Symmetry Restored GCM Based on Time-Reversal Breaking States

Michael Bender

Université Bordeaux 1; CNRS/IN2P3; Centre d'Etudes Nucléaires de Bordeaux Gradignan UMR5797, Chemin du Solarium, BP120, 33175 Gradignan, France

> Workshop on The future of multireference DFT Warsaw, Poland, 25-26 June 2015

- Identifying problems with general functionals in MR EDF:
 M. B., T. Duguet, D. Lacroix, B. Avez, B. Bally, P.-H. Heenen
- construction of a Skyrme-type 3-body pseudo-potential:
 J. Sadoudi (thesis work in Saclay + postdoc in Bordeaux),
 - T. Duguet, J. Meyer, M. Bender

4 E b

particle-number projector

angular-momentum restoration operator

rotation in real space

- < ∃ >

$$\hat{P}_{MK}^{J} = \frac{2J+1}{16\pi^2} \int_{0}^{4\pi} d\alpha \int_{0}^{\pi} d\beta \, \sin(\beta) \int_{0}^{2\pi} d\gamma \, \underbrace{\mathcal{D}_{MK}^{*J}(\alpha,\beta,\gamma)}_{\text{Wigner function}} \quad \widehat{\hat{R}(\alpha,\beta,\gamma)}$$

 ${\cal K}$ is the z component of angular momentum in the body-fixed frame. Projected states are given by

$$|JMq\rangle = \sum_{K=-J}^{+J} f_J(K) \hat{P}^J_{MK} \hat{P}^Z \hat{P}^N |\mathsf{MF}(q)\rangle = \sum_{K=-J}^{+J} f_J(K) |JM(qK)\rangle$$

 $f_J(K)$ is the weight of the component K and determined variationally

Axial symmetry (with the z axis as symmetry axis) allows to perform the α and γ integrations analytically, while the sum over K collapses, $f_J(K) \sim \delta_{K0}$

Configuration mixing by the symmetry-restored Generator Coordinate $\ensuremath{\mathsf{Method}}$

Superposition of projected self-consistent mean-field states $|\mathsf{MF}(q)\rangle$ differing in a set of collective and single-particle coordinates q

$$|NZJM\nu\rangle = \sum_{\mathbf{q}} \sum_{K=-J}^{+J} f_{J,\kappa}^{NZ}(\mathbf{q},K) \hat{P}_{MK}^{J} \hat{P}^{Z} \hat{P}^{N} |\mathsf{MF}(\mathbf{q})\rangle = \sum_{\mathbf{q}} \sum_{K=-J}^{+J} f_{J\nu}^{NZ}(\mathbf{q},K) |NZJM(\mathbf{q}K)\rangle$$
with weights $f_{J\nu}^{NZ}(\mathbf{q},K)$.

$$\frac{\delta}{\delta f_{J\nu}^{*}(\mathbf{q}, K)} \frac{\langle NZ JM\nu | \hat{H} | NZ JM\nu \rangle}{\langle NZ JM\nu | NZ JM\nu \rangle} = 0 \quad \Rightarrow \quad \text{Hill-Wheeler-Griffin equation}$$

$$\sum_{\mathbf{q}'}\sum_{K'=-J}^{+J} \left[\mathcal{H}_{J}^{NZ}(\mathbf{q}K,\mathbf{q}'K') - E_{J,\nu}^{NZ} \mathcal{I}_{J}^{NZ}(\mathbf{q}K,\mathbf{q}'K') \right] f_{J,\nu}^{NZ}(\mathbf{q}'K') = 0$$

with

1

$$\begin{array}{l} \mathcal{H}_{J}(\mathbf{q}K,\mathbf{q}'K') = \langle \textit{NZ}\textit{JM}\,\mathbf{q}K|\hat{H}|\textit{NZ}\textit{JM}\,\mathbf{q}'K'\rangle & \text{ energy kerne} \\ \mathcal{I}_{J}(\mathbf{q}K,\mathbf{q}'K') = \langle \textit{NZ}\textit{JM}\,\mathbf{q}K|\textit{NZ}\textit{JM}\,\mathbf{q}'K'\rangle & \text{ norm kernel} \end{array}$$

Angular-momentum projected GCM gives the

- \blacktriangleright correlated ground state for each value of J
- spectrum of excited states for each J

프 + + 프 +

What kind of functionals to use? Problems with existing ones

pure particle-number projection

What kind of functionals to use? Problems with existing ones

pure particle-number projection

M. Bender, CEN de Bordeaux Gradignan

(LDB-) Regularisation: A non-solution to the problem

- Lacroix, Duguet, & Bender, PRC 79 (2009) 044318, proposed a physics-based regularization scheme of the EDF that allows for the use of (almost) standard functionals for which numerically efficient high-quality parameterizations can be easily constructed.
- In a nutshell, one tries to remove self-interaction and self-pairing contributions to the EDF that are multiplied with unphysical weights.
- Problem: complicated formalism, requires construction of the canonical basis of a very general canonical (Bogoliubov) transformation.
- Problem: Works properly only in particle-number projection.
- Problem: Combined particle-number and angular-momentum projection projection does not converge and sum rules are not fulfilled
- \blacktriangleright Problem: two ways of defining the regularisation of GCM that are not equivalent \Rightarrow need to average
- In angular-momentum projection of time-reversal-invariance-breaking states small components take unphysical energies (with regularization this might become worse than without).

- 4 同 6 4 日 6 4 日 6

Bender, Avez, Bally, Duguet, Heenen, Lacroix, in preparation for too long

First try: SLyMR0

$$\begin{split} \hat{v} &= t_0 \left(1 + x_0 \hat{P}_{\sigma} \right) \hat{\delta}_{r_1 r_2} \\ &+ \frac{t_1}{2} \left(1 + x_1 \hat{P}_{\sigma} \right) \left(\hat{\mathbf{k}}_{12}^{\ \prime 2} \hat{\delta}_{r_1 r_2} + \hat{\delta}_{r_1 r_2} \hat{\mathbf{k}}_{12}^{\ 2} \right) \\ &+ t_2 \left(1 + x_2 \hat{P}_{\sigma} \right) \hat{\mathbf{k}}_{12}^{\prime} \cdot \hat{\delta}_{r_1 r_2} \hat{\mathbf{k}}_{12} \\ &+ \mathrm{i} \, W_0 \left(\hat{\sigma}_1 + \hat{\sigma}_2 \right) \cdot \hat{\mathbf{k}}_{12}^{\prime} \times \hat{\delta}_{r_1 r_2} \hat{\mathbf{k}}_{12} \\ &+ u_0 \left(\hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} + \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} + \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \right) \\ &+ v_0 \left(\hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \hat{\delta}_{r_3 r_4} + \hat{\delta}_{r_1 r_2} \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_2 r_4} + \cdots \right) \end{split}$$

J. Sadoudi, M. Bender, K. Bennaceur, D. Davesne, R. Jodon, and T. Duguet, Physica Scripta T154 (2013) 014013

< 🗇 🕨

글 🕨 🔺 글 🕨

э

- it is impossible to fullfil the usual nuclear matter constraints, to have stable interactions and attractive pairing
- no "best fit" possible
- very bad performance compared to standard general functionals

J. Sadoudi, M. Bender, K. Bennaceur, D. Davesne, R. Jodon, and T. Duguet, Physica Scripta T154 (2013) 014013

\Rightarrow see talk by B. Bally lateron for angular-momentum and particle-number projected GCM of blocked triaxial one-quasiparticle states

B. Bally, doctoral thesis, Université de Bordeaux (2014)

B. Bally, B. Avez, M. B., and P.-H. Heenen, PRL 113 (2014) 162501

< 🗇 🕨

글 🕨 🖌 글 🕨

э

Left: Non-projected total energy of the HFB vacua (without LN correction) relative to the spherical configuration. Middle: N = 26, Z = 20 projected total energy of the HFB vacua relative to the spherical configuration. Right: Energy of the projected N = 26, Z = 20, J = 0 HFB vacua.

Top row: Right: Energy of the J = 0 HFB vacua. Middle: Energy of the lowest *K*-mixed J = 2 projected state . Right: Energy of the second *K*-mixed J = 2 state . Bottom row: Right: Energy of the J = 3 state. Middle: Energy of the lowest *K*-mixed J = 4 projected state. Right: Energy of the second *K*-mixed J = 4 state. The total energy is relative to the minimum of the J = 0 energy surface. All states are projected on N = 26, Z = 20,

Nilsson diagram along the path indicated by cyan dots. Vertical path through indicated by bars indicate the deformation of yellow dots. the minima.

Nilsson diagram for a closed

э

< 17 ▶

Convergence of various properties of the five lowest GCM states for J = 0, 2and 6 as a function of the number of states out of the basis of projected states.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Convergence of various properties of the five lowest GCM states for J = 0, 2and 6, in a basis that combines *all* projected states as a function of the number of kept eigenstates of the norm.

- There is a sequence of "seniority-2" states with J^π = 2⁺, 4⁺, 6⁺ that in the shell-model is easily obtained by coupling two neutron holes in the 1f_{7/2}shell to these angular momenta.
- These are non-collective; hence, cannot be describes by "traditional" GCM.

伺 とう ほう うちょう

э

Fun with SLyMR0 and diabatic states – ⁴⁶Ca

mean-field energy relative to non-cranked spherical state (left) and mean value of J_z (right) for states cranked to $\hbar\omega = 0$ (top), 0.5 (middle) and 0.7 MeV (bottom) $\Rightarrow a = b + a = b = a$

Fun with SLyMR0 and diabatic states – ⁴⁶Ca

seniority 2, lowest N, Z, J = 6 projected

M. Bender, CEN de Bordeaux Gradignan Symmetry Restored GCM

Fun with SLyMR0 and diabatic states – ⁴⁶Ca

M. Bender, CEN de Bordeaux Gradignan

Symmetry Restored GCM

Projection of cranked states for collective rotation

B. Bally, B. Avez, M. B., P.-H. Heenen (unpublished)

- compression of excitation spectrum
- projecting the states cranked to *I* does not lead to the lowest energy for J = I states.

The most general *central* Skyrme-type 3-body force up to 2nd order in gradients has been constructed by J. Sadoudi with a dedicated formal algebra code

- 1. write down all possible 3-body pseudo-potentials compatible with symmetry requirements (invariance under time reversal, space inversion, rotations, translations, isospin rotations,
- 2. derive complete functional in particle-hole and T = 1 pairing channels as HFB expectation value of the pseudo-potential with the help of a dedicated *in-house* formal algebra code.
- 3. separate the linearly independent terms in the pseudo-potential from the redundant ones by SVD of the matrix that relates the coupling constants of the *functional* with those of the *pseudo potential*.
- 4. derive mean fields and pairing fields
- 5. derive properties of infinite nuclear matter for symmetric, polarized symmetric, neutron and polarized neutron matter, including effective masses and Landau parameters.

- 4 同 ト 4 回 ト

J. Sadoudi, T. Duguet, J. Meyer, M. B., PRC 88 (2013) 064326

3-body terms of 2nd order in gradients

structure

ŵ

$$\begin{split} _{123} &= u_0 \left(\hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} + \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} + \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \right) \\ &+ \frac{u_1}{2} \left[1 + y_1 P_{12}^{\sigma} \right] \left(\hat{\mathbf{k}}_{12} \cdot \hat{\mathbf{k}}_{12} + \hat{\mathbf{k}}_{12}' \cdot \hat{\mathbf{k}}_{12}' \right) \hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \\ &+ \frac{u_1}{2} \left[1 + y_1 P_{31}^{\sigma} \right] \left(\hat{\mathbf{k}}_{31} \cdot \hat{\mathbf{k}}_{31} + \hat{\mathbf{k}}_{31}' \cdot \hat{\mathbf{k}}_{31}' \right) \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} \\ &+ \frac{u_1}{2} \left[1 + y_1 P_{23}^{\sigma} \right] \left(\hat{\mathbf{k}}_{23} \cdot \hat{\mathbf{k}}_{23} + \hat{\mathbf{k}}_{23}' \cdot \hat{\mathbf{k}}_{23}' \right) \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \\ &+ u_2 \left[1 + y_{21} P_{12}^{\sigma} + y_{22} (P_{13}^{\sigma} + P_{23}^{\sigma}) \right] \left(\hat{\mathbf{k}}_{12} \cdot \hat{\mathbf{k}}_{12}' \right) \hat{\delta}_{r_1 r_3} \hat{\delta}_{r_2 r_3} \\ &+ u_2 \left[1 + y_{21} P_{31}^{\sigma} + y_{22} (P_{32}^{\sigma} + P_{12}^{\sigma}) \right] \left(\hat{\mathbf{k}}_{31} \cdot \hat{\mathbf{k}}_{31}' \right) \hat{\delta}_{r_3 r_2} \hat{\delta}_{r_1 r_2} \\ &+ u_2 \left[1 + y_{21} P_{23}^{\sigma} + y_{22} (P_{21}^{\sigma} + P_{31}^{\sigma}) \right] \left(\hat{\mathbf{k}}_{23} \cdot \hat{\mathbf{k}}_{23}' \right) \hat{\delta}_{r_2 r_1} \hat{\delta}_{r_3 r_1} \end{split}$$

J. Sadoudi, T. Duguet, J. Meyer, M. B., PRC 88 (2013) 064326

- implementation in spherical HFB code
- implementation in 3d SR and MR EDF codes
- implemtation into semi-infinite nuclear matter code
- implementation into code calculating linear response in infinite homogeneous matter
- first preliminary fits have been achieved (\Rightarrow Karim Bennaceur's talk)

Table: Three-body terms labeled by their parameters that have been considered in earlier (non-systematic) work as indicated by +.

Ref.	<i>u</i> 0	u_1	u_1y_1	<i>u</i> ₂	$u_2 y_{21}$	<i>u</i> ₂ <i>y</i> ₂₂
Blaizot et al. (1975)	+	+	_	_	_	_
Liu et al. (1975)	+	+	_	_	_	_
Onishi et al. (1978)	+	_	_	+	+	_
Waroquier et al. (1983)	+	+	_	—	_	_
Arima et al. (1986)	+	+	_	+	+	_
Zheng et al. (1990)	+	+	_	—	_	_
Liu et al. (1991)	+	+	+	+	+	_

(cf. Table III of J. Sadoudi, T. Duguet, J. Meyer, M. B., PRC 88 (2013) 064326 for complete references)

・ 御 と ・ 国 と ・ 国 と

3

$$\begin{split} \mathcal{E}^{\rho\rho\rho} &= \sum_{t=0,1} \left\{ B_{t}^{\rho} \rho_{t} \rho_{t} \rho_{0} + B_{t}^{s} \mathbf{s}_{t} \cdot \mathbf{s}_{t} \rho_{0} + B_{t}^{\tau} \rho_{t} \tau_{t} \rho_{0} + B_{t}^{\tau s} \tau_{t} \mathbf{s}_{t} \cdot \mathbf{s}_{0} \\ &+ B_{t}^{T} \mathbf{s}_{t} \cdot \mathbf{T}_{t} \rho_{0} + B_{t}^{T} \mathbf{s}_{t} \cdot \mathbf{T}_{\bar{t}} \rho_{1} + B_{t}^{\nabla\rho} (\nabla\rho_{t}) \cdot (\nabla\rho_{t}) \rho_{0} + B_{t}^{j} \mathbf{j}_{t} \cdot \mathbf{j}_{t} \rho_{0} \\ &+ \sum_{\mu\nu} \left[B_{t}^{\nabla s} (\nabla_{\mu} s_{t,\nu}) (\nabla_{\mu} s_{t,\nu}) \rho_{0} + B_{t}^{J} J_{t,\mu\nu} J_{t,\mu\nu} \rho_{0} \\ &+ B_{t\bar{t}}^{\nabla\rho s} (\nabla_{\mu} \rho_{t}) (\nabla_{\mu} s_{\bar{t},\nu}) s_{1,\nu} + B_{t}^{\nabla\rho s} (\nabla_{\mu} \rho_{t}) (\nabla_{\mu} s_{t,\nu}) s_{0,\nu} \\ &+ B_{t}^{Js} j_{t,\mu} J_{t,\mu\nu} s_{0,\nu} + B_{t\bar{t}}^{Js} j_{t,\mu} J_{\bar{t},\mu\nu} s_{1,\nu} \right] \\ &+ \sum_{\mu\nu\lambda\kappa} \epsilon_{\nu\lambda\kappa} \left[B_{t}^{\nabla sJ} (\nabla_{\mu} s_{t,\nu}) J_{t,\mu\lambda} s_{0,\kappa} + B_{t\bar{t}}^{\nabla sJ} (\nabla_{\mu} s_{t,\nu}) J_{\bar{t},\mu\lambda} s_{1,\kappa} \right] \right\} \\ &+ B_{10}^{s} \mathbf{s}_{1} \cdot \mathbf{s}_{0} \rho_{1} + B_{10}^{\tau} \rho_{1} \tau_{0} \rho_{1} + B_{10}^{\tau s} \tau_{0} \mathbf{s}_{1} \cdot \mathbf{s}_{1} + B_{10}^{\nabla\rho} (\nabla\rho_{1}) \cdot (\nabla\rho_{0}) \rho_{1} \\ &+ \sum_{\mu\nu} B_{10}^{\nabla s} (\nabla_{\mu} s_{1,\nu}) (\nabla_{\mu} s_{0,\nu}) \rho_{1} + B_{10}^{j} \mathbf{j}_{1} \cdot \mathbf{j}_{0} \rho_{1} + \sum_{\mu\nu} B_{10}^{J} J_{1,\mu\nu} J_{0,\mu\nu} \rho_{1} \end{split}$$

8 terms are the usual central two-body terms ×ρ₀, the other 15 have different vector and/or isospin coupling.

< ≣⇒

э

A word on isospin pair densities I

- The particle-hole part of the energy density functional is usually represented in isospin representation
- The pairing part of the energy density functional is usually represented in proton-neutron representation

In the case with p-p and n-n pairing, $|{\sf HFB}_n\rangle\otimes{\sf HFB}_p\rangle$

$$\kappa(\mathbf{r}\sigma q, \mathbf{r}'\sigma' q') \equiv \langle \Phi | \mathbf{a}_{\mathbf{r}'\sigma' q'} \mathbf{a}_{\mathbf{r}\sigma q} | \Phi \rangle \quad \text{with} \quad \kappa(\mathbf{r}\sigma q, \mathbf{r}'\sigma' q') = -\kappa(\mathbf{r}'\sigma' q', \mathbf{r}\sigma q)$$

There is no local proton or neutron anomalous density $\kappa_q(\mathbf{r})$ analogous to $\rho_q(\mathbf{r}) = \sum_{\sigma} \rho(\mathbf{r} \sigma q, \mathbf{r} \sigma q)$

$$\kappa_q(\mathbf{r}) = \sum_{\sigma} \kappa(\mathbf{r}\sigma q, \mathbf{r}\sigma q) = -\sum_{\sigma} \kappa(\mathbf{r}\sigma q, \mathbf{r}\sigma q) = 0$$

Define pairing density instead

$$\tilde{\rho}_{q}(\mathbf{r}) \equiv \sum_{\sigma} (-\sigma) \kappa(\mathbf{r} \sigma q, \mathbf{r} - \sigma q) = -\sum_{\sigma} (-\sigma) \kappa(\mathbf{r} - \sigma q, \mathbf{r} \sigma q) \neq 0$$

But there is no isoscalar or isovector pairing density $\tilde{\rho}_t$ analogous to

$$\rho_{0}(\mathbf{r}) \equiv \sum_{\sigma q} \rho(\mathbf{r}\sigma q, \mathbf{r}\sigma q)$$

$$\rho_{1,\mathfrak{a}}(\mathbf{r}) \equiv \sum_{\sigma q'q} \rho(\mathbf{r}\sigma q, \mathbf{r}\sigma q') \tau_{\mathfrak{a},q'q} \rightarrow \rho_{1,1} = \rho_{1,2} = 0, \quad \rho_{1,3} = \rho_{p}(\mathbf{r}) - \rho_{n}(\mathbf{r})$$

A word on isospin pair densities II

Pairing densities

$$\begin{split} \breve{\rho}_{0}(\mathbf{r}) &\equiv \sum_{\sigma q} (-\sigma)(-q) \,\kappa(\mathbf{r}\sigma q,\mathbf{r}-\sigma-q) = \sum_{\sigma q} \sigma \,q \,\kappa(\mathbf{r}-\sigma-q,\mathbf{r}\sigma q) = 0\\ \breve{\rho}_{1,\mathfrak{a}}(\mathbf{r}) &\equiv \sum_{\sigma q'q} (-\sigma)(-q') \,\kappa(\mathbf{r}\sigma q,\mathbf{r}-\sigma-q') \,\tau_{\mathfrak{a},q'q} \end{split}$$

- the first (a = 1) and second (a = 2) isovector components of all normal densities are zero,
- all isoscalar pairing densities are zero,
- the third component (a = 3) of all isovector pairing densities is zero.

E. Perlinska, S. G. Rohoziński, J. Dobaczewski, W. Nazarewicz, PRC 69, 014316 (2004)

S. G. Rohoziński, J. Dobaczewski, W. Nazarewicz, PRC 81, 014313 (2010)

$$\mathcal{P}_{n} \equiv \frac{1}{2} \left(\mathcal{P}_{0} + \mathcal{P}_{1,3} \right) \qquad \qquad \mathcal{P}_{p} \equiv \frac{1}{2} \left(\mathcal{P}_{0} - \mathcal{P}_{1,3} \right) \\ \tilde{\mathcal{P}}_{n} \equiv \frac{1}{2} \left(\check{\mathcal{P}}_{1,1} + i\check{\mathcal{P}}_{1,2} \right) \qquad \qquad \tilde{\mathcal{P}}_{p} \equiv \frac{1}{2} \left(\check{\mathcal{P}}_{1,1} - i\check{\mathcal{P}}_{1,2} \right)$$

The anomalous part of the functional

$$\begin{split} \mathcal{E}^{\kappa\kappa\rho} &= \sum_{a=1,2} \left\{ B_{0}^{\tilde{\rho}} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,a} \rho_{0} + B_{0}^{\tilde{\rho}} \tilde{r}_{1,a}^{*} \rho_{1,a} \rho_{0} + B_{0}^{\tilde{\rho}} \tilde{\rho}_{1,a}^{*} \tilde{r}_{1,a} \rho_{0} + B_{0}^{\tilde{\rho}} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,a} \tilde{\rho}_{1,a} \tau_{0} \right. \\ &+ B_{0}^{\nabla\tilde{\rho}} (\nabla\tilde{\rho}_{1,a}^{*}) \cdot (\nabla\tilde{\rho}_{1,a}) \rho_{0} + B_{0}^{\nabla\tilde{\rho}} \tilde{\rho}_{1,a}^{*} (\nabla\tilde{\rho}_{1,a}) \tilde{\rho}_{1,a} \cdot (\nabla\rho_{0}) + B_{0}^{\tilde{\rho}^{*}} \tilde{\rho}_{1,a}^{*} (\nabla\tilde{\rho}_{1,a}) \cdot (\nabla\rho_{0}) \\ &+ i B_{0}^{\nabla\tilde{\rho}^{*}j} (\nabla\tilde{\rho}_{1,a}^{*}) \tilde{\rho}_{1,a} \cdot j_{0} + i B_{0}^{\nabla\tilde{\rho}} \tilde{\rho}_{1,a}^{*} (\nabla\tilde{\rho}_{1,a}) \cdot j_{0} \\ &+ \sum_{\mu\nu} \left[B_{0}^{\tilde{\rho}} \tilde{\rho}_{1,a,\mu\nu}^{*} \tilde{\rho}_{1,a,\mu\nu} \tilde{\rho}_{1,a,\mu\nu} \rho_{0} + B_{0}^{\tilde{\rho}^{*}} \tilde{\rho}_{1,a,\mu\nu}^{*} \tilde{\rho}_{1,a,\mu\nu} + B_{0}^{\tilde{\rho}^{*}j} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,a,\mu\nu} J_{0,\mu\nu} \\ &+ i B_{0}^{\tilde{\rho}} \tilde{\rho}^{*} \tilde{\gamma} (\nabla\mu \tilde{\rho}_{1,a}^{*}) \tilde{J}_{1,a,\mu\nu} \rho_{0,\nu} + i B_{0}^{\tilde{\rho}^{*}} \tilde{\rho}_{1,a,\mu\nu}^{*} \tilde{\rho}_{1,a,\mu\nu} \nabla (\nabla\mu \rho_{0,\nu}) \\ &+ i B_{0}^{\tilde{\rho}} \tilde{\rho}^{*} \tilde{\gamma}^{*} (\nabla\mu \tilde{\rho}_{1,a}^{*}) \tilde{J}_{1,a,\mu\nu} \delta_{0,\nu} + i B_{0}^{\tilde{\rho}^{*}} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,a,\mu\nu} (\nabla\mu \rho_{0,\nu}) \\ &+ i B_{0}^{\tilde{\rho}^{*}} \tilde{\gamma}^{*} (\nabla\mu \tilde{\rho}_{1,a}^{*}) \tilde{J}_{1,a,\mu\nu} \delta_{0,\nu} + i B_{0}^{\tilde{\rho}^{*}} \tilde{\rho}^{*} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,a,\nu} (\nabla\mu \rho_{0,\nu}) \\ &+ i B_{0}^{\tilde{\rho}^{*}} \tilde{\gamma}^{*} (\nabla\mu \tilde{\rho}_{1,a}^{*}) \tilde{J}_{1,a,\mu\nu} \tilde{\rho}_{1,a,\mu\lambda} \delta_{0,\kappa}] \right\} \\ &+ \sum_{\mu\nu\lambda\kappa} \epsilon_{\nu\lambda\kappa} \left\{ i B_{0}^{\tilde{\rho}^{*}} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,a,\mu\nu} \tilde{\rho}_{1,\mu} \rho_{1,\nu} (\nabla\mu \rho_{0,\nu}) \right\} \\ &+ \sum_{a,b=1,2} \sum_{c=3} \epsilon_{abc} \left\{ i B_{1}^{\tilde{\rho}} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,b} \rho_{1,c} + i B_{1}^{\tilde{\rho}^{*}} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,\mu} \rho_{1,c} + i B_{1}^{\tilde{\rho}^{*}} \tilde{\rho}_{1,a}^{*} (\nabla\rho_{1,c}) \\ &+ i B_{1}^{\tilde{\rho}^{*}} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,b} \tau_{1,c} + i B_{1}^{\tilde{\rho}^{*}} (\nabla\tilde{\rho}_{1,a}^{*}) \cdot (\nabla\rho_{1,c}) + B_{1}^{\tilde{\rho}^{*}} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,\mu} \tilde{\rho}_{1,\mu} \tilde{\rho}_{1,c} \rho_{1,c} \rangle \right\} \\ &+ \sum_{\mu\nu} \left[i B_{1}^{\tilde{\rho}^{*}} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,b} \rho_{1,c} + i B_{1}^{\tilde{\rho}^{*}} \tilde{\rho}_{1,a}^{*} \tilde{\rho}_{1,b} \tilde{\rho}_{1,c} \rho_{1,b} \rho_{1,c} \rho_{1,c} \rho_{1,b} \rho_{1,c} \rho_{1$$

$$\begin{array}{ll} \mathcal{P}_{1,\mathfrak{a}}, \mathcal{P}'_{1,\mathfrak{a}} & \qquad \text{generic normal isospin densities} \\ \mathcal{\check{P}}_{1,\mathfrak{a}}, \mathcal{\check{P}}'_{1,\mathfrak{a}} & \qquad \text{generic anomalous isospin densities} \end{array}$$

abc

The generic isospin structure of the terms containing isovector densities is

$$\begin{array}{ccc} \mathcal{P}_{0} \, \mathcal{P}'_{0} & ab \\ \\ \sum_{\mathfrak{a}} \mathcal{P}_{1,\mathfrak{a}} \, \mathcal{P}'_{1,\mathfrak{a}} = \mathcal{P}_{1,3} \, \mathcal{P}'_{1,3} & \mathbf{a} \cdot \mathbf{b} \\ \\ \sum_{\mathfrak{a}} \check{\mathcal{P}}^{*}_{1,\mathfrak{a}} \, \check{\mathcal{P}}'_{1,\mathfrak{a}} = \check{\mathcal{P}}^{*}_{1,1} \, \check{\mathcal{P}}'_{1,1} + \check{\mathcal{P}}^{*}_{1,2} \, \check{\mathcal{P}}'_{1,2} & \mathbf{A}^{*} \cdot \mathbf{B} \\ \\ \sum_{\mathfrak{a}} \mathcal{P}_{1,\mathfrak{a}} \, \mathcal{P}'_{1,\mathfrak{a}} \, \mathcal{P}''_{0} = \mathcal{P}_{1,3} \, \mathcal{P}'_{1,3} \, \mathcal{P}''_{0} & (\mathbf{a} \cdot \mathbf{b}) \, c \\ \\ \sum_{\mathfrak{a}} \check{\mathcal{P}}^{*}_{1,\mathfrak{a}} \, \check{\mathcal{P}}'_{1,\mathfrak{a}} \, \mathcal{P}''_{0} = (\check{\mathcal{P}}^{*}_{1,1} \, \check{\mathcal{P}}'_{1,1} + \check{\mathcal{P}}^{*}_{1,2} \, \check{\mathcal{P}}'_{1,2}) \, \mathcal{P}''_{0} & (\mathbf{A}^{*} \cdot \mathbf{B}) \, c \\ \\ \\ \sum \epsilon_{\mathfrak{a}\mathfrak{b}c} \check{\mathcal{P}}^{*}_{1,\mathfrak{a}} \, \check{\mathcal{P}}'_{1,\mathfrak{b}} \, \mathcal{P}''_{1,\mathfrak{c}} = (\check{\mathcal{P}}^{*}_{1,1} \, \check{\mathcal{P}}'_{1,2} - \check{\mathcal{P}}^{*}_{1,2} \, \check{\mathcal{P}}'_{1,1}) \, \mathcal{P}''_{1,3} & (\mathbf{A}^{*} \times \mathbf{B}) \cdot \mathbf{c} \end{array}$$

< 三 > < 三 >

- 32

- Implementation into various codes (1d spherical HFB code, 3d time-reversal-breaking HFB code, corresponding projected energy kernel code) by J. Sadoudi
- various tools (semi-infinite nuclear matter, linear response in homogeneous infinite matter) by the Lyon group
- First fit by Robin Jodon and Karim Bennaceur

		1d	Lagrange	FD	Lagrange	FD
term		Lenteur	Esp 0.4	CR8 0.4	Esp 0.8	CR8 0.8
rno rno	:-2.	303.0900	-2304.5008	-2304.5007	-2307.7476	-2307.7476
tau rho	: !	519.7104	620.6368	620.5874	622.2555	619.6135
(nabla_1 rho) (nabla_1 rho)	: :	250.8967	250.8727	250.8721	251.2605	251.1661
J,ij J,ij	:	-1.3377	-1.3318	-1.3316	-1.3363	-1.3255
rho (nabla_i J,i)	: '	-18.3752	-18.3406	-18.3376	-18.3539	-18.2198
rho rho	: '	-11.0146	-11.1218	-10.6793	-11.1270	-10.6856
tau rho	:	4.3951	4.4384	4.2737	4.4452	4.2544
(nabla_i rho~) (nabla_i rho~)	:	0.5413	0.5395	0.5257	0.5385	0.5244
J~,ij J~,ij	:	0.6501	0.6424	0.6675	0.6436	0.6650
J~,ij J~,ji	:	0.8883	0.8777	0.9121	0.8794	0.9087
2-body normal terms	:-14	152.1958	-1452.6637	-1452.7104	-1453.9217	-1456.5134
2-body pairing terms	:	-4.5398	-4.6239	-4.3003	-4.6203	-4.3330
rho rho	: 4	135.6634	436.4813	436,4813	437.8326	437.8326
tau rho rho	-	116.9447	-117.3016	-117.2915	-117.8265	-117,2929
(nabla i rho) (nabla i rho) rho		-80.5779	-80.7145	-80.6885	-80,9568	-80.0307
J.ii J.ii rho		0.6672	0.6653	0.6651	0.6713	0.6653
rho rho rho		5.0440	5.0867	4.8579	5.0925	4.8646
rhoĩ rhoĩ tau		-0.2003	-0.2024	-0.1931	-0.2030	-0.1931
tau rho rho		-2.1124	-2.1361	-2.0439	-2.1423	-2.0370
(nabla i rho [~]) (nabla i rho [~]) rho		-0.1761	-0.1735	-0.1714	-0.1730	-0.1670
(nabla i rho [~]) rho [~] (nabla i rho)		-0.7636	-0.7626	-0.7252	-0.7619	-0.7221
J. ii J. ii rho		-0.1976	-0.1950	-0.2039	-0.1956	-0.2032
J~,ij rho~ J,ij	:	0.1824	0.1816	0.1811	0.1822	0.1805
3-body normal terms			239 1305	239 1664	239 7207	241 1743
3-body pairing terms	:	1.7763	1.7987	1.7015	1.7988	1.7227
Normal energy		013 3877	-1213 5332	-1213 5440	-1214 2010	-1215 3391
Pairing opergy	. 1.	=2 7634	-2 8252	-2 5988	=2 8215	-2 6103
Total Skyrme energy	:-1:	216.1511	-1216.3584	-1216.1428	-1217.0225	-1217.9494

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

SLyMR1 t1 and t2 terms

parameter	Ν	nphi	rho tau	(n rho)	(J,ij)^2	2 (j,i)^2	2 T,j s,j	j (ns)^2	2 tau~ rh	10~ (n rho~)^2 (J~,	ij)^2 sum
slymr1.full	10	9	188.3440	137.5166	-1.1522	-0.5270	0.0426	-0.0195	2.138	0.5784	0.000	326.921
slymr1.full	10	19	188.3474	137.5179	-1.1521	-0.5274	0.0425	-0.0196	2.136	0.5764	0.000	326.922
slymr1.full	10	49	188.3530	137.5200	-1.1518	-0.5280	0.0425	-0.0198	2.133	0.5730	0.000	326.922
slymr1.full	10	99	188.3546	137.5206	-1.1518	-0.5282	0.0425	-0.0198	2.132	0.5720	0.000	326.922
slymr1.full	16	9	-508.9685	-0.0908	-71.3148	49.4046	-1.4427	71.9475	419.228	258.1075	0.000	216.871
slymr1.full	16	19	-508.9650	-0.0895	-71.3147	49.4042	-1.4427	71.9474	419.226	258.1054	0.000	216.872
slymr1.full	16	49	-508.9594	-0.0874	-71.3145	49.4035	-1.4427	71.9472	419.223	258.1020	0.000	216.872
slymr1.full	16	99	-508.9578	-0.0868	-71.3145	49.4033	-1.4427	71.9472	419.222	258.1011	0.000	216.873

SLyMR1 3-body particle-hole terms with gradients

					(n	rho)"2 rho		(n rho)(ns	5)S	(J,1j)"2 rf	10	(ns) Jij *	* s
parameter ph	Ν	nphi	tau rho rho	tau s.s	T.s rho		(ns)^2 rho		j.j rho		j Jij s		
slymr1.u12 ph	10	9	4701.8093	-0.7998	0.0793	-575.1353	-0.5943	0.1610	-10.1486	-24.6551	0.1913	3 0.0340	
slymr1.u12 ph	10	19	4701.6090	-0.7923	0.0794	-575.0214	-0.5902	0.1592	-10.1132	-24.7883	0.1912	2 0.0343	
slymr1.u12 ph	10	49	4701.9386	-0.7923	0.0796	-575.1385	-0.5912	0.1590	-10.0976	-25.3188	0.1978	3 0.0364	
slymr1.u12 ph	10	99	4703.2720	-0.8100	0.0797	-575.5858	-0.6035	0.1639	-10.1249	-26.2676	0.2061	0.0405	
slymr1.u12 ph	16	9	-39021.6405	674.3819	47.9496	5569.1625	1142.6613	-143.5713	1601.0492	8376.5201	141.5929	9.2838	
slymr1.u12 ph	16	19	-39022.3579	674.3954	47.9498	5569.4133	1142.6691	-143.5745	1601.0978	8376.5000	141.5932	9.2840	
slymr1.u12 ph	16	49	-39021.9545	674.3950	47.9500	5569.2783	1142.6678	-143.5747	1601.1097	8375.9653	141.5999	9.2862	
slymr1.u12 ph	16	99	-39020.6003	674.3772	47.9501	5568.8259	1142.6554	-143.5697	1601.0812	8375.0153	141.6083	9.2902	

SLyMR1 3-body particle-particle terms with gradients

		r	ho~ rho~ t	tau	(nrho~)^2	rho	J~J~rho	j	(n rho~)rh	10~ J′	řrhoř (m	ns)
parameter pp	Ν	nph	i	tau~ rho~		(nrho~)rho	(nrho)	J~rho~J		(n rho~).	Jĩs	E_Skyrme
slymr1.u12 pp	10	9	52.9923	10.6258	-12.2975	11.3648	1.7275	-0.7052	-0.0285	-0.0265	-0.0181	4154.576
slymr1.u12 pp	10	19	53.3197	10.8327	-12.6713	11.2386	1.9537	-0.7785	-0.0340	-0.0327	-0.0199	4154.576
slymr1.u12 pp	10	49	53.2097	10.8258	-12.6793	10.7099	2.9412	-0.8206	-0.0335	-0.0320	-0.0189	4154.575
slymr1.u12 pp	10	99	51.9519	10.3770	-11.8584	9.7458	4.8114	-0.7757	-0.0197	-0.0161	-0.0116	4154.575
slymr1.u12 pp	16	9	7289.7021	4041.2535	1221.8195	10365.4002	3546.0851	225.7561	430.3757	402.5616	54.4158	5974.759
slymr1.u12 pp	16	19	7290.5397	4041.6231	1221.1512	10365.3966	3546.0864	225.6595	430.3673	402.5521	54.4129	5974.759
slymr1.u12 pp	16	49	7290.3974	4041.6077	1221.1414	10364.8625	3547.0744	225.6176	430.3676	402.5528	54.4139	5974.758
slymr1.u12 pp	16	99	7289.1304	4041.1565	1221.9618	10363.8971	3548.9448	225.6627	430.3815	402.5686	54.4212	5974.758

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Some (very) preliminary results obtained with SLyMR1

Some (very) preliminary results obtained with SLyMR1

æ

M. Bender, CEN de Bordeaux Gradignan

Symmetry Restored GCM

Some (very) preliminary results obtained with SLyMR1

M. Bender, CEN de Bordeaux Gradignan

Symmetry Restored GCM

Symmetry restoration based on time-reversal-breaking states gives access to

- coupling of collective and single-particle degrees of freedom
- angular-momentum optimization
- beyond-mean-field description of odd-A and odd-odd nuclei

From a technical point, it has been challenging as one has to solve

- "sign" problem: sign of the overlap of two HFB states
- "pole" problem: definition of the MR-EDF

Is it time for new furniture?

The work presented here would have been impossible without my collaborators

Founding fathers Paul Bonche (deceased) Hubert Flocard (retired) Paul-Henri Heenen	SPhT, CEA Saclay CSNSM Orsay Université Libre de Bruxelles
formal aspects Thomas Duguet Denis Lacroix	Irfu/CEA Saclay & KU Leuven & NSCL/MSU IPN Orsay
code development and benchmarkin Benoît Avez Benjamin Bally Veerle Hellemans Jiangming Yao	ng CEN Bordeaux Gradignan CEN Bordeaux Gradignan, now SPhN, CEA Saclay Université Libre de Bruxelles Université Libre de Bruxelles
development and benchmarking of	new functionals
Karim Bennaceur Dany Davesne Robin Jodon Jacques Meyer Alessandro Pastore Jeremy Sadoudi Kouhei Washiyama	IPN Lyon & Jyväskylä IPN Lyon IPN Lyon IPN Lyon IPN Lyon, now CEA Bruyères-le-châtel CEN Bordeaux Gradignan Université Libre de Bruxelles

æ