Multi-Reference Calculations for Odd-Mass Nuclei

Benjamin Bally

Warsaw, 26 June 2015

2 Application to ²⁵Mg

2 Application to ²⁵Mg

We define an EDF (\equiv effective Hamiltonian). We create a set of one-guasiparticle states: $\{|\Phi_a\rangle, a = \ldots\}$ We project each of them on the good quantum numbers: $\{|JMNZP\epsilon, a\rangle, a, J, P, \epsilon = \ldots\}.$ We diagonalize the (effective) Hamiltonian between the projected states: { $|JMNZP\xi\rangle$, $J, P, \xi = ...$ }.

We calculate observables.

We define an EDF (\equiv effective Hamiltonian). We create a set of one-guasiparticle states: $\{|\Phi_a\rangle, a = \ldots\}$ We project each of them on the good quantum numbers: $\{|JMNZP\epsilon, a\rangle, a, J, P, \epsilon = \ldots\}.$ We diagonalize the (effective) Hamiltonian between the projected states: { $|JMNZP\xi\rangle$, $J, P, \xi = ...$ }.

We calculate observables.

Energy functional

$$\mathcal{E}^{nuc}[\rho,\kappa,\kappa^*]^{ab} = \frac{\langle \Phi_a | \hat{H} | \Phi_b \rangle}{\langle \Phi_a | \Phi_b \rangle}$$
$$\rho^{ab} = \frac{\langle \Phi_a | \hat{a}^{\dagger} \hat{a} | \Phi_b \rangle}{\langle \Phi_a | \Phi_b \rangle}, \ \kappa^{ab} = \frac{\langle \Phi_a | \hat{a} \hat{a} | \Phi_b \rangle}{\langle \Phi_a | \Phi_b \rangle}, \ \kappa^{ba^*}_t = \frac{\langle \Phi_a | \hat{a}^{\dagger} \hat{a}^{\dagger} | \Phi_b \rangle}{\langle \Phi_a | \Phi_b \rangle}.$$

• $|\Phi_a\rangle$, $|\Phi_b\rangle$: different quasiparticle states.

 $\langle \Phi_a | \Phi_b \rangle \neq 0$ (condition to use the EWT of Balian-Brézin)

• \mathcal{E}^{nuc} directly and uniquely determined by \hat{H} . \Rightarrow respect the Pauli principle.

$$\hat{H} = \hat{K}^{(1)} + \hat{V}^{(2)}_{Coul} + \hat{V}^{(2-4)}_{Sky}$$

•
$$\hat{K}^{(1)}$$
 : kinetic energy (+ CoM corr.).

•
$$\hat{V}_{Coul}^{(2)}$$
 : Coulomb interaction.

•
$$\hat{V}_{Sky}^{(2-4)}$$
 : Skyrme pseudo-potential. **Phenomenological**.

$$\hat{V}_{Sky}^{(2-4)} = \hat{V}_{Sky}^{(2)} + \hat{V}_{Sky}^{(3)} + \hat{V}_{Sky}^{(4)}$$

• $\hat{V}_{Sky}^{(2)} = t_0 \left(1 + x_0 \hat{\Gamma}_{12}^{\sigma}\right) \hat{\delta}_{r_1 r_2} + \frac{t_1}{2} \left(1 + x_1 \hat{\Gamma}_{12}^{\sigma}\right) \left(\hat{\vec{k}}_{12}^{\prime 2} \hat{\delta}_{r_1 r_2} + \hat{\delta}_{r_1 r_2} \hat{\vec{k}}_{12}^{\,2}\right) + t_2 \left(1 + x_2 \hat{\Gamma}_{12}^{\sigma}\right) \hat{\vec{k}}_{12}^{\prime} \hat{\delta}_{r_1 r_2} \cdot \hat{\vec{k}}_{12} + i W_0 \left(\hat{\sigma}_1 + \hat{\sigma}_2\right) \hat{\vec{k}}_{12}^{\prime} \hat{\delta}_{r_1 r_2} \times \hat{\vec{k}}_{12}$

•
$$\hat{V}^{(3)}_{Sky} = u_0 \left(\hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} + \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_3} + \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \right)$$

•
$$\hat{V}_{Sky}^{(4)} = v_0 \left(\hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \hat{\delta}_{r_3 r_4} + \dots \right)$$

- 9 parameters.
- SLyMR0 parametrization.
 Sadoudi *et al.* Physica Scripta T154 014013 (2013).

We define an EDF (\equiv effective Hamiltonian). We create a set of one-quasiparticle states: $\{|\Phi_a\rangle, a = \ldots\}$ We project each of them on the good quantum numbers: $\{|JMNZP\epsilon, a\rangle, a, J, P, \epsilon = \ldots\}.$ We diagonalize the (effective) Hamiltonian between the projected states: { $|JMNZP\xi\rangle$, $J, P, \xi = ...$ }. We calculate observables.

Number parity:
$$\hat{\Pi}_A |\Phi_a\rangle = \pi_a |\Phi_a\rangle$$
 $(\hat{\Pi}_A = e^{-i\pi\hat{A}})$

Subgroup of D_{2h}^{TD} :

• Signature:
$$\hat{R}_x |\Phi_a\rangle = \eta_a |\Phi_a\rangle$$

• Parity:
$$\hat{P}|\Phi_a\rangle = p_a|\Phi_a\rangle$$

• y-Time Simplex: $\hat{S}_{y}^{T} | \Phi_{a} \rangle = | \Phi_{a} \rangle$

$$(\hat{R}_x = e^{-i\pi\hat{J}_x})$$

$$(\hat{S}_y^T = \hat{R}_y \hat{P} \hat{T})$$

• odd A:
$$\pi_a = -1$$
, $\eta_a = \pm i$, $p_a = \pm 1$

Minimization:
$$\delta \mathcal{E}^{nuc}[\rho, \kappa, \kappa^*]^{aa} = 0$$

Constraints using Lagrange parameters:

- Neutron number: $\langle \Phi_a | \hat{N} | \Phi_a \rangle = N$
- Proton number: $\langle \Phi_a | \hat{Z} | \Phi_a \rangle = Z$
- Quadrupole deformation: $\langle \Phi_a | \hat{Q} | \Phi_a \rangle = Q$

- Self-consistent problem: solved by an iterative procedure.
- Solved for different values of Q and/or $\hat{\beta}_{a}^{\dagger}$

We define an EDF (\equiv effective Hamiltonian). We create a set of one-guasiparticle states: $\{|\Phi_a\rangle, a = \ldots\}$ We project each of them on the good quantum numbers: $\{|JMNZP\epsilon, a\rangle, a, J, P, \epsilon = \ldots\}.$ We diagonalize the (effective) Hamiltonian between the projected states: { $|JMNZP\xi\rangle$, $J, P, \xi = ...$ }. We calculate observables.

Conservation of the neutron and proton numbers:

- $U(1)_N \times U(1)_Z$
- Broken by: pairing correlations.

 \Rightarrow Projection on neutron and proton numbers.

Conservation of total angular momentum:

- *SU*(2)_A
- Broken by: quadrupole deformation.
- \Rightarrow Projection on total angular momentum.

We define an EDF (\equiv effective Hamiltonian). We create a set of one-guasiparticle states: $\{|\Phi_a\rangle, a = \ldots\}$ We project each of them on the good quantum numbers: $\{|JMNZP\epsilon, a\rangle, a, J, P, \epsilon = \ldots\}.$ We diagonalize the (effective) Hamiltonian between the projected states: { $|JMNZP\xi\rangle$, $J, P, \xi = ...$ }.

We calculate observables.

Configuration mixing (GCM)

•
$$|\Lambda M\xi\rangle = \sum_{i=1}^{\Omega_I} \sum_{\epsilon=1}^{\Omega_i^{\Lambda}} F_{\xi}^{\Lambda}(i,\epsilon) |\Lambda M\epsilon, i\rangle$$

 $\Lambda \equiv (J, N, Z, P)$
 Ω_I : set of states $|\Phi_i\rangle$
 Ω_i^{Λ} : set of projected states given (Λ, i) .

• *i* : deformation and blocked quasiparticle.

$$\frac{\delta}{\delta F_{\xi}^{\Lambda*}(i,\epsilon)} \left(\frac{\langle \Lambda M \xi | \hat{H} | \Lambda M \xi \rangle}{\langle \Lambda M \xi | \Lambda M \xi \rangle} \right) = 0 \Longrightarrow F_{\xi}^{\Lambda}(i,\epsilon) \text{ et } E_{\xi}^{\Lambda}(\Omega_{I})$$

- Proof of principle.
- Light nucleus with a simple structure.
- Phys. Rev. Lett. 113 162501 (2014)

Characteristics of the Configuration Mixing (GCM)

- Discretization mesh (q_1, q_2) : 40 fm²
- Several 1qp states at each deformation.
- Total number of one-quasiparticle states used:
 - positive parity: 100 states.
 - negative parity: 60 states.

Convergence analysis

Convergence analysis II

	$\int J^{\pi}$	Binding energy	Qs	μ	
		(MeV)	$(e \mathrm{fm}^2)$	(μ_N)	
Experiment	$\frac{5}{2}^{+}$	-205.587	20.1(3)	-0.85545(8)	
MR-EDF	$\frac{5}{2}^{+}$	-221.875	23.25	-1.054	

- No effective charge or effective *g*-factor!
- Experiment: Nuclear Data Sheets 110 1691 (2009)

Low-energy spectrum

- Shell Model: USDB with NushellX.
- Experiment: Nuclear Data Sheets **110** 1691 (2009)
- Not as good as Shell Model but less parameters! And not fitted specifically to the sd shell!
- Negative parity states!

Low-energy spectrum

Rotational bands

Benjamin Bally

MR-DFT Workshop - Warsaw - 25-26 June 2015

Ground-state band

MR-DFT Workshop - Warsaw - 25-26 June 2015

2 Application to ²⁵Mg

Calculation of ²⁵Mg:

- Overall reasonable description ...
- ... especially considering the limited quality of SLyMR0.
- Proof of principle of the method.

Calculation of ²⁵Mg:

- Overall reasonable description ...
- ... especially considering the limited quality of SLyMR0.
- Proof of principle of the method.

Goals:

- Treatment of even-even and odd-even (and even odd-odd) nuclei on the same footing.
- ✓ MR-EDF calculations with a Hamiltonian-based functional.
- Spectroscopy of odd-mass nuclei.

• Urgent need for a better interaction.

 \rightarrow **underway**: Skyrme with gradient three-body terms.

Urgent need for a better interaction.
 → underway: Skyrme with gradient three-body terms.

- More calculations and heavier nuclei.
 - \rightarrow speedup of the programs.