Class II and III Interactions within DFT

P. Baczyk ${ }^{1}$ J. Dobaczewski ${ }^{1,2,3}$
 M. Konieczka ${ }^{1}$ W. Satuła ${ }^{1,2}$

${ }^{1}$ Faculty of Physics, University of Warsaw, PL 02-093 Warszawa, Poland ${ }^{2}$ Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland ${ }^{3}$ Department of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland

The future of multireference DFT $26^{\text {th }}$ June, 2015, Warsaw

Plan of the presentation

(1) Classification of ISB interactions
(2) Implementation in HFODD code
(3) First results and outlook

Do we need additional ISB terms?

Mirror displacement energy (MDE)

$$
\mathrm{MDE}=\mathrm{BE}\left(T, T_{z}=-T\right)-\mathrm{BE}\left(T, T_{z}=+T\right)
$$

Nolen-Schiffer anomaly
J.A. Nolen, Jr. and J.P. Shiffer,

Annu. Rev. Nucl. Phys. 19, 471 (1969)
charge symmetry breaking CSB

$$
V_{p p} \neq V_{n n}
$$

Do we need additional ISB terms?

Triplet displacement energy (TDE)

$$
\begin{array}{r}
\mathrm{TDE}=\mathrm{BE}\left(T=1, T_{z}=-1\right)+\mathrm{BE}\left(T=1, T_{z}=+1\right) \\
-2 \mathrm{BE}\left(T=1, T_{z}=0\right)
\end{array}
$$

$T=1$ triplets curvature
W. Satuła, J. Dobaczewski, M. Konieczka,
W. Nazarewicz, Acta Phys. Pol. B 45, 167 (2014)
charge independence breaking CIB

$$
V_{n p} \neq\left(V_{n n}+V_{p p}\right) / 2
$$

Classification of Henley and Miller

- class I - isospin independent

$$
V_{1}^{N N}(i, j)=a+b \vec{\tau}(i) \cdot \vec{\tau}(j)
$$

- class II - introduces CIB

$$
V_{I I}^{N N}(i, j)=c\left[\tau_{3}(i) \tau_{3}(j)-\frac{1}{3} \vec{\tau}(i) \cdot \vec{\tau}(j)\right]
$$

- class III - introduces CSB

$$
V_{I I I}^{N N}(i, j)=d\left[\tau_{3}(i)+\tau_{3}(j)\right]
$$

- class IV - mix isospin already at two-body level

$$
\begin{aligned}
V_{I V}^{N N}(i, j)= & e[\vec{\sigma}(i)-\vec{\sigma}(j)] \cdot \vec{L}\left[\tau_{3}(i)+\tau_{3}(j)\right] \\
& +f[\vec{\sigma}(i) \times \vec{\sigma}(j)] \cdot \vec{L}[\vec{\tau}(i) \times \vec{\tau}(j)]_{3}
\end{aligned}
$$

Implementation
 Interaction

- only class II and class III considered so far
- new terms implemented as effective zero-range corrections to conventional Skyrme modifying central part

$$
\begin{gathered}
V^{\prime S B}(i, j)=V^{S k y r m e}(i, j)+V^{\prime \prime}(i, j)+V^{\prime \prime \prime}(i, j) \\
V^{\prime \prime}(i, j)=\frac{1}{2} t_{0}^{\prime \prime} \delta\left(\vec{r}_{i}-\vec{r}_{j}\right)\left(1-x_{0}^{\prime \prime} \hat{P}_{i j}^{\sigma}\right)\left[3 \tau_{3}(i) \tau_{3}(j)-\vec{\tau}(i) \cdot \vec{\tau}(j)\right] \\
V^{\prime \prime \prime}(i, j)=\frac{1}{2} t_{0}^{\prime \prime \prime} \delta\left(\vec{r}_{i}-\vec{r}_{j}\right)\left(1-x_{0}^{\prime \prime \prime} \hat{P}_{i j}^{\sigma}\right)\left[\tau_{3}(i)+\tau_{3}(j)\right]
\end{gathered}
$$

Implementation

Energy densities

$$
\begin{aligned}
\mathcal{H}^{\prime \prime}=\frac{1}{2} t_{0}^{\prime \prime}\left(1-x_{0}^{\prime \prime}\right) & {\left[\rho_{n}^{2}+\rho_{p}^{2}-2 \rho_{n} \rho_{p}-2 \rho_{n p} \rho_{p n}\right.} \\
& \left.-{\overrightarrow{S_{n}}}^{2}-{\overrightarrow{S_{p}}}^{2}+2 \overrightarrow{S_{n}} \cdot \overrightarrow{S_{p}}+2 \overrightarrow{S_{n p}} \cdot \overrightarrow{S_{p n}}\right] \\
\mathcal{H}^{\prime \prime \prime}= & \frac{1}{2} t_{0}^{\prime \prime \prime}\left(1-x_{0}^{\prime \prime \prime}\right)\left(\rho_{n}^{2}-\rho_{p}^{2}-{\overrightarrow{S_{n}}}^{2}+{\overrightarrow{S_{p}}}^{2}\right)
\end{aligned}
$$

- $x_{0}^{\prime \prime}$ and $x_{0}^{\prime \prime \prime}$ parameters are redundant
- pn-mixing is needed only in class II

Implementation

Energy densities

$$
\begin{aligned}
& \mathcal{H}^{\prime \prime}=\frac{1}{2} t_{0}^{\prime \prime}\left(1-x_{0}^{\prime \prime}\right)[\rho_{n}^{2}+\rho_{p}^{2}-2 \rho_{n} \rho_{p}-2 \rho_{n p} \rho_{p n} \\
&\left.-{\overrightarrow{S_{n}}}^{2}-{\overrightarrow{S_{p}}}^{2}+2 \overrightarrow{S_{n}} \cdot \overrightarrow{S_{p}}+2 \overrightarrow{S_{n p}} \cdot \overrightarrow{S_{p n}}\right] \\
& \mathcal{H}^{\prime \prime \prime}=\frac{1}{2} t_{0}^{\prime \prime \prime}\left(1-x_{0}^{\prime \prime \prime}\right)\left(\rho_{n}^{2}-\rho_{p}^{2}-{\overrightarrow{S_{n}}}^{2}+{\overrightarrow{S_{p}}}^{2}\right)
\end{aligned}
$$

- $x_{0}^{\prime \prime}$ and $x_{0}^{I \prime \prime}$ parameters are redundant
- pn-mixing is needed only in class II
- class II CIB:

- class III CSB:

Isocranking method

Goal
building $\mid T=1, T_{z}=0>$ state

Difficulty

$T_{z}=0$ state is almost a fifty-fifty mixture of $T=0$ and $T=1$ states

K. Sato, J. Dobaczewski, T. Nakatsukasa, and W. Satuła, Phys. Rev. C 88, 061301(R) (2013)

Tool - isocranking

- approximate projection on isospin in pn-mixing formalism
- analogous to isocranking model
- description of $\mid T=1, T_{z}=0>$ states by evolving $\mid T=1, T_{z}= \pm 1>$ solutions

First test for $A=42$ without Coulomb

only class II - CIB

only class III - CSB

First test for $A=42$

 without Coulomb
only class II - CIB

only class III - CSB

First test for $A=42$ with Coulomb

	without Coulomb		with Coulomb		
Parameters		TDE	MDE	TDE	MDE
$t_{0}^{\prime \prime}$	$t_{0}^{\prime \prime \prime}$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$

Parameters $t_{0}^{\prime \prime}$ and $t_{0}^{\prime \prime \prime}$ were chosen by hand.

First test for $A=42$ with Coulomb

	without Coulomb		with Coulomb		
Parameters		TDE	MDE	TDE	MDE
$t_{0}^{\prime \prime}$	$t_{0}^{\prime \prime \prime}$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$
0	0	0	0	0.159	13.789

Parameters $t_{0}^{\prime \prime}$ and $t_{0}^{\prime \prime \prime}$ were chosen by hand.

First test for $A=42$ with Coulomb

	without Coulomb		with Coulomb		
Parameters		TDE	MDE	TDE	MDE
$t_{0}^{\prime \prime}$	$t_{0}^{\prime \prime \prime}$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$
0	0	0	0	0.159	13.789
20	0	0.374	0	0.525	13.783

Parameters $t_{0}^{\prime \prime}$ and $t_{0}^{\prime \prime \prime}$ were chosen by hand.

First test for $A=42$

with Coulomb

		without Coulomb		with Coulomb	
Parameters		TDE	MDE	TDE	MDE
$t_{0}^{\prime \prime}$	$t_{0}^{\prime \prime \prime}$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$
0	0	0	0	0.159	13.789
20	0	0.374	0	0.525	13.783
0	-8	-0.002	1.153	0.145	14.899

Parameters $t_{0}^{\prime \prime}$ and $t_{0}^{\prime \prime \prime}$ were chosen by hand.

First test for $A=42$

with Coulomb

		without Coulomb		with Coulomb	
Parameters		TDE	MDE	TDE	MDE
$t_{0}^{\prime \prime}$	$t_{0}^{\prime \prime \prime}$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$
0	0	0	0	0.159	13.789
20	0	0.374	0	0.525	13.783
0	-8	-0.002	1.153	0.145	14.899
20	-8	0.372	1.147	0.511	14.888

Parameters $t_{0}^{\prime \prime}$ and $t_{0}^{\prime \prime \prime}$ were chosen by hand.

First test for $A=42$ with Coulomb

		without Coulomb		with Coulomb	
Parameters		TDE	MDE	TDE	MDE
$t_{0}^{\prime \prime}$	$t_{0}^{\prime \prime \prime}$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$
0	0	0	0	0.159	13.789
20	0	0.374	0	0.525	13.783
0	-8	-0.002	1.153	0.145	14.899
20	-8	0.372	1.147	0.511	14.888

The effect of class II is almost independent of class III and vice versa.

Parameters $t_{0}^{\prime \prime}$ and $t_{0}^{\prime \prime \prime}$ were chosen by hand.

First test for $A=42$ with Coulomb

		without Coulomb		with Coulomb	
Parameters		TDE	MDE	TDE	MDE
$t_{0}^{\prime \prime}$	$t_{0}^{\prime \prime \prime}$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$
0	0	0	0	0.159	13.789
20	0	0.374	0	0.525	13.783
0	-8	-0.002	1.153	0.145	14.899
20	-8	0.372	1.147	0.511	14.888

The effect of class II is almost independent of class III and vice versa.

Experiment: $\mathrm{TDE}=0.590 \mathrm{MeV}$ and $\mathrm{MDE}=15.007 \mathrm{MeV}$
Parameters $t_{0}^{\prime \prime}$ and $t_{0}^{\prime \prime \prime}$ were chosen by hand.

Isovector triplets - MDE and TDE

Outlook

- Fitting new parameters: $t_{0}^{\prime \prime}$ and $t_{0}^{\prime \prime \prime}$
- Large scale calculations of MDE and TDE: $T=\frac{1}{2}$ and $T=1$
- MED and TED in structure of rotational bands

$$
\begin{gathered}
\operatorname{MED}(J)=E\left(J, T, T_{z}=-T\right)-E\left(J, T, T_{z}=+T\right) \\
\operatorname{TED}(J)=E\left(J, T=1, T_{z}=-1\right)+E\left(J, T=1, T_{z}=+1\right)-2 E\left(J, T=1, T_{z}=0\right)
\end{gathered}
$$

- Recalculating isospin corrections δ_{C} for β decay
- Isospin-forbidden E1 γ transitions
- Introducing class IV

