ized (T[], [£], (2] ). Bamiltonian formulations of field theories are
also well known ( [4], [51 ).Recent work of W.M.Tulezyjew unifies Hamil-
tonian and Lagrangian formulations of mechanics within one symplectic
framework (see vef. (1], [6] - [1£] ) and extends the use of symplectic
methods to the study of both staties and dynamies of reciprocal systems
( (101, (28] , [14]). In particular the general framework has been
applied to field theory ( [25] ).

In the present paper we study the analysis of limear elliptic par
tial differential equations within the symplectic framework. The concep—
tual structure of this analysis was outlined in an unpublished paper of
V.M. Tulezyjew ( [16] ).

The paper consists of i chapters. The first two contain an ex—
tract of W.M.Tulesyjew's paper [16] . Chapter III contains the proofs of
isomorphism theorems. These theorems are well known for smooth fields (see
ref. [17] . [ 18] ).

In Chapter IV a symplectic interpretation of the £somorphism the~
orems 18 given. ‘

Reductions of field dynamics are deseribed in Chapter V.

A symplectic interpretation of the Green's funetion is given in
Chapter VI.
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CHAPTER I
A SYMPLECTIC FRAMEWORK FOR LINEAR FIELD THEORY (*)

In this and the subsequent chapters we present the prinmcipal ele

ments of the symplectic framework for linear field theories.
. Only smooth fields are considered. Proofs of most statements are
omitted. Topological aspects of the framework are discussed in later chap

ters.

1. The field bundle and the state bundle.

Throughout this paper we use the following notation:

M - an open domain in R.

M>t - a point in M, coordinate representation of t - (ta) .
Field bundle X - a vector bundle of rank n over M.

X ~ an element of X, coordipates of x - (tq,xA),

X — a section of X, coordinate representation xA(t),

X — the vector space of sections of X over M.

Source bundle F: = Hom(X; Am‘l‘*M)

f - an element of F, coordinate representation of

1

£- (%), fx = fAXA att ... ac®.

£

£ - a section of F, coordinate representation f A(t),

F - the vector space of sections of F over M.
Stress bundle P: = Hom(X;Am-lT*M)
P — an element of P, coordinate representation of

P - (ta,pZ). PX = (—l)k_lprA dt:1 veok oo, at®

(*) After W.M. Tulczyjew [16 .



p-a section of P, coordinate representation tgz(t)
The bundle ¥: =P @ F
v — an element of Y,
y-a section of Y,
Y - the space of section of ¥
State bundle S = (X0 X) 0 Y
s - an element of 8§,
- a section of 8,

4
E_ the space of sections of 8 over M.

2. Symplectic spaces associated with currents.

Let T be an m-current (see e.g. [19] or T20]) with compact sup
port contained in M.
Let ,\;5-@ X, y be sections of X® X and Y over M.

We introduce the bilinear form
X0 x¥2E0xy) —><EOXy>q¢ =<T,d(px) - fx>e€eR. (1.2.1)

In terms of this mapping we define spaces

0.(0) : ={50X>x0x: <z ® x,y>, =0 for each yeYl
OT(Y) : ={..¥9.5I: ::75@;52 ’1‘=0 for each é@geﬁ@é}

Quotient spaces (X @ X). : = (X ® X/
T

and Y: =Y/ together with the bilinear mapping

T 0 $9)

<, T (X ® X) p:4 Y >R induced by (1.2.1) form a dual pair.
Let X‘l‘ be the image of X ® {0} in (X8 X) under the canoni-

cal projection.

in the same way we introduce spaces X’l" PT and FT'

1.2.2. Proposition

There are canonical identifications
(X@X)T"—'XT@XT, YT=PT®FT.’

BY Zps Zps Pp oo £T e.t.c. we shall denote equlvalence classes



in XT, XT, PT, FT e.t.c.—of sections .’E’§’£’£ e.t.c. .
The space S'l‘ = (XT ] XT) (6] (PT ® FT) and the bilinear mapping

- - ' )
bpt Sp XSy 2B By, i @ xp Byy) — < x @y, v,
- % b ola
<xT + xT, yT>T€R (1.2.3)

form a symplectic vector space.
It is obvious that
<§Tex,r, pTefT>T=<£T@o, Pp®0>, + <0@x,00f >
We set <;1"PT>T : =<£T@0, pT@O>T (L.2.8
<ﬁﬁfﬁ==<°@%’°@%>T

5. Example. Dirac currents.

Let vsAmTt(M) be a non-zero m-vector at teM.
T will denote the current defined by v.
We have

Since v # O it follows that spaces XT XT P and FT depend
on t only. Consequently we denote these spaces by Xt’X Pt’gt and their

elements by Xt’xt’Et’f .

1.8.1. Proposition. At each point teM, }-( is the jet space J (X),

X = J‘t’(x), F

(s}
X F = Jt(F) and 131: is a quotlent space of J (P) -

In a coordlnate system xr can be represented by x (t) and
2?:(':) : —B x (t)

Slmllarly, we represent p. by x (t), -£T by ~f‘A(t)’ Br by
.EA(t) and 8)\ £A(t) :,\?A(t)

If v=23.A... A9 then
1 m

- _-A ~A, . A
SZp» BPp>q =X (8)p, (6) + %, (t)p, ()

- _ A



4, Example. Bounded domains.

In this section T will denote a current defined by an oriented,

compact domain @ with smooth boundary oQ.

1.4.1. Proposition. %T is the space of sections of X over 39,
XT is the space of sections of X over @,

PT is the space of restrictions of sections of P over 3% to the tangent
bundle T(OQ),

FT is the space of sections of F over (.4

We have

<:}ET @ &[, P—T ® "f"r>T = 1392:}5 —IQ‘E p:4 (1.4.2)

1f we assume the existence of a Riemannian strueture on M we can
write (1.4,2). in the form (see [ié] )
<3 @x.p @E>.=| pids-|£x av
Er V¥ Ep B ¥V T Bp% ETC R
s @
where P, is the normal to 32 component of pﬁ. ds is the surface ele-

ment on 0f.

5. Special symplectic structures (s.s.s.)
Let (Z,w) be a symplectic space. By.a special symplectic structure
in I we understand a dual pair (V,V*,<, >) and projections
. I:2 —V, p:% — V&  such that the mapping

I@p: T ——> VOV is a symplectomorphism onto V @ V* with
the canonical symplectic structure.
We consider the following special symplectic structures in ST for

each current T

(i) field s.s.S.

v=% 8% , VA=P @F

< %Xp @ x5, Py @ £y > =<x; ® x5, Py @ £77 5



and T,p are canonical projectioms.

(ii) stress-source or Neumann—-source S.S.S.
0%

—<xp @ xp, pp @ £,

= %
v PT ©] FT . v

I

% >
<pp @ £, % @ x;
and T,p are canonical projections.

(iii) stress—field or Neumann—field s.s.s.

V=x,0P , v*=§T0FT

<xp O pgp o, %, 8 f'r>’=/_<x'r > Pp>qgt <Xp o fp>4

and 1II,p are canonical projections.

(iv) field- source or Dirichlet-source s.s.S.

vV = XT 5} FT, V& = XT (] PT
<Ep O fp0 Xp @ pp> =g, Pprp m<xp s fp2g
6. Lagrangian subspaces.

Let (Z,w) be a symplectic space and let WCE. We define a
subspace WY : = {sez : wi(s,w) =0 ¥ueWl.

We say that
(i) W is isotropic if W§ D W
(ii) W is coisotropic if W§CW

(iii) W is Lagrangian if W= W§

1.6.1. Proposition. W is Lagrangian iff it is maximal (minimal) isotropic

(coisotropic) .

1.6.2. Proposition. Let be L=V @ V&, WCX an isotropic subspace and
(W) = V where N is the canonical projection M:% —> V. Then W is

Lagrangian.



Proof. Suppose - W' is not maximal. Then there exists. v, >} v: eW such
that Wu{vo + vg} is isotropic. But, since I() =V, for each ve¥

there exists A(¥) eV, A(vo), # vg, such that v @ A(®) e W.
Hence

w(v 8 A7, @ A7) = 0= <v, A )2 =<y, AE) > and
Cw(v 8 A(.V),vo@ vg)’= 0 =<v,v_>=<V, A(¥) > for each. veV.

1t follows that A(vo). = vg . P>

7. Generating_ fimctions.

Let =V ® V* be a symplectic space with the canonical symplectic
structure. '

Let WCE be a Lagrangian subspace and let VIC.? _be the image of
W under the canonical projection. V, is called the constraint subspace.

The function

I:W w=v® vk —<v,v*> defined on W does not depend on v*
for fixed v:

if vOvx, v© v{sw then <v,v“i¢.>-<v,v*>= 0 since W is isotropiec.

We define a funection L on ?1.
L) =-]2i <>v,v*> where v @ v¢eW.

Since 1. is a quadratic fumction, we can define its differemtial

dl. through the polarization formmla:
<> v',dL(v) > = L(v+v') - L) - LG,
We obtain the following proposition.
1.7.1. Proposition
W=1{Zve vk veV, <y, dL(v) > =<v',v*> ¥v'~eYi}0

We say that 1 is the generating function of the Lagrangian sub~

space W.
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1f the space V* is sufficiently large a. quadratic functien is a

generating function of a Lagrangian subspace (see e.g. ]:21] ) 8

8. Field dynamics.

Let us denote by § the set :—_U 5, where §, = gt @ X, e B @ E.
is the symplectic space associated with a Dirac current.

It can be shown that § is a vector hundle called the infinitesi-
mal state bundle. The dynamics is defined hy the Lagrangian subbundle
(see [21]) D of S. This subbundle can he interpreted as defining a
system of differential equations called field equatioms.

A section s of S over M is said to be a solution of the field
equations if for each point teM the equivalence class of s in _S_t

belongs to Qt.

Solutions of the field equations form the vector subspace D of §.
In the following we shall assume that 3-5@ x@®p® feD implies g = X.

(1.8.1)
For each current T equivalence classes of elements of D fomrm

the veector space DT'

1.8.2. Proposition ‘
D, is the isotropic subspace of S'I."

In the following we shall assume that l),r

. We shall refer to this subspace as the field dynamics asso-

is the Lagrangian sub—
space of ST
- ciated with the current T.

9. Generating fumctions of dynamics.

Since D : is the Lagrangian subspace of § c it has a gemerating
function with respect to each s.s.s. (see seetion 7).
As an example we shall consider field s.s.s.

For each point tcM there is a canonical composition
~ - - .
R, 0%)x @ OF) G 0x.7)—y& 0x)erTs M

such that for each don—zere vector v at t we have

<v,zt.(§t @ §t) > =<1::t 8 x where T 1is the Dirac current

w2 Le 7
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defined by v.
For %, @ X, @ Py 5} £t e D we define the mapping

L (x @ x )— (Et ® f ) (x ® x ) called the Lagrangian demsity.
Arguments used in section 7 show that L is well defined om the

constaint subspace.

1.9.1. Proposition

Generating function Lg of DT (with respect to the field s.s.s.)

is given by the formula
Nz e g) =<1, G 6 0>
¥ ¥ Fp -

where L (x 0] _) is a section of APrx(M) defined by
(x @ x)(t) = L (x 0 §t).

Remark: A similar formula is valid for the Neumann—-field s.s.s.



CHAPTER ITL
INFINITESIMAL DYNAMICS

In this chapter we discuss the infinitesimal dynamics with respect
to the field and Neumann-field s.s.s. . Relations between field and Neu-
mann-field approaches will be established. At the end of the chapter

Green's formulae will he presénted.

1. Infinitesimal dynamics in the field s.s.s.

The assumption 1.8.1 implies the existence of the constBaint in
X 8 X - We may express this constraint by the equallty n° x =X, where
n° is the canonical projection from the l-jet spaece to the G—Jet space.,
We say that the dynamiecs is regular with respect to the field s.s.s. if
this is the only constraint.

1t means that the dynamics is genmerated by a quadratic fumection on

this constraint suhspace. We shall parametrize the constraint subspace by

xt. Using a local coordinate representatlon (see 1.3.) we have that LN

is a quadratic funetion of (x X ). The most general form of LN is then

A B 1

N -A -A 1 A -A -B
-2- X

L(x,x) = X X + AM

Auv -A -B
AB AB u-

E AB Xu X’\} 2.1.1.

; u uv - . -
where AAB 2 A AR and A AR are real-valued functions on M which
satisfy symmetry conditions

= Avu

. v
AL = A ., AM B *

AB BA AB

According to 1.7.1 and 1.3. the infinitesimal dynamics is de~
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scribed by

P
A AB v
AB (2.1.2.)
- b B —-B
Py fA A BAX + }\AB

The space of solutions of the field equations is then described
by the relations

A -A .
X =X (the constraint condition)
and
v By B u _B
Pa=Map v E A
(2.1.3)
v o_ - 1 M B B
avEA 'EA kﬁAauf& +)"AB»§'-
It is the Lagrange form of the field equations.
Equivalently, we write
x=x
and
TR TR . o= Y B, ,u B
Py )’(A(t’z‘-’av %) =2 AB qx ¢+ A AR &
_ . N B R
rf-A EA(C,E, av&, amgg) A ABauavg + (au Mgt
Vo _ L,V B v B
AT AR LN S CHE AT M) X -

This is the Euler form of the field equations. The second order

differential operator e: X — F s called the Euler-Lagrange operator,

2. Infinitesimal dynamics in the Neumann-field s.s.s.

Now, suppose that for each teM the mf].m.te,sz.mal dynamms

projects onto X °} P . It is then gemerated by a quadratlc function LD

on X 8 P . The local expression of the most general form of LD is
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DA v-, 1 = AB 1 AR u v —~AB v
L&) =5 Mg Xx +5 X pyppt X p, pp+
B 1 -AB- -
+2 AB PA x5 +~A pA x4t 5 A Py Py (2.2.1)

where all coefficients A are real-valued functions on M which satify

symnetry conditions:

The infinitesimal dynamics is then described by

—A -AB - ~A B —BA Y
TXEA U pg AR X A A g
=A ~AB v —AB - by B (2.2.2)
—_— = +
xu Auv Py A Py + Au X
_ = B B v, = -
fA = AAB X + Av A pB+ ABA Py

The assumption (1.8.1) does not induce constraints but limits the
choice of generating functions. The admissible generating function must

satisfy the following conditions:

=0, ==, B_, wheres‘;*

is the Kromecker symbol.

Hence the general form of the admissible generating function is

DA-—_‘l-AB_TE_-A.Bu = - A
L (% ,pB,pC) =3 AABX X +3 Auv pB + AAB ~ P,X (2.2.3)

The infinitesimal dynamies is then described by relations

A A
X =X

A _ _<AB v _-A B

x, = AHV Py AuB X (2.2.4)
__ = B_B v _ -

fA = " A X A, PRt

5. The characterization of D. Neumann-field approach.

According to (1.8) D is the set of solution of the field equations
(see 2.2.4.):



form.
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A _ A
FERE
-A__=AB v _ A _B
_ - B _ 3B
£y =" MeE T NalRpti 2

This is the local expression of the field equations in the Lagrange

We see that not for each section X @ p the system 2.3.1. can be

integrated.

The integrability conditions are:

A _ _=AB -A _B ,
augg = Auv Pp luBE (2.3.2)

Remark. 1f iﬁﬁ is invertible, 2.3.2 means that

v v (xB

_ c
EA bt A*’auﬁ)'

4. A Legendre transformation.

in 2.1. and 2.2. we described infinitesimal dynanu.cs in two dif

ferent ways. Lt is easy to see that the dynamics is regular with respect

to the field s.s.s. (2.1) and there is no constraint in Neumann-field
s.8.8. iff the matrix of rank =n.m A= [)\ ] is invertible.

in that case

~BA _ _ ., ~L.BA
A T (2 )vu
AB. _ ,.~1,BA .
- v -1,DC l—l
AAB = AAB A DA _()\ )W ?s

Formulae '2.4.1. are valid for example when the Euler-Lagrange

operator ¢ is elliptic.

5. Green's formulae.

let 3@x50p®f and 5 @x @p' ©f bein D. Since Dy

is isotropie for each current T, we have that
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< 3T,p.x' - P"'.’i >-<T,f. '-fl.x>= 0 (2.5.1)

~n

But - D 1is described by 2.1.4, so 2.5.1. is equivalent to the

following

2.5.2. Proposition

1f x and 5' are elements of X then

AT, M(@x' ~MEDx >-<T, e(@x' - e@x)x >=0
for each current T. Consequently,
d{M)R' ~MEDIx - c@x'" + e Gz = 0.9

The first equality in the proposition is easily recognized as an
abstract version of the second Green's formula.
In the case when T 1is an oriented domain 2 we get, using

coordinate systems,

A A A
[y n¥y as, [y, xas =
| (2.5.3)
=[x e @av - [ ¢ xav

According to 1.7.1., for .each current T the dynamics D,

r 1s
described as follows
= < . w - -‘.! ] -
Dy, {STagsr@ggrégT@zT. X §’<ﬁ’2T>T0<§T’£T >
=G @ x, X, O x) ¥ELOx! with ¥ =x'} | (2.5.6)
or equivalently
= < d . - = 7 ? =
D {STSA;T@E&I@RT@;T' <EpPp gt Epefpdg =
= D ] t
Ay (xp @ proZy @ pp) ¥xp ® preX; O 2 ) @5

Using 1.9.1. and 2.1.4. it follows from 2.5.4. that

<97, M(x)x' > -<T, e(Rg' > =< T,dLN(§,§') > (2.5.6)



This is an abstract form of the first Geen's formula.

An analogue of this formula for the Neumann—field s.s.S.
following equation. We used the fact, that Lg = I}; —<x,1,,pT>T

which follows directly from 1.7. and 1.5.
- Te Se 1 : = N 1 - oty
<9T,p X > <T9£§ >=<T,dL (X,§ )> <ﬁ,P X >

- <fT,p’ x> for each 3'65, g'a_lz.

17

is the
(2.5.%)



CHAPTER TII
ISOMDRPHISMS THEOREMS

From now on we assume that the Euler-Lagrange operator £ is elliptic
with smooth coefficients A. This is the situation in statie systems. For
elliptic boundary problems there are well known isomorphisms theorems (e.
g. [}j] s [}S] ). In fact there are series of theorems parametrized by the
Sobolev-space index s (s> 2). In this chapter we shall complete these
series to each real value s. We use transposition and interpolation meth-
ods following ideas of Lions and Magenes ( [?2] ). ‘

Since our tramsposition procedure differs from that of Lions and
Magenes, our isomorphisms theorems are different as well.

We should also mention the work of Rojtberg ( E?i]_— [?6] ), who
proved a complet series of isamorphisms,‘although his theorems are much weaker
than ours and have no symplectie interpretation.

Since we are interested in field theory, we shall deal with selfad
joint problems only. In fact we shall consider Neumann and Dirichlet prob
lems only. But the methods used in the paper may be applied to other
boundary problems as well as to nonself-adjoint dynamics.

Corresponding results will be presented elsewhere.

In the following QCM will denote a bounded, closed, oriented
domain with the smooth boundary 23Q.

1. Sobolev spaces. Strong symplectic structures.

We saw in 1.4. that for a current T which is an oriented, bounded

\ = . . =S
domain R, XT 1s the space of sections of X over 39. Let X denote
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the Sobolev space i (89;X) (see [27] ) of sections over 32 of the bundle
X, seR. For s<0, :}gs is the corresponding space of sections—distriba-
utions (see e.g. [28]).

An element p eHom(X, Am-lT*M) in a fiber over ted3Q defines imn
a natural way an element of Hom(X| a05. Am-l‘r*(aﬂ)). We shall denote this
bundle by le.

Let P°  depote the space HS(SQ; P‘B.Q)" Tt is obvious that P is
the dual space to 3{8 with the duality 1.2.4. Now we introduce topoleg

ical wvector .spaces
‘_}ES = HS(Sz :X), :ﬁ:s = Es(ﬂ;F) for s82>0.

For s<0 we define ’_}_{.S’ as a strong dual space to E_S and vice
~versa. Again the duality is that of 1.2.4.
In the following we shall deal with state spaces

Ss,s'
o

=@ exH e @ OFT ss'eR (.11

The reason of the choice of these spaces is that we went to deal
with strong symplectic structures only.

The assumption 1.8.1. implies that the dynamics is in the sub-

space X, = 5‘39 A : A (3.1.2)

providing this equation is meaningful. It is well known (see e.g. EZZ] b
that for s >-]—2'- the mapping X2X —> X|,9 defines by continuity the

surjection

1
s s 2

r—X

This is not true for s_<_—§-. Hence the condition . 3.1.2, is

meaningful for s>?1)_- only.

On the other hand we see, that the most. natural choice for s'
(assuming that we shall deal with field s.s.s.) is. s' =s - -]2—'. (1.8.1)

implies the existence of the constraint in §s -~z @ AX;_S for s >—;~. The

constraint subspace we demote by ()};.
The reduction (see E29:| and Chapter V) of B8

—

$»57 7 with respect
. . . s - A
to this constraint leads to the symplectic space §H =2§§ ® z_; where
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R
Iy =@ ®F )/ (3.1.3)
with
1
Sty s
k={pefep OF " <x|ppp >=<ZE> ¥xeX)
(we write <£:,p> instead of <3‘_§,p>,1, and -<x,f> instead of <§,§1> T).
In order to unify the notation we put ‘}_§§ and MY; for ‘}_{_S 2@ g_{_s

and ~I_’—s * % ® F° when s<% .
The case s =% will be considered later. One can easily see that
if s >—;— then 32; is isomorphic to }_S and X;Is is isomorphic to E-S.
The most convenient choice of symplectic spaces with distinguished
field-Neumann s.s.s. is different than in the case of the field s.s.s. .
In this case a constraint appears as a consequence of the relation
EZ =HX(§) in D.
Firs;, we note that the most natural choice of the index s' is

s' =~ g5+ 5+ For fixed dynamics, which we denote by the symbol A, we de-
fine
3
s s -3 3
XD)\:={X@P€ ®p : p =M(x) } for s>=
8= =
= 2{\3 ® P 2 for s<% (3.1.4)
and
3
-5 + =
-s 2 -s 3
ZD,A =X ®F /K}\ for s<3
o vl
=X ® F s for s>% .
where e 3
KA={§\@§‘e,§ ®F <X HE >=-<x,£> ¥x e X}
s S -s
5p,a 5,09 %,

As before we note that ‘_)EIS) N is isomorphic to X° and I‘;s}\ is
s - Ay

isomorphic to E—s for s >5 .

The case g = 3 will be considered later.
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The following Proposition is an obvious consequence of the Rellich's

lemma.

3.1.5. Propostition

For s>s' we have the following canonical injections which are

compact:
s s? s s'
—_— . _—
) - ~— ‘,7\ P .,x
s Ys‘ s Ys‘
“N >y o a7 ) e
2. Interpolation theorems.

From 3.1.5. it follows that the questlon - on the
interpolation properties of families {& }59‘_ {X.D } Si& 5 is well posed.
This properties play fundamental role in our concept of- i isomorphism
theorems.

in our proofs of interpolation theorems we follow methods used in
E?Z] . We also refer to this work for pbasic concepts of the interpolation

of Hilbert spaces.

3.2.1. Theorem. Let be s,s’ %A%3 s>s',0<0<1, ©Os' + (1-9)s #-% .
Then

(1-8)s+0s’.
%] = X

z.”m

EE

Proof.

Let us note that it is sufficient to prove the relatioms

k o _ ¢ (1-9)k _ 1
E‘N’?’En]e"im ‘ a-0k # 5 |
, 2.2.2)
[%; ,‘§§%]1 = §§ where k is an integer.

2

~ In fact, by the second interpolation theorem, for O<s'<s<k it

follows from 3.2.2. that

EN XN] I_XN XN_[Q where e1 =(1-8) (1- %)4.9(1_ %') .
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For O0>s>s'>~k the theorem is obvious.

For k>s>0>s' we have

[, s ]_k ~k| A _1 _ &
X ’351\1_16 = 55«_]9 where 8, =3 (1-8)(- )
1
2

but

E(N -E[ =EX§ "31;):{26 for ‘e<%
=59,

The proof of both properties 3.2.2. will follow simultaneously.

and

]

E{N —k}zs_ for e>% .

A. The inclusion E{‘ XN:' (1 e)k. {The inclusion E_Ig . 'K;Iﬂ IC }E{;
2

is obvious).

We notice that with local trlvallzftlon and coordinate system in
M we can reduce the problem to }SN H Z (R ) ® H (Rm) where

R ={teR: t =0}, R = {ter™: ¢ >0}, R = {ter™: tmf_O},

and

1
Xz 0ges 2 & 0 B°®D: x

Now, suppose we have constructed a mapping
1

2 . .
p: H (RZ) 0] Ho(Rf) e HO(Rm) with the properties:

(i) p is a continuous injection and p(_gc ® x) a - X
(ii) for §er(RT) p(x 2B xe Hk(Rm) *
R

(iii) p defines the continSous mapping

1
o : H Z(R)@H(R)Dx‘;' 75 &™)

(iv) if p(x@x)eH(R ), s>%, then 3-5=35 n
R
o




By the interpolation theorem we bave then that the mapping

o [,ISE . »’—iﬁ]e ———>l:Hk(R‘“),H°(Rm)]e - B°@) el -3

is continuous.

From (iv) it follows that the induced mapping

.o DE}%‘ , ggg]e > x0x—px0 §)| CRICT-EOES «
R
o
is the ineclusion.

We pass to the construction of p.

ZSt step. 1

Let :r_:-e H 2(Rlz:).. We define :}ge Ho(Rm) by its Fourier transform
with respect to the variables (tl...tm_l} =3 t!

2t 2 = 56D oarle’ | HY2.™  where

¢SC:(R) is suech that ¢(0) = 1.

1
. s - —
We see that X(0) = %X. Moreover, if ;:_ eH Z(R:), then
, 1 ’ 2
~ 112 2\ m 2.8 |22, (it E" 2.2 m \ .,
IzI2 = fasler %™ 1D® 1z17] Je © as[g']D that” | agrae <

-1
< fasler|? +1MD 1312 dcaxled 2 e 1%asler |H lag e -

N =

- fasle 1D Haen 12 asde 121D locasler | 2 af™ag'=

- Jasle 1D RE P arle Prarle 1D 15

2 :
caslethH Tadtrag <

——1; -
ccfaslenh® T genP ezl
g = -

2
2" step

Let {ci}li:l be a set of mumbers such that
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k .
] @le. =1 for j=o0
. i
i=1
=0 for j=1,...,k-1
We see that the function
- k o
x(t) = ) c,x(t',it")  has properties:
i=1
x(t) o= &Y, plx o =0for j=1,...k1,
t =0 t =0
where D =-—%§ .
ot s - 1
Moreover, the mapping H 2(R2) E) _}—5 — g_:_eHS(Rm') is continuous

for O<s<m.

3Pd step
For §sH°(RT) let us define 'gle:Ho(RT)‘ by
k
5 (e, = ] a,x(t',-it™) (t"<0), where
i=1
k . 0 for =0
7 (-i)la, = .

i=1 * 1 for j=1,...,m1

We see, that the mapping

1
)
p: B ")) ® B°(R)) — H°G®™
defined by
m
) X on R+
p(x®x) =
m
B ot % on R_
R
is continuous and if gger(RT) , X=X n thenm p(x @ x) aHk(Rm) and
the mapping Ro

p: 311; —_— Hk(Rm) is continuous,
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Hence, we see immediately that p is the mapping with properties,
(i) - Gv).
B. The inclusion IESII; s ’:X';:]leb __}._gél-elk
We shall use the following characterization of an interpolation
' space (see e.g. [:22:] ):
. for two Hilbert spaces' HCH', an element he E;’ Belongs to EH,HEI' e iff

there exists a function EeLZ(R+;H)nHS(R +;H’) such that h() = h,
1

8 = ‘% .
Now, let x 0 xsl(él-e)k. Since

X€ Hv(l-e)k(kf) = Eik(Rf), H.Q(Rm)] e ° there exist
g ®EEMOEREED) G =55)

such that X(0) = x.
By the same argument there exists
1

1
xei’(R;m Z(R’;‘))nﬁs(x;ﬁ 2

m. 1
&) (s =5

with x(0) = x .

We shall construct X and x such that

$0z st(R;gg‘;) n HS(R;Z.g). | (3.2.3)

First, we define the function él by its Fourier tramsform with

respect to t':
k

l(to;i')’ = ;(E') o((1t|g? [2}28 £%) (¢ as before)

IXI1Y

We have

: k i
= 2 = 7s 2.k 3
I 10, = [EE1Zlecar 18715 @ Pasle |y agtar®
O - —
2 k-8 -3 |2 )
=c fa+|e"|D |§(a') |© dagt< e

Al llp . stands for the norm in Hp(R;HS(R:))) and
2
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~ 2 2 "%
Izl 4 = fas [1H8EE e Paser | ae e
7 3
But _ k
- o2 ~ 2s
(6% = [ 5 2e%enar® = 26" add|D :
_k
Cdasler|h 2 Y,
hence
) A K1-0)- 3
|I§,<1||2 1 <Jlzeen?a+ler|H ag' [a+H®] $(0) | %dr <=
I k-1 _1
Thus xlsL (R;H (Rm))f\ﬁ ®:;E 2 (R:)).

Now, let us consider a function 151 defined by its Fourier trans—
form with respect to t° and t':
1

% €%, e = xl(a € 0(0s (5152 &M

It is easy to check (calculations as in the first part of the
proof) that

5, e P RECE™) 0 B @ECR™):

-~ 2 =
Y Jasle' | MA* 126%0 1% a®a <
0

2

2k 72
e Jase D T x%en a® ag<e
and
~ 12
I%)]I5 o = Ja+ 1£°15° |z (17 agfae <
-1
< Jasle 1D 7[5 e 12as1e®) ) ata < -

By the trace theorem (see e.g.[22]):

~ k(1-8)
X e H ®R).
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Let us consider the function on Ri :

X, T X7 P31 o .
t=0
0f course X, ¢ k(l e) (Rm) and for k(1-6) >—;— we have Zo| o= Q.
Let us denote the space of such functions by Hk(’l 8) (Rm) Ro

By Grisvard's theorem (DO] ):

[HE(RT)»,HO(RT)]B - H];(‘l—e) ®) for k(1-6) >%
pk(1-©) @ for k(1-6) <-§- ]

Hence, there exist xzeL R; H (R )){\H ®R; g° (R )) 3.2.4.,

such that 332(0) = Zge
Now, we put X = 31 + 3_2. 0f course
zeL2®;EED) N B E°®))) and %) =

Because of 3.2.4 we have that
% © xeL (ka)(\H ®;x7).

in order to prove that E( X ] = X we use the same method.

it is sufficient to notice that £n the construction of xl we can

- m
1imit ourselves to t >0 and we get an element of

12 3 @) N SR E @)

in fact, the norm of in HS(R;H—k(Rm)) is equivalent to

s -k o £°>0
the norm in H (R3H (Rm)). Now, we get continuous injection whlch is a

surjection. Hence it is an isomorphism. @

Applying interpolation theorem for conjugate spaces we get

3.2.5. Corollary
Let be S>S" S,S'#"%,O<e<1, (]--e)S"'eS' #"“]2;‘.
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Then

~N ?* ~N ~N

In order to prove a similar theerem for the family' {}g 1. 3 we
9 S o

Es Ys’]e _ Y(l-@)s:t&s' Py

use the same technique, however constructions are a little bit more com-

plicated, e.g. we have to make use of the elipticity of an Euler-Lagrange

operator.

3.2.6.

Proof.

Theorem
Let be s,s' # 2 , s>s', 0<6<1, 6s' + (1-9)s # —Z—,. A-elliptie

(i.e. the corresponding Euler-Lagrange operator is elliptic).Then

Tl _ _(1-8)s+es’
Ale

P SN P <

As in 3.2.1. we reduce the problem to the case ©= RI_:, 20= R‘:,

s=k, 8'=1 and s' = k+2 (6 = %-). We have (see 2.1.)

A

mm
AB

u T B B
W aA® g Bt Mg B -

But we are interested in %E only:

¥ B .m B
R

m ™mm B

Y@ 2 =K (@ =58 5 + Oyp 3,2+ ), v'=1,...,m1.

We chose a trivialization in the bundle X in a such way that

B . . e e s
AB 8 I )\B # 0. It is possible because of elipticity of A.

We put
%'A(_!E) : =AA Bm'g_A A=1,...,0
" . _ ,mv? B m B
%A(;_{‘).fAAB 9,1 X + g X -

In order to prove the inclusion

(1-9) s+és !

l_ggs}‘ ? }D,;le c 4)51)’;\ (3.2.7)
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we shall construct a mapping

-1
2

o: B'@T 5 &M 00 ZEHRY — E @D

as follows:

1
Let be x @ BEHI(RT;Rn) eu Z(R:;Rn), we put

1

- _ o -
Py Ry~ 2 Rm)) A (3.2.8)
()
where 1
I . 2 m. .
W' (x Rm) ed "(R ;R).
(o)

Now, we define a funection %, on " by its Fourier transform

with respect to t':

j =

1
- ) 7 = -
;51(5',1:“1) - (1+[E,'|2) 2 ((1+|g'|2) ) p, where ¢ECQ(R)
with ¢'(0) =1, ¢(o) = 0.
Simple caleulations show that g_gleHl(R;Rn); moreover, if

S —
peH Y(RI:;Rn) » XE€ a° (Rz;Rn) , then % € B° (Rm;Rn) and the mapping

s 2
B> ®%3™ 0 B @R 5> x8p —— x B ®IR)

is continuous.

% - and {a.}g such that
i=1 171i=1

0 for 3§=0,2,...,k~1

We take sets of real numbers {Ci}

k.
L@l =
i=1 1 for j=1
and
k . 0 i=1
Fenie, -
i=1 1 §50,2, ... k1.

. . . n
it is evident that the function %, on R_:
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k k
g{_z(t',tm) : = ‘Z]_ Ci§l(t',itm) +. 7 aig_(t’,-itm), tmi()
l:

i=1
.. 1. m_n
is in H (R_3R).
Let us define p:
m
X on R+
p(x®p) : =
52 on Rif

The following properties of p are easy to verify
(i) p is continuous as the mapping

1
o : H MR @ H 2@NRY — B @™RY

(ii) p 1is continuous as the mapping

3 A
k. .m n 3 m D k KoM,
p: H(R;R) OH (R ;R D Hi o E® :R™
(iii) if oG @ p B ®HEY) , s>3 then
4 = M=) m
RO

With this properties we have, as in 3.2.1.,the inclusion 3.2.7.

- [
The relation [gg; A ® 3}; };]9 o) (1A6)3+es can be proved as in
2 e 2 o~ 2 : s 1
3.2.1. be the comstruction of an element 20 pel™(R; }\) H (R;QED A)
? 9

(1-9)s+6s

such that (o) + p(o) is a given element of . This comstruc
H

tion is analogous to that of 3.2.1. and follows in steps (we shall consid
er the case s' =1), |

3
. ] camf - -
Let be x 0 pe §(l-e)s-!-es c H(1 e)k-!-e(R:z;Rn) ‘@ Ii(1 8) k+8 'f(RI:;Rn)‘.

3
- )+ -
ISt step. P defines p as in 3.2.8. which is in H(l 6).‘ z (R:;Rn).

ans

Hence there exists

3 1
~ k -2 -
- 2 2, m _n o} 2, m 1
P, €L (R;H ®RSRD) NE'R;E “RER™), a= o

such that él(,o) = p.

-
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an step. We introduce
~ 2 kK, m 0 a i,m 0 .
x. e L"®R;E (R3R N A ERE R SR i=1,2
putting
~ 1 1
S = 2,2 2, 72 -
¥, =p; 6,0 lgr |57 e a+er|D where ¢, €C_ (R)
¢;(0) =0, ¢;(0) =1
and

1
% = 3¢2((1+|g'|2) 2 ™ here ¢2€C:(R), ¢,(0)=1, ¢,(0)=0

Z2=E n
&
[+

g d step. We introduce :12_3 in the following way:

2= 0

Let us take x3 = X
t=0

H - X X
237X 73R %

We see that

Zq = 0 (providing € is such that these con-

m - am§3

. £ =0 £ =0 (1-6)k+8,.m__n

ditions are meaningfull) and Zq cH (R R ).
By Grisvard's theorem ([30] ) there exists

~ 2 k,m D ] 1,.m .0 ~ .

§3sL (R;HQ(R+,R NINH (R;HO(R+,R )) such that 353(0) = Zge

Here we use the notation:

k,.m -0 kB o0
H@®,R) = {zge®B (R,R) : 2 =0, 3_x =0},
o+ + 0= L PPN
BLGTED) = e GLED : x| 0.
t =0
th . - _ - ~ ~
4"" step. We observe, that functions X = X + Xyt Eg
p=p, UG L )
= =1 th= 0

form an element x ® p of LZ(R§§ N AHO(R;Z(-{];A)
-~ -~ ’ 2
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such that p(o) =p , x(0) = x.
This completes the proof for sa' = 1.
The proof for s' = -k+2, O = % follows in the same way. @

3.2.9. Corollary.
Let s,s' # -% » 8 >s', O0<6<1, 6s' + (0-8)s # ~ % » A—elliptiec.
Then
s s® (l—e)s-!-es
ED, > I, |5, -

Now, we complete families '{)_Ili} < # _]_._ . {}5;' AA}s 4 3 putting
2

E{N XN] where (l-e)s +6s =% _

. Q’qwlu ZNNI»-»

I;gb 5 §D ] where (l-e)s es2 =%

HWe define

X as their dual space.

1 3

3.2.10. Proposition - 3}% and _Xj , do not depend om the choice of s,s’.
]

Proof.

By 3.2.1. we haveE{N xlg xN] ls, | i=1,2.

By the second interpolation theorem

-1 - =Ly -1y 11 1,11
But (1—6)31+es2 =3 S0 A(l 6)61-!-692 = 2(1 2k)— 2(2 2k)+ 5o

Hence,
F S N

The same can be done for ‘IED )\ >
£

3 | 1

2 . : ' L)

&, ) 1is mot a closed subspace of X @ X
° an

%.NN]H

Unfortunately

PN
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3
& @ 2.

3.2.11. Proposition -
1 3
Lox & o).

2 ioim
N
“341\)”»0
>

) is a proper, dense subspace of

Proof. — We present the proof for 'ZN only.

Suppose that [ ggtﬂ ° e X . It means that for every
1
2 - =0 . : 1 1 o
xeX , xeX there exists X @ §SL (R;XN)I\H (R;XN) such that
1
2

13 sggo. Using the standard

procedure (see proofs of theorems) we get ggzexz such that zz(tm= 0)= x.

x(0) =§ , x(0) = x. Now, let us fix 35182; .

We put x = 2t E and take X 6 g deséribed above. But we can spread

~ ~ ~ ~ 2 1 1 o -~ -
out X to X, that %@ x,el ®R;X)NH (R;Xy) where X, ©- o = X5
§2 tm - = X . Hence L = X 3_1_2 is such that

~ - 2, A a1 .
%(0) =% » 08 %e¢l (R; X NE (R;gz_g) i.e.

% e L2 @EL(20) N E RE(2:90).

N

Since % is an arbitrary element of H (2;X) it means that
1
2
El},(sz;X) ,H"(Q;X):‘ L= E @D

But it is mot true (see [22]). @

1 1 3
Since §§§ io ) }_g X.g )&X () EO we have that
_1 -1 -3 -3
2 o 2 2 . o 2
ZN ?E ®F . ZD,A?E QE
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3. Elipticity of the Neumann boundary problem

It is known ( [31]) that the Dirichlet problem for elliptic dy-
namics is of the elliptic type.
The operator %K(x) gives rise to the houndary problem which we

call the Neumann problem.

3.3.1. Lemma ~ Suppose that the Euler-Lagrange operator £ is of elliptic
type. Then the boundary Neumann problem is elliptiec.

For the proof of the Lemma see Appendix. «@

4. Isomorphism theorems

In this section we make use oé the interpolation theorems in order
to prove isomorphism theorems for Dirichlet and Neumann boundary problems.
From now on we assume that the Euler-Lagrange operator € is elliptic.

As we have seen in Chapter II, for smooth sections the dynamics in

the phase space associated with Q is represented by graphs of the operamrsk
AN:g_"cegaggN—»g@g :
PEpp8x—K@e e® @ %@ 50)
or
byt PO XOK . ——XOF:
: Xt(ﬁ) @ x —pgglag@ e(x).

Moreover, since ) is a first order operator and & is of second

order, we have families of operators
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s s s=2

e s < S

s S sS=

. . 2 -3
Ayt B 5,0 c 5,2

s>2 (3.4.1)

From 1.6.2 follows that the graph of A.;(_A;) is a Lagrangian
s . .
subspace of §N @;’ 7\.)' It means that A.:;(IL;) is a selfadjoint operator
(see 4.1.1.) as an operator

s _s

. -s S_.S -s
It follows that the conjugate to 3.4.1. mappings

s -s+2

ARy

-g+2

. ~s
‘&, X

A

[}

are extensions of A; ’ A; . Hence, we shall denote them by

A;Is+2 R A;S+2 respectively. 4

By the isomorphism theorem for smooth sections ([:17:[ ) A; R

A; (s>2) have finite-dimensional kernels EL\I’ED which do not depend

‘on s and their images are closed in x:']—z . Ys—z'

I - Of course the images
]

are anihilators of the kernels.
. . —g42  -s#2
We see, that the conjugate operators . AN o A.D have the same
kernels '&N ’ % and their images are closed with finite-dimensional co-

-kernels.

From the interpolation theorem immediately follows.

3.4.2. Theorem — Let us denote by z; and fx_f; A anihilators of 55] and
3 ’



36

X in X; . z; A respectively. Let the dynamics be elliptic, then we
£

have the complete families of isomorphisms

S ., S 82
N RE— &
' sekR
AA; : g; f— ¥

3.4.,3. Remarks

(i) This method can be aﬁplied to nonrselfadjoinf operators and
other boundary problems.

(ii) It is interesting to compare our results with that of Rojtberg
( [?5]_- [?6]_). It appears that for self-adjoint problems his
theorems are weaker (for s<2) and do not have symplectic in
terpretation.

(iii) Similar results can be obtained for higher order theories.
Corresponding results will be published elsewhere.

(iv) For non-symplectic intérpretations of the isomorphisms theorems
(espeéially for negative s) see[22]-[26], [28] .

(v) Isomorphisms theorems are useful in the study of mixed problem

for nonlinear hyperbolic equations (see e.g. [}2] ).



CHAPTER IV
DYNAMICS AS A LAGRANGIAN SUBSPACE

In this chapter we shall give a symplectic Ainterpretation of the

results of previous sectioms.

1. Lagrangian subspaces and self-adjoint operators.

We shall give an important example of a Lagrangian subspace

4.1.1. Lemma - Let V be a Banach space, v% 1its dual. The graph of an
operator L:VD>D — V%, where D is a dense subspace of V, is a Lagram

gian subspace iff 1 is self-adjoint.

Proof. - Let L be self-adjoint, G(L) - its graph. Let v, 8 vgs G(L)§
(see 1.6.). It means that for each YSD m(vo 8 vi,v ®L(¥) =0-=

= <v,v§> -< vo,L(v) >. Hence v js in the domain of L* and

vg = L*(vo) = L(vo). On the other hand, if G(L) is Lagrangian subspace
then L is maximal symmetric.

put G(LY DC(L*) and G(L) = G(L¥) simce G(L¥)DG(L) = cw)t . @
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2. Dynamics as Lagrangian subspaces in §§ and ‘§§ .

First, we have to look at the dynamics as a subspace of a symplectic

space. But for s<1 §; and ,Z§—2 . gﬁ 2 and Eg—i cannot be
£ s

treated as dual pairs.

s

N s<1 do not have a symplectic

Hence the graphs of A; s A

interpretations, althought for some reson (see Chapter VI) are of in-

terest in a symplectic approach too.

Let us look at dynamiecs in S1 . Sl .
~N ~D,A

The following proposition is a simple consequence of 3.4.2. (see

1.6.2.)

4.2.1. Proposition —~ D1 : = Gr( 1) and Di = Gr{, 1) are Lagrangian sub
- Dy AN L AD b

manifolds of S5 and S° respectively.

There are camonical symplectic relations (for the concept of a

symplectic relation see [ 29 | or Chapter V) between ‘§; and ‘§§ ,‘§; 2
. £
and §§ A defined by injections 3.1.5.
?
4.2.2. Theorem — The image of D1 (Dl) in 82 (5% .) under the canon-
~N =D ~N ~D,2

ical symplectic relations is a Lagrangian subspace.

Proof. — We already know that the image of a Lagrangian subspace uader a
symplectic relation is an isotropic subspéce.
But the mapping
=1

1,1 <
Ayt Rylg — Xy

%
o1

is an isomorphism and there is a symplectie relation betweenlgé/ ® Y

KN =N
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~

and X3/ ®%.° induced by injections
AN'Ry N

'Z(;/KN——_}'&;/KN R EN — ¥ for s>1

and A TN Sl U

With 1.6.2. it means that the image of GR(AI%) in X;/ @Y. is
a Lagrangian subspace.
Now, since "K-N is finite-dimensional, it is obvious that the in-

verse image of this subspace under the reduction from s to X:]/ Y.

is again Lagrangian. We shall denote it by 2:]. in the same way we get a

. s .
L .
agrangian subspace QD in §D, 3

Q.E.D.

1
We have the symplectic relation between §; and §; (§; N and
b
1 1
§]s) A ) for each pair (s,s'), but in general 2; is not the image of
E]

P; (e.g. s #1, s'=1).

But one can easily check using isomorphism theorems that if
1

s >1, s' = s~2 then Q; is an image of 2; and vice~versa. In fact,

it is the symplectic content of 3.4.2, Theorem.

4.9.3. Theorem — Suppose that the dynamics in »§Il~i (§]]5 )\) is an inverse
9
image of the graph of the isomorphism §:']/KN—"‘ 21]& 2 Q(:; MKD — 21]5 ?\)
o~ L R ]

under the symplectic relation. Let EN (15D) be finite dimensional and

s s
K€ By &R X0
—-s+2

. . —s+2
Then for s>1 Q§ (R;) is the image of QN s

@y
. . s ~g+2 .S
—versa under the symplectic relation between S and S (s
AN ~N- ~D,A
-2

55 )\) iff the isomorphism theorem 3.4.2. holds.
2

) and vice

and
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Proof. — It is obvious that relations to .be proyed follow from 3.4.2.

. —gh2
Now, suppose that ;Q; is the image of QNS‘" . It means that
-s+2,-1 _s-2 s . -s+2 . . =
By ) Xy T C Zy- Simce Do is the image of D, we have that
s—-2

W& C Iy -
s

Since Ag']: _g; R g;ll is the isomorphism and KNC f;. X, we
5-2 _ o1 os-2 -s+2,-1 _s-2 _ _s
have A;(gg;) = ZISI 2, zulf\ g° and A(ANS ] 3-:[\31 =% -
Q.E.D.

9
3. Dynamics as Lagrangian subspaces in §35,

3
We saw in 3.1. that the spaces §_§ (s # -]2;)and '-S;,A (s # 'f)

S,8 — %— s,-s+ % _
result from § and S by reductions. According to 5.1.2,

the inverse image of the dynamics is a Lagrangian subspace. We denotelit
i = ,0
2° .

9 . Py

by QS’S (s* = s —% or s’ =~-3s+ -';i). First, we define dynamics D

3

2°9
and B 1 1 1

2 ., o 2 o -2
By 3.2.11. X, is a dense subspace of X @ X'. Hence " @ F
i
is a dense subspace of z; 2 . Inclusions give a symplectiec relation
0
between §3 and '§% . It is easy to check that the image of }2% is
: 1
5 ,0
’
again a Lagragian subspace. Let us denote it hy p_z . By the same argu—
3
E 0 .
ments we get D . .
. 1, 1
. ]

We see, that the projection of 22 onto 20 OF 2 is a closed

subspace.
1
l’f

4. The dynamics in § .

For s=1 we have -s + == g —%— and Both, dynamics: obtained from

Nw
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N

: . |
1 1 - ¢ > -

~DN and _JQD are in the same space 8~ ". The question ariges: Haye we

_obtained one or two different Lagrangian subspaces?

We know that for smooth sections x the elements

X Bﬂ@ =8 %t(x) ® e(x) belong to hoth dynamics and form a dense set in
1. 1
,I_)II)C S ’ 2 . since both subspaces are Lagrapg;an, 'the.y are equal.
Now. we can try to get a dynamics in ﬁs,s as an image of - the
I, + R
dynamics in S under the canonical symplectie relation. We have the

version of 4.2.2.

. 1 1 S,8 < %
4.4.1. Proposition — The image of D 2 tn s , (s<1l) and
3 1 3
S4—s+ 7 3 8,8 ~ -f s,—s+ E
s (s < 'f) is D and D . 9

]
Remark. We may define a dynamics in §s,s for other values of (s,s'), but

it is out of our interest.

The presented approach is based on thé. isomorphism theorems 3.4.2.
This theorems have been obtained with the interpolation theorems.:

Isomorphism theorems may be. obtained in this way for non—self-
adjoint- problems too. But since we deal with. Lagrang1an subspaces all in-
formation is contained in. genmerating functions..

For example the isomorphism theorem for A:i can be obtained di-
' rectly by standard estlmatlons of the Lagrangian (l:3]) Direct estima-
tions do not exist for AD but stil the information 1311n the Lagrangian.
Here we show how to get the isomorphism theorem for ILD by analysis of

' the Lagrangian only. (For other aspects of this approach see [:3?7_[)

4.4.2. Theorem — Let an operator A‘N and its reduction with respect to
the subspace X {x 8 x EXN = 0} be continuous and elliptiec (i.e.
with a flnlte—dlmensz.onal kernel and a closed co—domaln) Then A]]S is .

continuous and elliptic too.

Remark. We do not assume any special property of .a.generating function

(e.g. existence of the E - L operator) .
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Proof.

' i 1
Suppose that A.:] is elliptic. From 2.5.7. the existence of AD

follows.

(i) We show that the kernel of A; is finite-dimensional.

Letbe x@peX @r 2 and 5@23& whe.ragbis_thekernel

of . This is equlvalent to saying that

M""UPH

L, Ly | ) .
S oD =Db,20 ® x® p® 0. But the dynamics is contained
in the subspace defined by x = §|8$2 , SO gl ag~ 0+ (4.4.3)
1 .
1,5 1
On the other hand, D Zis in the image of Dl. It means that

N
1
X0x0p®£ed? iff 30 x000 (5D 2, (4.4.4)

fied

where p is an element of _I:’—l equivalent to p i.e.
p®0-08 EeK, K defined by 3.1.3. .

1
We have then that 0@ X0 00 (“P)‘-‘D * 2,

Since x =0, x is in the kernel of the dynamics reduced mth

g
respect to Xl but this kernmel is finite diménsional. Let - us

denote this kernel by K . If xeKo then thete exists

-3 _ L3 |
peP such that 0 ® x ® 0 @ peD . But, since AN is a
mapplng, from 4.4.4. follows that P is um.que. Hence the kernel

of AD is finite-dimensional and isomorphic to K .
(ii) Now, we prtive that the image of AD is closed.

Let @ fcX2@F ' be in the annihilator of the kernel of A,

i.e.

<§,P>+<§’£>=0 . ¥§@£5Kér. Al])' : (4.4.5)
o= 1 - - ]
We know, that for each ;}_e §2 there exists an element
o Ly .
where X le is such that X 20 =x, i.e,

<3'5,2°>+<§,£§>,=0 ?g\@peKer‘A;'.
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With 4.4.5. we have then that

<x,f>=<x,f > ¥xek L...7)
-~ -0 - [¢]

Since reduced A; is elliptic 4.4.7. means that j—j_io is in the
image of the reduced Aé.

Hence there exist % € Xo and p; € P such that

that 9851@21@(2—'@0) ed ".

RBecause of 4.4.6. we have
1

= 2
X6 (§1+§)Q(Eoegl)6£cn .

Hence, the image of A; is the amnihilator of the kermel.

Q.E.D.



CHAPTER V

In the variationmal approach to boundary problems we often deal with
dinamics reduced with respect to homogeneous boundary data (_er?;scu;cesl.ln
this Chapter we present a systematic analysis of reduced spaces and reduced
dynamics in strong symplectic structures. The well known ohjects and meth-
ods will appear in a most natural way. Discussion of reduced dynamics in

weark symplectic strutures will be presented in [33] .

1. Symplectic relations. Reductions.

Let (I,w) and (2',w') be symplectic spaces. There is a natural
symplectic structure inZ® Z' denoted by w® w' and defined by
w~-w =~w'opr'+wopr where pr', pr are canonical projections
onto £' , I,

A relation between Zand ' is said to be symplectic iff its graph

is a Lagrangian submanifold of Cei',w 68aw),

Ezxample.
Let WCZ be a coisotropic subspace. The form w on [ induces a

symplectic form w' on W/W§ » The symplectic space (I! = W/W§ ') is
called the symplectic space reduced with respect to a coisotropiec subspace W.
One can easily check that the canonmical relation in & @ &' is a
symplectic relation.
For example, if 2 =V @ V¥ and VOCV is an closed subspace, then
W= Vo ® v# is a coisotropic subspace. The reduced symplectic space is isomorphic

to V_ @ V*/g where K is the anmihilator of v, in V%,
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The most important property of a symplectic relation im a finmite
dimensional case is that the image of a Lagrangian subspace is again a
Lagrangian subspace.In general, it is not true in a infinite dimemsional
case. Now, we present some important cases when a reduced Lagrangian sub

space is Lagrangian.

5.1.1. Lemma — Let T =V @ V% be a special symplectic space, DCZI - a
Lagrangian subspace of I such that pr(D) is closed of finite codimen-
sion, where pr:I — V is the canonical projection. Let VOCV be a
closed subspace. Then the image of D wunder reduction with respect to

the coisotropic subspace Vo ® V* is Lagrangian.

Proof. Let us denote the image of D by D. It is obvious that the cons
traint of D in Vo is V N\ pr D. Hence D is Lagrang:.an iff a kernel of
the projection f)—,v N pr D is 08 (V NprD)°, where (V N prD)° is
the apnnihilator of V nprD in V*/ _1_ =3 V* (V ~ the ann1h11ator of V
in V%), This is equlvalent to say:.ng that (prD (‘i v ) Vo+ (prD). Sz.nce
prD is of finite codimemsion in V, pxD (\V is of f:n.nlte codimension in
(pr DNV )J‘ . Hence the equality (pr DNV )‘L V + (prD) follows imme-
dlately.’ Q.E.D.

We need also
5.1.2. Lemma - Let © be a symplectic space, WCEI- a coisotropic closed
subspace. Suppose we have a Lagrangian subspace D in the reduced space
W/w§ . There exists exactly one Lagrangian subspace ﬁ‘in % such that

DcW and its reduced space is D.

Proof.
Let D be an inverse image of D under the projection W — W/W§;D
is isotropic and closed. But DCW , so WD>D. 1f D is not maximal, the

D is not maximal too. @
In the following we shall conmsider three kinds of reductions:

(i) a homogeneous Neumann (or stress) reduction is a reduction in
1 .
§S’S with respect to the coisotropic subspace {p=0} . The re

. . . . ]
duced space is again isomorphic to §s 6F
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. . . . e aSes' .
(ii) a homogeneous Dirichlet reduction is a reduction in §°°° with
respect to the coisotropic subspace {£ =0}. It is obvious that
. s . s - . . .
the reduced space is isomorphic to X @ F S with its canonical

duality,

]
. . . . . S,.8 .
(iii) a homogeneous source reduction is a reduction in 8 *® with
respect to the subspace £ =0 . The reduced space is isomor—

T — T
phic te ggs er S i.e. to the boundary phase space.

2. Homogeneous Neumann reductions of dynamics

T
5.2.1. Proposition — Let be s' =s - -;—, then the image of Es,s under

the homogeneous Neumann reduction is a Lagrangian subspace.

- -
Proof. TFor s<l the projection of Es,s onto P 5 9 F 5 is closed.

By (5.1.1) the reduced dynamics is a Lagrangian subspace.

For s s% we have a 1-1 symplectic relation between reduced space
}58 2] E—s and g 0 g;g;]s .induced by the isomorphism gg;ag 0 x - §e§s. it
is easy to see that the image of p_; :
it follows that the reduced dynamies forms a Lagrangian subspace.

Q.E.D.

is the reduced dynamies. With 4.2.1.

. 1 . P
Since for s >5 the reduced dynamics is in a 1-1 correspondence
with QN, we say that the homogeneity is intrinsic or hid-

d e n . The sense of this conecept is made clear by the following proposi-
tion.

5.2.2. Proposition — Suppose that x.® £ is in the reduced dynamics for

some s. Let be feF 1, sl<-%- s §aX‘2, sz>-';i. Thenxt(x) = 0.

)=

S,8 -
Proof. ~ We have x m@ x0 916) £eD . On the other hand
£[5® 2 0 %5 () 8 e(®ep®® 7.
Hence (see the proof of 4.4.2.) f -c(x) = X (®). Bute (z)<F
~s ~-s
1 1 t :
and f eF sl<5, I (x)eF 3 53<%- . It follows that %t(z:_) = 0._0

5.2.3. Example

o O

For s = O the reduced space is isomorphic to X ® F . Suppose
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that we have established an isomorphism between bundles X and F by
choosing a volume element on M and a scalar product in fibers. Then
§°= gg° = Ho(ﬂ :X) and the dynamics is isomorphic to the Lagrangian sub-
space in x° @ x°. By 4.1.1. it is a graph of a self-adjoint operator.it
is of course the self-adjoint realization of the Euler-Lagrange operator
corresponding to the homogeneous Neumann boundary date.

We can reduce our dynamics in other spaces too. For example, we can

take s' = -s + %
" , 3 3
5.2.4. Proposition — Let be s' = -5+ 35, s # =, then the reduced dyna

mics is a Lagrangian subspace. For s <—:2i the reduced dynamics coincides

with that of 5.2.1.

Proof. For s>1, s #;— we make use of (5.1.1). We notice that for
s<1 the reduce dynamics is an image of the reduced dynamics for s=1
with respect to the symplectic relation induced by the inclusion E—SC E-l.
As in 4.2. it follows that the reduced dynamics is Lagrangian. On the
other hand, arguments used in 4.4. show that the reduced dynamics is for
s<-§— the same as in 5.2.1.
Q.E.D.
Remark. For S>% we say that the reduced dynamics is s t a b 1 y homog

enegus.

3. A homogeneous Dirichlet reduction

1
5.3.1. Proposition — Let be s' = - s +% , 8 # -%—, then the image of Hs,s

.. . . . . 3
under the homogeneous Dirichlet reduction is Lagrangian iff s >3 or s<1.

Proof. Methods used in (5.2.1) prove that the reduced dynamics is Lagran-—
?

gian. For 1<s<§- s D
2 ~1. 1
H]

that 2@ x @ p ® fed 2 (see 4.4.1.). The reduced dynamics is formed .

consists of such elements @ x @ p ® f¢ §s,s

by elements x ® (f-p) where
3

) 1
0, pepP , 08 f = A‘D (xep).

But it is obvious, that the Lagrangian subspace beside x e f

X~

contains (it is maximal) elements of the form X 8 (f_ - "é) for
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—s+}- -8 + = s—%

2
peP 2. But for 1<s<% P 2P .
Q.E.D.

5.3.2. Remarks

(i) For l< s<1 the reduced dynamics is determined by its fur—

2 .
ther reduction with respect to the subspace ’{x =01}.

. ~| a0

(ii) For s >% we have, as in the case of the Neumann reductlon
the case of an intrinsic homogeneity.

(iii) Because of 4.4.1. s<1 is the only case with an interesting

interpretation.

5.3.3. Example

For s=0 we can get, as in 5.2.3. the self-adjoint realisation
of the Euler;Lagrange operator corresponding to the homogeneous Dirichlet
data.

The following proposition corresponds to 5.2.6.

5.3.4. Proposition — Let be s' = g - —;‘- The reduced dynamics is a Lagran~
gian subspace. For s<1 the reduced dynamics coincides with that of
5'3.1.

Proof. as in 5.2.6.9
Remark. For s >-%- the reduced dynamics is stably homogeneous.

4. A homogeneous source reduction

As in previous sections we see, that the reduction of the dynam~
ics in §_ s8 (s> 1, s' =g —-;- or - 8' = -g 4 -2-) gives Lagrangian sub~
spaces in X @ P . It is easy to check that the reduced dynamics in
2-15 ® P—s is an image of the reduced dynamms in X% + P 2 under the
canonical symplectie relation, Moreover,

-1 1
5.4.1. Proposition - The reduced dynamics in X @ P 2 is the graph
of an bounded operator with index from X‘%‘ to 1’-i . P
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5. Generating fimctions of reduced dynamlci
| 1, 1
We shall consider the case of § 2 only. We make use of relations

between generating functions of reduced and non-reduced dynamies ( |:29] ).

5.5.1. Proposition
Generating functions of reduced dynamics in the field s.s.s. are
(i) for the Neumann reduction LX) = f QLN (=)
(ii) for the Dirichlet reduction ,1:(25) = I&N (x) on the constraint

1
subspace go.

Proof.
(i) L(x) is a stationary value of the non-reduced Lagrangian with respect
to X. Because of the constraint X = E|a9 it is exactly the value of

the non-reduced Lagrangian in the point Z.
(ii) As in (i) we know that L(x) is a statiomary value of
IQLN ) - ) sgR £ with respect to p. Because of the condition X = O

the reduced dynamic has the constraint X 80" 0. Hence

Stat(fQLN(gs) - [ogp ® = IQLN(;E)-O
p

~—

5.5.2. Proposition — Gemerating functions of reduced dynamics in the source

— S.5.S. are

(i) for the Neumann reduction
LD = stac(J @ * Jo £ 0
X

(ii) for the Dirichlet reduction

1L(£) = stat(fg Lﬁ(y —faszfl X *fgf 2;_) =
Z5P '

= star(f 1N + [of B

xeX

Proof. Formulas for Legendre transformations ( I:29:[) give (i) and the
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second part of (ii). But we can first make the Legendre transformation
from the Neumann-field s.s.s. to the field-source s.s.s. and the redu-

Ce.

The transformed generating function 1is

L(Z ® £) = stat (IQLN(Q —Iasz?- X - fmgg +jg§§
x®p

Lol A

The reduction with respect to the subspace {X = 0} gives

L(f) = stat(fQLN(§) -fagg X +f9§ x).

x@p Q.E.D.



CHAPTER VI

GREEN'S FUNCTIONS. CONCLUDING RBEMARKS

In this chapter we give a symplectic interpretation of Green fun-
tions. For the sake of simplicity we assume that there is no constraint

in XN and }_(_D.

1. Green's function for the Neumann problem.

We know that a Dirac delta 6 £ teQ can be interpreted as an ele~

]

m . . .
ment of ¥ s> . By the isomorphism theorem there exists

N 2
N _-st2 -s+2 N _
GtsggN such that AN (Gt) = Gt.
The function £ at——>G§ eXN-S+2 is called the Green's fumction for
the Neumann problem.
Since '}_(;]S+2 is dual to XS-Z . <GN s V> has sense for each
2 N t 2 T .
ye:gN . .
s—2 m . N
6.1.1. Theorem — For ye:IN » 8>3 we define §y(t) : =<Gt,y>T . Then
R s . _ ] 4
§Z(L; eXy and AN;;Z y-
Proof.
N -s+2,-1 s.—1 s\—1 .
<ely> . =< LTHTHE D,y =<8, 0T v = (CAPT () e
-1
x = (A;) y-
J Q.E.D.
~-g+2

6.1.2. Corollary - The generating fumction of Dy s —8 >—1]2l with respect
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to the source-stress s.s.s. is given by the formula:

1__N
R AT I R S P

2. Green's function for the Dirichlet problem

Let be s>1max(§», g). We know that 6t corresponds to an element

of z;s. By the isomorphisms theorem there exists
-s+2 _ pa—S+2,-1

As in 6.1.1. we get

- 3 D
6.2.1. Theorem - For ysz; 2 . 8 >max(:—; . 5) we put gy t) =<Gt’.... >
. ~5+2 s~2 s s _
(duality between X, and X, ). Then g:_y(t) c X, and AD nz;:z = 3.

Remark. One can investigate further properties of Green's functions defined

as above in this language.

3. Concluding remarks

The paper is the first step in a systematic analysis of the symplectic
aspects of the theory of static fields. In our opinion the most important

concepts and problems to be discussed are:

(i) physical and mathematical control modes (i.e. analysis of
other then Dirichlet and Neumann boundary and non—boundary
problems).

(ii) s-parameters and imagé control modes ~ existence and properties,
(iii) symplectic content of approximation methods, discrete control
modes, |
(iv) composition of dynamics,

(v) higher order theories,



APPENDIX

Proof of 3.3.1. Lemma

First, we need few informations concerning complex symplectic spaces.
The presented version is not the most natural, but it is close to the
standard approach to complex Hilbert spaces and sufficient for our goal.

Let be £ = V & V* where V,V% are complex vector space with a
duality <,> : V x V¥ — C. Let the duality be linear with respect to the
first and anti-linear with respect to the second argument. As in a real
case we have a skew—symmetric R-linear form on I

% %) = %> - %
wv @ v V1 0 vl) Re(<v1,v > <v,v1>)

We can say on isotropic, co-isotropic and Lagrangian subspaces with
respect to w . Now, let be A: V—> V* a C-linear, self-adjoint (i.e.
<v,Av'>=<v',Av>) mapping. It is uniquely determined by the genera-
ting function L(v) = —;—< v, Av>:<v',Av>=<v',dLv>~ i< iv',dLv > ¥v'.
(dL. defined as in 1.7.).

With these notions we can reformulate Chapters I,II for X being

a complex vector bundle. For this we put< % ® x,y> T = <T,d(£gl) - fg>

where the bar demotes complex conjugate.

v u" A B

= = yuoo s — 4V
Now, let be A, =0, A5 =0, 2,5~ elliptic, L(x) = A"y By By
We see, that for T defined by an oriented domain L is positively
defined modulo constant sections.
Lot us fix &' #0 (&' = (&L, ...,2% ).

We put

e]
I
N
—
'—h
@]
=
Y

)—J *
S
(@]
w
(¢]
}-l »
il
=
h
&)
a1
my
]
o
)-I
il
=
L
.
B
I
=
o
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We can reduce the dynamic with respect to
X, = {xe Hl(SZ,X) : ;g(tl,...,t1=0) = g(tl,...,t]‘-—-cl,...,tm)
i=1, oo e ’m‘l} -
The reduced dynamics can be described by the mapping

Z,2x —> (x@)laoﬂ s €(x)) where

3 8 = {teq : £ =0} .

Because of ellipticity the kernel of this mapping consists of cons~
stant sections only.
Hence the mapping

B ®,,90 2 (8 —x(e) = X5 10 x  um | e
[+]

is an injection. It is equivalent to ellipticity of the Neumann problem.

Q.E.D.
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