Multi-Reference Calculations for Odd-Mass Nuclei

Benjamin Bally

Warsaw, 26 June 2015

ESNT

Table of contents

(1) Outline of the method
(2) Application to ${ }^{25} \mathrm{Mg}$
(3) Conclusion and outlook

Table of contents

(1) Outline of the method

(2) Application to ${ }^{25} \mathrm{Mg}$

(3) Conclusion and outlook

Outline of the EDF method

We define an EDF (三 effective Hamiltonian).
\square
We create a set of one-quasiparticle states:

$$
\left\{\left|\Phi_{a}\right\rangle, a=\ldots\right\}
$$

\downarrow
We project each of them on the good quantum numbers:

$$
\{|J M N Z P \epsilon, a\rangle, a, J, P, \epsilon=\ldots\} .
$$

$$
\downarrow
$$

We diagonalize the (effective) Hamiltonian between the projected states: $\{|J M N Z P \xi\rangle, J, P, \xi=\ldots\}$.

We calculate observables.

Outline of the EDF method

We define an EDF (\equiv effective Hamiltonian).

\square
We create a set of one-quasiparticle states:

$$
\left\{\left|\Phi_{a}\right\rangle, a=\ldots\right\}
$$

$$
\downarrow
$$

We project each of them on the good quantum numbers:

$$
\{|J M N Z P \epsilon, a\rangle, a, J, P, \epsilon=\ldots\} .
$$

$$
\downarrow
$$

We diagonalize the (effective) Hamiltonian between the projected states: $\{|J M N Z P \xi\rangle, J, P, \xi=\ldots\}$.

We calculate observables.

Energy functional

$$
\begin{gathered}
\mathcal{E}^{n u c}\left[\rho, \kappa, \kappa^{*}\right]^{a b}=\frac{\left\langle\Phi_{a}\right| \hat{H}\left|\Phi_{b}\right\rangle}{\left\langle\Phi_{a} \mid \Phi_{b}\right\rangle} \\
\rho^{a b}=\frac{\left\langle\Phi_{a}\right| \hat{a}^{\dagger} \hat{a}\left|\Phi_{b}\right\rangle}{\left\langle\Phi_{a} \mid \Phi_{b}\right\rangle}, \kappa^{a b}=\frac{\left\langle\Phi_{a}\right| \hat{a} \hat{a}\left|\Phi_{b}\right\rangle}{\left\langle\Phi_{a} \mid \Phi_{b}\right\rangle}, \kappa_{t}^{b a^{*}}=\frac{\left\langle\Phi_{a}\right| \hat{a}^{\dagger} \hat{a}^{\dagger}\left|\Phi_{b}\right\rangle}{\left\langle\Phi_{a} \mid \Phi_{b}\right\rangle} .
\end{gathered}
$$

- $\left|\Phi_{a}\right\rangle,\left|\Phi_{b}\right\rangle$: different quasiparticle states.

$$
\left\langle\Phi_{a} \mid \Phi_{b}\right\rangle \neq 0 \quad \text { (condition to use the EWT of Balian-Brézin) }
$$

- $\mathcal{E}^{n u c}$ directly and uniquely determined by \hat{H}. \Rightarrow respect the Pauli principle.

What's in \hat{H} ?

$$
\hat{H}=\hat{K}^{(1)}+\hat{V}_{\text {Coul }}^{(2)}+\hat{V}_{\text {Sky }}^{(2-4)}
$$

- $\hat{K}^{(1)}$: kinetic energy (+ CoM corr.).
- $\hat{V}_{\text {Coul }}^{(2)}$: Coulomb interaction.
- $\hat{V}_{\text {Sky }}^{(2-4)}$: Skyrme pseudo-potential. Phenomenological.

The Skyrme pseudo-potential

$$
\hat{V}_{S k y}^{(2-4)}=\hat{V}_{S k y}^{(2)}+\hat{V}_{S k y}^{(3)}+\hat{V}_{S k y}^{(4)}
$$

- $\hat{V}_{S k y}^{(2)}=t_{0}\left(1+x_{0} \hat{\Gamma}_{12}^{\sigma}\right) \hat{\delta}_{r_{1} r_{2}}+\frac{t_{1}}{2}\left(1+x_{1} \hat{\Gamma}_{12}^{\sigma}\right)\left(\hat{\vec{k}}_{12}^{\prime 2} \hat{\delta}_{r_{1} r_{2}}+\hat{\delta}_{r_{1} r_{2}} \hat{\vec{k}}_{12}^{2}\right)+$

$$
t_{2}\left(1+x_{2} \hat{\Gamma}_{12}^{\sigma}\right) \hat{\vec{k}}_{12}^{\prime} \hat{\delta}_{r_{1} r_{2}} \cdot \hat{\vec{k}}_{12}+i W_{0}\left(\hat{\vec{\sigma}}_{1}+\hat{\vec{\sigma}}_{2}\right) \hat{\vec{k}}_{12}^{\prime} \hat{\delta}_{r_{1} r_{2}} \times \hat{\vec{k}}_{12}
$$

- $\hat{V}_{S k y}^{(3)}=u_{0}\left(\hat{\delta}_{r_{1} r_{3}} \hat{\delta}_{r_{2} r_{3}}+\hat{\delta}_{r_{3} r_{2}} \hat{\delta}_{r_{1} r_{3}}+\hat{\delta}_{r_{2} r_{1}} \hat{\delta}_{r_{3} r_{1}}\right)$
- $\hat{V}_{S k y}^{(4)}=v_{0}\left(\hat{\delta}_{r_{1} r_{3}} \hat{\delta}_{r_{2} r_{3}} \hat{\delta}_{r_{3} r_{4}}+\ldots\right)$
- 9 parameters.
- SLyMR0 parametrization. Sadoudi et al. Physica Scripta T154 014013 (2013).

Outline of the EDF method

We define an EDF (三 effective Hamiltonian).
\square
We create a set of one-quasiparticle states:

$$
\left\{\left|\Phi_{a}\right\rangle, a=\ldots\right\}
$$

\downarrow
We project each of them on the good quantum numbers:

$$
\{|J M N Z P \epsilon, a\rangle, a, J, P, \epsilon=\ldots\} .
$$

$$
\downarrow
$$

We diagonalize the (effective) Hamiltonian between the projected states: $\{|J M N Z P \xi\rangle, J, P, \xi=\ldots\}$.

We calculate observables.

Symmetries of quasiparticle states

- Number parity: $\hat{\Pi}_{A}\left|\Phi_{a}\right\rangle=\pi_{a}\left|\Phi_{a}\right\rangle$
$\left(\hat{\Pi}_{A}=e^{-i \pi \hat{A}}\right)$

Subgroup of $D_{2 h}^{T D}$:

- Signature: $\hat{R}_{x}\left|\Phi_{a}\right\rangle=\eta_{a}\left|\Phi_{a}\right\rangle$
$\left(\hat{R}_{x}=e^{-i \pi \hat{\jmath}_{x}}\right)$
- Parity: $\hat{P}\left|\Phi_{a}\right\rangle=p_{a}\left|\Phi_{a}\right\rangle$
- y-Time Simplex: $\hat{S}_{y}^{T}\left|\Phi_{a}\right\rangle=\left|\Phi_{a}\right\rangle$
$\left(\hat{S}_{y}^{T}=\hat{R}_{y} \hat{P} \hat{T}\right)$
- odd $A: \pi_{a}=-1, \eta_{a}= \pm i, p_{a}= \pm 1$

Minimization of quasiparticle states

Minimization: $\delta \mathcal{E}^{n u c}\left[\rho, \kappa, \kappa^{*}\right]^{\text {aa }}=0$

Constraints using Lagrange parameters:

- Neutron number: $\left\langle\Phi_{a}\right| \hat{N}\left|\Phi_{a}\right\rangle=N$
- Proton number: $\left\langle\Phi_{a}\right| \hat{Z}\left|\Phi_{a}\right\rangle=Z$
- Quadrupole deformation: $\left\langle\Phi_{a}\right| \hat{Q}\left|\Phi_{a}\right\rangle=Q$
- Self-consistent problem: solved by an iterative procedure.
- Solved for different values of Q and/or $\hat{\beta}_{a}^{\dagger}$

Outline of the EDF method

We define an EDF (三 effective Hamiltonian).
\square
We create a set of one-quasiparticle states:

$$
\left\{\left|\Phi_{a}\right\rangle, a=\ldots\right\}
$$

\downarrow
We project each of them on the good quantum numbers:

$$
\{|J M N Z P \epsilon, a\rangle, a, J, P, \epsilon=\ldots\} .
$$

We diagonalize the (effective) Hamiltonian between the projected states: $\{|J M N Z P \xi\rangle, J, P, \xi=\ldots\}$.

We calculate observables.

Symmetry restoration

Conservation of the neutron and proton numbers:

- $U(1)_{N} \times U(1)_{Z}$
- Broken by: pairing correlations.
\Rightarrow Projection on neutron and proton numbers.

Conservation of total angular momentum:

- $S U(2)_{A}$
- Broken by: quadrupole deformation.
\Rightarrow Projection on total angular momentum.

Outline of the EDF method

We define an EDF (三 effective Hamiltonian).
\square
We create a set of one-quasiparticle states:

$$
\left\{\left|\Phi_{a}\right\rangle, a=\ldots\right\}
$$

$$
\downarrow
$$

We project each of them on the good quantum numbers:

$$
\{|J M N Z P \epsilon, a\rangle, a, J, P, \epsilon=\ldots\} .
$$

\downarrow
We diagonalize the (effective) Hamiltonian between the projected states: $\{|J M N Z P \xi\rangle, J, P, \xi=\ldots\}$.

We calculate observables.

Configuration mixing (GCM)

- $|\Lambda M \xi\rangle=\sum_{i=1}^{\Omega_{1}} \sum_{\epsilon=1}^{\Omega_{i}^{\Lambda}} F_{\xi}^{\wedge}(i, \epsilon)|\Lambda M \epsilon, i\rangle$
$\Lambda \equiv(J, N, Z, P)$
Ω_{I} : set of states $\left|\Phi_{i}\right\rangle$
Ω_{i}^{\wedge} : set of projected states given (Λ, i).
- i : deformation and blocked quasiparticle.

$$
\frac{\delta}{\delta F_{\xi}^{\Lambda *}(i, \epsilon)}\left(\frac{\langle\Lambda M \xi| \hat{H}|\Lambda M \xi\rangle}{\langle\Lambda M \xi \mid \Lambda M \xi\rangle}\right)=0 \Longrightarrow F_{\xi}^{\wedge}(i, \epsilon) \text { et } E_{\xi}^{\wedge}\left(\Omega_{l}\right)
$$

Table of contents

(1) Outline of the method
(2) Application to ${ }^{25} \mathrm{Mg}$
(3) Conclusion and outlook

Motivations

- Proof of principle.
- Light nucleus with a simple structure.
- Phys. Rev. Lett. 113162501 (2014)

Characteristics of the Configuration Mixing (GCM)

- Discretization mesh $\left(q_{1}, q_{2}\right): 40 \mathrm{fm}^{2}$
- Several 1qp states at each deformation.
- Total number of one-quasiparticle states used:
- positive parity: 100 states.
- negative parity: 60 states.

Convergence analysis

 Antry nixa

Convergence analysis II

Ground-state properties

J^{π}	Binding energy (MeV)	Q_{s} $\left(e \mathrm{fm}^{2}\right)$	μ $\left(\mu_{N}\right)$	
Experiment	$\frac{5}{2}^{+}$	-205.587	$20.1(3)$	$-0.85545(8)$
MR-EDF	$\frac{5}{2}^{+}$	-221.875	23.25	-1.054

- No effective charge or effective g-factor!
- Experiment: Nuclear Data Sheets 1101691 (2009)

Low-energy spectrum

Low-energy spectrum

Rotational bands

Ground-state band

Table of contents

(1) Outline of the method

(2) Application to ${ }^{25} \mathrm{Mg}$
(3) Conclusion and outlook

Conclusion

Calculation of ${ }^{25} \mathrm{Mg}$:

- Overall reasonable description...
- ... especially considering the limited quality of SLyMRO.
- Proof of principle of the method.

Conclusion

Calculation of ${ }^{25} \mathrm{Mg}$:

- Overall reasonable description...
- ... especially considering the limited quality of SLyMRO.
- Proof of principle of the method.

Goals:

\checkmark Treatment of even-even and odd-even (and even odd-odd) nuclei on the same footing.
\checkmark MR-EDF calculations with a Hamiltonian-based functional. Spectroscopy of odd-mass nuclei.

Outlook

- Urgent need for a better interaction.
\rightarrow underway: Skyrme with gradient three-body terms.

Outlook

- Urgent need for a better interaction.
\rightarrow underway: Skyrme with gradient three-body terms.
- More calculations and heavier nuclei.
\rightarrow speedup of the programs.

