

Constraining Finite-Range Momentum Dependent Effective Interactions

Andrea Idini

K.Bennaceur, J. Dobaczewski

Collaboration Workshop 'The future of multireference DFT', 25–26 June 2015, Warsaw

Skyrme Interaction

Contact interaction \leftarrow $v_{\text{Skyrme}}(r) = t_0(1 + x_0 P^{\sigma})\delta(r)$ $+t_1(1+x_1P^{\sigma})(\delta(r)k^2+k'^2\delta(r))/2 \bigg\}$ Momentum Dependent + $t_2(1 + x_2 P^{\sigma}) \mathbf{k}'^* \delta(\mathbf{r}) \cdot \mathbf{k}$ **Density dependent** $+ t_3/6(1 + x_3 P_{\sigma})\rho^{\alpha}\delta(r)$ Density dependence $1/6 < \alpha < 2/3$ $+iW_0\hat{\sigma}\cdot[\mathbf{k}^{\prime*}\delta(\mathbf{r})\times\mathbf{k}]$ Spin-orbit

Regularized Interaction

$$\begin{aligned} & g_{a}(r) \\ & Gaussian interaction \\ & v_{\text{Reg}} = t_{0}(1 + x_{0}P^{\sigma} - y_{0}P^{\tau} - z_{0}P^{\sigma\tau})g_{a}(r) \\ & + t_{1}(1 + x_{1}P^{\sigma} - y_{1}P^{\tau} - z_{1}P^{\sigma\tau})(g_{a}(r)k^{2} + k'^{2}g_{a}(r))/2 + \hat{T}_{1} \\ & + t_{2}(1 + x_{2}P^{\sigma} - y_{2}P^{\tau} - z_{2}P^{\sigma\tau})k'^{*}g_{a}(r) \cdot k \\ & \overbrace{T_{2}}^{g_{a}(r)} \\ \end{aligned}$$

- $P^{\tau} \neq \pm 1$
- coefficients y_i , z_i not reabsorbed

 α (m) 1

• more parameters at a given order

	Ref.	REG2a	
K_∞ (MeV)	230	230.00	
L (MeV)	75	100.2	
E/A (sat.) (MeV)	-16	-16	
$ ho_{sat}$ (fm)	0.16	0.160	
J (MeV)	32	32	

Close Shell masses

Infinite Matter Properties

Bennaceur et al., EPJ Web of Conferences 66 (2014) 02031

from UNEDF website

Pairing Matrix Elements to constrain properties of open shell finite nuclei Gomez, Prieto, Navarro, NPA 549 (1992) 125

$$V_{nlj}^{ST} = \left\langle (nlj, nlj)_{J=0} \middle| v_{Reg}^{ST} \middle| (nlj, nlj)_{J=0} \right\rangle$$

one can gauge the matrix element on the pairing energy of a close shell + 2v nucleus. In $V_{f_{7/2}}^{ST}$ case, ⁴²Ca

Pairing Matrix Elements to constrain properties of open shell finite nuclei Gomez, Prieto, Navarro, NPA 549 (1992) 125

CT

$$V_{nlj}^{ST} = \langle (nlj, nlj)_{J=0} | v_{Reg}^{ST} | (nlj, nlj)_{J=0} \rangle \qquad V_{f_{7/2}}^{ST}$$

Wavefunction

$$\psi_{nljq}^{S=0}(\vec{r}_{1}\sigma_{1},\vec{r}_{2}\sigma_{2}) = \sum_{m_{l_{1}}} \frac{\sqrt{2j+1}}{2(2l+1)} (-)^{l-m_{l_{1}}} \delta_{\sigma_{1}-\sigma_{2}}$$
$$\frac{Y_{m_{l_{1}}}^{l}(\hat{r}_{1})Y_{-m_{l_{1}}}^{l}(\hat{r}_{2})R_{nljq}(r_{1})R_{nljq}(r_{2})$$

Multipole expansion $g_{a}(\vec{r}_{1} - \vec{r}_{2}) = \frac{e^{-|\vec{r}_{1} - \vec{r}_{2}|^{2}/a^{2}}}{(a\sqrt{\pi})^{3}}$ The M.E. is an integral over a total of 6 Spherical Harmonics with gradients! $= \frac{4\pi}{(a\sqrt{\pi})^{3}} e^{-\frac{(r_{1}^{2} + r_{2}^{2})}{a^{2}} \sum_{LM} i_{L} \left(2\frac{r_{1}r_{2}}{a^{2}}\right) Y_{M}^{L*}(\hat{r}_{1})Y_{M}^{L}(\hat{r}_{2})$

Local NLO contribution

Difference between Momenentum dependent operators

$$\widetilde{\hat{T}_1 - \hat{T}_2} = (k_{12}'^2 + k_{12}^2)/2 - \vec{k}_{12}' \cdot \vec{k}_{12} = \left(\vec{k}_{12}'^* - \vec{k}_{12}\right)^2/2$$

Local part of the interaction

$$\left[\hat{T}_1 - \hat{T}_2, \delta(r_1' - r_1)\delta(r_2' - r_2)\right] = 0$$

Commutes with locality deltas

$$\left(\hat{T}_1 - \hat{T}_2\right)\delta(r_1' - r_1)\delta(r_2' - r_2)g_a(r_1 - r_2) \to -\frac{\left(\vec{V}_1 - \vec{V}_2\right)^2}{2}g_a(r_1 - r_2)$$

thus is the laplacian of the gaussian That is conveniently related to the Derivative respect to the range

$$\frac{\left(\vec{\nabla}_1 - \vec{\nabla}_2\right)^2}{2}g_a(r_1 - r_2) = \frac{1}{a}\frac{\partial}{\partial a}g_a(r_1 - r_2)$$

Local NⁿLO contribution to matrix elements for regularized interaction

$$\left(\frac{\left(\vec{\nabla}_1 - \vec{\nabla}_2\right)^2}{2}\right)^n g_a(r_1 - r_2) = \left(\frac{1}{a}\frac{\partial}{\partial a}\right)^n g_a(r_1 - r_2)$$

The matrix element for a local regularized interaction ($t_2 = -t_1$),

$$V_{N^{n}LO}[t^{(n)}] = \left(-\frac{1}{a}\frac{\partial}{\partial a}\right)^{n} V_{LO}[t^{(n)}]$$

	Ref.	REG2a	New	
K_∞ (MeV)	230	230.00	230.51	
L (MeV)	75	100.20	84.87	
E/A (sat.) (MeV)	-16	-16.00	-16.17	
$ ho_{sat}$ (fm)	0.16	0.160	0.160	
J (MeV)	32	32.00	00 33.31	
$\langle \psi_{f_{7/2}^2} ig V_{Loc}^{S=0} ig \psi_{f_{7/2}^2} angle$ (MeV)	-3	-0.54	-1.76	
$\langle \psi_{f_{7/2}^2} ig V_{Loc}^{S=1} ig \psi_{f_{7/2}^2} angle$ (MeV)	≳ 0	0.12	0.13	

Pairing Energy ⁴⁴Ca -9.153 MeV.

One Body Density Funct.

$$E_{p-p}^{ST}[\rho] = \frac{1}{2} \sum_{\substack{nlj \\ n'l'j'}} (-)^{l'+l} \sqrt{(2j+1)(2j'+1)} (u \cdot v)_{nlj} (u \cdot v)_{n'l'j'} \\ \left\langle (n'l'j', n'l'j')_{00} \middle| v_{Reg}^{ST} \middle| (nlj, nlj)_{00} \right\rangle \\ \text{Two Body} \\ \text{Matrix Element}$$

J. Sadoudi, M. Bender and T. Duguet, unp. (2012)

In the case of pairing for close shell + 2vn'l'j' = nlj

One Body Density Funct.

$$E_{p-p}^{ST}[\rho] = \frac{1}{2} (-)^{l'+l} \sqrt{(2j+1)(2j'+1)} (u \cdot v)_{nlj}^2$$
$$\langle (nlj, nlj)_{00} | v_{Reg}^{ST} | (nlj, nlj)_{00} \rangle$$
Two Body

Matrix Element

J. Sadoudi, M. Bender and T. Duguet, unp. (2012)

10		$\langle \psi_{f_{7/2}^2} \big V_{Loc}^{ST} \big \psi_{f_{7/2}^2} \rangle$	Ref		
ΤΖ	S=0, T=0	-17.04 MeV	?		
7	S=1, T=0	-0.82 MeV	?		
	S=0, T=1	-5.29 MeV	?		
eV]	S=1, T=1	+0.38 MeV	?		
P.M.E.	S=0, T=0	S=1, T=0	S=0,	T=1	S=1, T=1
-13				Total	
-18				iutai	

Landau Parameters are the coefficient of the p-h interaction expanded in the legendre polynomial basis for the different spin-isospin channels, calculated at the Fermi surface.

$$\sum_{l} f_{l}^{(\alpha)} P_{l} \left(\vec{k} \cdot \vec{k'} \right) = v_{p-h} (\vec{k}, \vec{k'})$$
Fourier Transform
$$\int_{l}^{l} P_{l} \left(\vec{k} \cdot \vec{k'} \right) = v_{p-h} (\vec{k}, \vec{k'})$$
Particle-hole interaction
$$= v(1 - P^{x}P^{\sigma}P^{\tau})$$

$$\sum_{l} f_{l}^{(\alpha)} P_{l}\left(\vec{k} \cdot \vec{k}'\right) = \boldsymbol{v_{p-h}}(\vec{k}, \vec{k}')$$

$$v_{\text{Reg}}^{LO}(r_{12}, r_{12}') = t_0(1 + x_0 P^{\sigma} - y_0 P^{\tau} - z_0 P^{\sigma\tau})g_a(r_1 - r_2)$$

$$(\delta(r_1 - r_1')\delta(r_2 - r_2') - \delta(r_1 - r_2')\delta(r_2 - r_1')P^{\sigma}P^{\tau})$$

Direct term

$$\int \text{Exchange term}$$

$$\mathcal{F}[v_{\text{Reg}}^{LO}] = D^{(\alpha)}(q) - E^{(\alpha)}(\vec{k} - \vec{k}')$$

)

$$f_{l} = D^{(0,0)} \delta_{l,0} - E^{(0,0)} f_{l}(a, k_{F})$$

$$g_{l} * \vec{\sigma} \cdot \vec{\sigma} = \left(D^{(1,0)} \delta_{l,0} - E^{(1,0)} f_{l}(a, k_{F}) \right)$$

$$f_{l}' * \vec{\tau} \circ \vec{\tau} = \left(D^{(0,1)} \delta_{l,0} - E^{(0,1)} f_{l}(a, k_{F}) \right)$$

$$g_{l}' * \vec{\sigma} \cdot \vec{\sigma} \vec{\tau} \circ \vec{\tau} = \left(D^{(1,1)} \delta_{l,0} - E^{(1,1)} f_{l}(a, k_{F}) \right)$$

dziękuję

Multipole Expansion of the Gaussian

$$v_{Reg} \propto g_a \left(\vec{k}_1 - \vec{k}_2\right) = \frac{e^{-\left|\vec{k}_1 - \vec{k}_2\right|^2 / a^2}}{(a\sqrt{\pi})^3}$$

= $\frac{4\pi}{(a\sqrt{\pi})^3} e^{-\frac{(k_1^2 + k_2^2)}{a^2} \sum_{LM} i_L \left(2\frac{k_1k_2}{a^2}\right) Y_M^{L*}(\hat{k}_1) Y_M^L(\hat{k}_2)}$
 \downarrow
 $(2L+1)P_L(\hat{k}_1 \cdot \hat{k}_2)/4\pi$

NLO contribution to the Matrix Element

Gradient on wavefunction

• Term
$$\propto \hat{T}_1 = (k'^2 + k^2)/2$$

 $\propto g_{a}(\vec{r}_{1} - \vec{r}_{2})\vec{\nabla}'_{1} \cdot \vec{\nabla}_{1} \propto \int \vec{Y}_{l,m_{l}}^{l\pm 1^{*}}(\hat{r}_{1}) \cdot \vec{Y}_{l,m_{l}'}^{l\pm 1}(\hat{r}_{1})Y_{M}^{L^{*}}(\hat{r}_{1})dr_{1} \int Y_{-m_{l}}^{l^{*}}(\hat{r}_{2})Y_{-m_{l}'}^{l}(\hat{r}_{2})Y_{M}^{L}(\hat{r}_{2})dr_{2}$

• Term $\propto \hat{T}_2 \propto \vec{k} \cdot \vec{k'}$ $\propto g_a(\vec{r}_1 - \vec{r}_2)\vec{\nabla'}_1 \cdot \vec{\nabla}_2 \propto \int \vec{Y}_{l,m_{l_1}}^{l\pm 1} (\hat{r}_1)Y_{-m'_{l_1}}^l(\hat{r}_1)Y_M^{L*}(\hat{r}_1)dr_1 \cdot \int \vec{Y}_{l,m_{l_2}}^{l\pm 1} (\hat{r}_1)Y_{-m'_{l_2}}^l(\hat{r}_2)Y_M^L(\hat{r}_2)dr_2$

