

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

(Preparations for) Symmetry unrestricted Skyrme mean-field study of heavy nuclei

Wouter Ryssens

26th of June, Warsaw

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

1 Introduction

2 MOCCa

3 Constraints

4 Tilted Axis Cranking

5 Conclusion

<ロ> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日</p>

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

- Parity
- Signature
- Time Simplex
- Time Reversal

3

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

- Parity
- Signature
- Time Simplex
- Time Reversal

E

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

- Parity
- Signature
- Time Simplex
- Time Reversal

ヘロア 人間 ア 人団 ア 人団 アー

3

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

- Parity
- Signature
- Time Simplex
- Time Reversal

Ξ

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

- Parity
- Signature
- Time Simplex
- Time Reversal

3

(Preparations	
tor)	
Symmetry	
unrestricted	
Skyrme	
mean-field	
study of heavy	
nuclei	
Wouter	

Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

; ,);((((); _"""_ ,-| ((_| '-\ ٢

MOCCa = Modular Cranking Code

MOCCa: status

(Preparations for) Symmetry unrestricted Skyrme mean-field study of heavy nuclei

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

Done:

- 1 (Almost) all interactions
- 2 Hartree-Fock in any combination of symmetries
- 3 BCS in any spatial symmetry combination you wish

・ロト ・ 同ト ・ ヨト ・ ヨト

=

Dac

4 HFB in any spatial (!) symmetry you wish

MOCCa: status

(Preparations for) Symmetry unrestricted Skyrme mean-field study of heavy nuclei

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

Done:

- 1 (Almost) all interactions
- 2 Hartree-Fock in any combination of symmetries
- 3 BCS in any spatial symmetry combination you wish

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

1

Dac

4 HFB in any spatial (!) symmetry you wish

Problem:

1 HFB for time-reversal breaking configurations

(Preparations

Breaking symmetries: extra degrees of freedom

Symmetry unrestricted			
mean-field	Broken symmetries	Physical	Non-physical
study of heavy nuclei	\hat{P}	Re \hat{Q}_{30} , Re \hat{Q}_{32} ,	Re \hat{Q}_{10}
Wouter Ryssens	\check{S}_y^T	$\operatorname{Im} \hat{Q}_{20}$, $\operatorname{Im} \hat{Q}_{42}$,	Im \hat{Q}_{22}
	$\hat{R}_{m{z}}$	$\operatorname{Re}\hat{Q}_{41}$, $\operatorname{Re}\hat{Q}_{43}$,	Re \hat{Q}_{21}
Introduction	\hat{R}_z , \hat{P}	Re \hat{Q}_{31} , Re \hat{Q}_{33} ,	$\operatorname{Re} \hat{Q}_{11}$
MOCCa	$\check{S}^{\widetilde{T}}$ \hat{P}	$\operatorname{Im} \hat{Q}_{22}$	$\operatorname{Im} \hat{\hat{O}}_{11}$
Constraints	\sim_y , i	$\hat{\varphi}_{32}, \ldots$	IIII & II
Tilted Axis	T	J_z	
Cranking	\check{T}, \hat{R}_z	\hat{J}_x	
Conclusion	$\check{T},\check{S}_y^{\widetilde{T}}$	$\hat{\hat{J}_y}$	

How to constrain quantities in mean-field picture?

(Preparations for) Symmetry unrestricted Skyrme mean-field study of heavy nuclei	
Wouter Ryssens	
Introduction	
MOCCa	
Constraints	
Tilted Axis Cranking	G
Conclusion	

$$\hat{h}^{(i)} \rightarrow \hat{h}^{(i)} + \lambda^{(i)}_{\hat{O}} \hat{O}$$
 with $\langle \hat{O} \rangle = O_0$

	Form
Constant	$\lambda^{(i)} = C$
Quadratic/Penalty function	$\lambda^{(i)} = C(\langle \hat{O} \rangle^{(i)} - O_0)$
Augmented Lagrangian	$\lambda^{(i)} = \lambda^{(i-1)} + C(\langle \hat{O} \rangle^{(i)} - O_0)$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - ● ○ ● ●

Augmented Lagrangian is superior

(Preparations for) Symmetry unrestricted Skyrme mean-field study of heavy nuclei

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

Augmented lagrangian(black) versus quadratic(blue) constraints for ²⁵²Fm using HFBTHO/HFODD. Figure from A.Staszczak et al., Eur. Phys. A **46**, 85-90 (2010)

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

$$\lambda^{(i)} = \lambda^{(i-1)} + C_{\hat{O}}(\langle \hat{O} \rangle^{(i)} - O_0)$$

Optimal choice of $C_{\hat{O}}$ depends on:

- Initial mean-field configuration
- *O*₀ ■ *Ô*
- the presence of other constraints!

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Dac

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

$$^{20}\text{Ne},~\text{Re}\langle\hat{Q}_{10}\rangle=0$$
 fm, $\text{Re}\langle\hat{Q}_{20}\rangle=10$ fm², $\text{Re}\langle\hat{Q}_{30}\rangle=10$ fm³

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

€ 900

Deviation
$$= \sum_{l=1,2,3} r_{rms}^{-l} \left(\langle \hat{Q}_{l0}
angle - Q_{l,desired}
ight)^2$$

> Wouter Ryssens

Introduction

Constraints

Tilted Axis Cranking

Conclusion

$$20 \text{Ne, } \operatorname{Re}\langle \hat{Q}_{10} \rangle = 0 \text{ fm, } \operatorname{Re}\langle \hat{Q}_{20} \rangle = 10 \text{ fm}^2, \operatorname{Re}\langle \hat{Q}_{30} \rangle = 10 \text{ fm}^3$$

$$Deviation = \sum_{l=1,2,3} r_{rms}^{-l} \left(\langle \hat{Q}_{l0} \rangle - Q_{l,desired} \right)^2$$

$$10^{10^{1}} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1} 10^{1} 10^{1} 10^{1}} 10^{1}$$

€ 990

> Wouter Ryssens

Introduction

Constraints

Tilted Axis Cranking

Conclusion

Predictor-Corrector constraints

(Preparations for) Symmetry unrestricted Skyrme mean-field	
study of heavy nuclei	First description:
Wouter Ryssens	R.Y. Cusson et al., Z. Phys. A 320, 475-482 (1985)
Introduction	More complete:
MOCCa	K. Rutz, PhD thesis, Ibidem-Verlag. Frankfurt (1998)
Constraints	
Tilted Axis Cranking	But the procedure described is not exactly the one K. Rutz used nor the one Luse!

Conclusion

Predictor-Corrector constraints

(Preparations for) Symmetry unrestricted Skyrme mean-field study of heavy nuclei

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

Augmented Lagrangian scheme: 1 Imaginary time step/gradient descent $\Psi^{(i)} = [1 - \epsilon(\hat{h}^{(i-1)} + \lambda^{(i-1)}\hat{O})]\Psi^{(i-1)}$ 2 Adapt $\lambda^{(i)} = \lambda^{(i-1)} + C(\langle \hat{O} \rangle^{(i)} - O_0)$

3 construct $\hat{h}^{(i)}$

4 Repeat

Predictor-Corrector constraints

(Preparations for) Symmetry unrestricted Skyrme mean-field study of heavy nuclei

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

Predictor-Corrector scheme with two constants C = 7.0 and K = 0.71 Trial step $\chi^{(i)} = \left[1 - \epsilon(\hat{h}^{(i-1)} + \lambda \hat{O})\right] \Psi^{(i-1)}$ Adapt 2 $\lambda^{(i)} = \lambda^{(i-1)} + \frac{C}{A} \left(\langle \hat{O} \rangle^{(trial)} - \langle \hat{O} \rangle^{(i-1)} \right)$ Do a corrective step 3 $\Psi^{(i)} = \left[1 - \frac{K}{A} \left(\langle \hat{O} \rangle^{(trial)} - O_0 \right) \hat{O} \right] \chi^{(i)}$ construct $\hat{h}^{(i)}$ repeat 5

where $A = [\langle \hat{O}^2 \rangle^{(trial)} + 0.00001]^{-1}$

Predictor - Corrector constraints

Predictor-Corrector constraints for $^{20}\mathrm{Ne},$ constraints on $\hat{Q}_{10},\hat{Q}_{20}$ and $\hat{Q}_{30}.$

BriX ULB

Tilted axis cranking

・ロト ・ 理ト ・ モト ・ モー ・ つへぐ

BriX ULB

Tilted axis cranking

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

MOCCa: almost fully operational

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

- MOCCa: almost fully operational
- Predictor-Corrector constraints are functional and present a great user advantage

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の久()

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

- MOCCa: almost fully operational
- Predictor-Corrector constraints are functional and present a great user advantage

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

Applications are underway

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

- MOCCa: almost fully operational
- Predictor-Corrector constraints are functional and present a great user advantage

- Applications are underway
- Future: fix the remaining problems

> Wouter Ryssens

Introduction

MOCCa

Constraints

Tilted Axis Cranking

Conclusion

- MOCCa: almost fully operational
- Predictor-Corrector constraints are functional and present a great user advantage

- Applications are underway
- Future: fix the remaining problems
- Future: implement the SLyMRX interactions