Regularization Scheme Applied to Particle Number Projection in MR Functional Theory

The future of multireference DFT Workshop
25-26 June 2015, Warsaw, Poland

Particle mixing

In HFB theory, the Bogoliubov transformation

$$
\binom{\beta}{\beta^{\dagger}}=\left(\begin{array}{cc}
U^{\dagger} & V^{\dagger} \\
V^{T} & U^{T}
\end{array}\right)\binom{c}{c^{\dagger}}
$$

defines the quasi-particle operators β and β^{\dagger} as combination of the single particle operators c and c^{\dagger}.

The HFB equations produce solutions in which the single-particle operators are mixed.
\Rightarrow The ground state wave function does not have a defined number of particles.
\Rightarrow Restoration of the number of particles symmetry in the multireference EDF.

Projector over the number of particles N (neutrons)

$$
\hat{P}_{N}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{i \phi(\hat{N}-N)}
$$

In the HFODD solver, this integration is performed by discretization

$$
\int d \phi e^{-i \phi N} \ldots \rightarrow \frac{1}{L} \sum_{k=1}^{L} e^{-i \frac{2 \pi k}{L} N} \ldots
$$

(V.N. Fomenko, J. Phys. A 3 (1970) 8)
where L is the number of points used to represent the gauge angle ϕ in the complex plane.

Problems related with Particle Number Projection PNP

- poles along the imaginary axis
- dependence on the contour of integration
- fractional power of ρ

J. Dobaczewski et al., Phys. Rev. C 76 (2007) 054315

M. Bender et al., Phys. Rev. C 79 (2009) 044319

The simple regularization for the Angular Momentum Projection in W. Satuła and J. Dobaczewski, Phys. Rev. C 90 (2014) 054303 is extended to the Particle Number Projection (Projection After Variation) of the energy

$$
E_{N}=\frac{\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{-i \phi N} \varepsilon[\rho, \bar{\rho}](\phi)\langle\Psi \mid \Psi(\phi)\rangle}{\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{-i \phi N}\langle\Psi \mid \Psi(\phi)\rangle}
$$

Basic steps for the regularization:

* canonical wave functions solutions of HFB equations \Rightarrow gauge rotated wave functions, densities and Skyrme functionals
- ε functional of the total energy
- $\langle\Psi \mid \Psi(\phi)\rangle$ overlap between initial and gauge-rotated wave functions
* expansion of the overlap (regular)

$$
\langle\Psi \mid \Psi(\phi)\rangle=\sum_{R=-\infty}^{+\infty} c_{R} e^{i \phi R}
$$

with coefficients

$$
c_{R}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{-i \phi R}\langle\Psi \mid \Psi(\phi)\rangle
$$

* auxiliary energy

$$
E_{N, 1}=\frac{1}{c_{N}} \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{-i \phi N} \varepsilon[\rho, \bar{\rho}](\phi)\langle\Psi \mid \Psi(\phi)\rangle\langle\Psi \mid \Psi(\phi)\rangle
$$

\star assumed regular matrix elements

$$
\widetilde{\langle\varepsilon\rangle}=\widetilde{\varepsilon}[\rho, \bar{\rho}](\phi)\langle\Psi \mid \Psi(\phi)\rangle=\sum_{K=-\infty}^{+\infty} \widetilde{\left\langle\varepsilon_{K}\right\rangle} e^{i \phi K}
$$

\star matrix of coefficients $(C)_{N K}$

$$
\sum_{K}(C)_{N K} \widetilde{\left\langle\varepsilon_{K}\right\rangle}=c_{N} E_{N, 1}
$$

to be inverted to obtain the regularized projected energies

$$
\widetilde{E}_{N}=\frac{1}{c_{N}} \widetilde{\left\langle\varepsilon_{N}\right\rangle}
$$

\star sum rule to check that the sum of the all projected energies gives back the initial energy

$$
E=\sum_{N}\left\langle\Psi_{N} \mid \Psi_{N}\right\rangle \widetilde{E}_{N}=\sum_{N} \widetilde{\left\langle\varepsilon_{N}\right\rangle}
$$

Technical difficulties

Inversion made by Singular Value Decomposition method:
restricted only on $\mathrm{M} \times \mathrm{M}$ matrix to have linear independent row or column
in $C_{N K}$
$\mathrm{M}=\min (N, L)$.
The projection operator is periodic

$$
e^{-i \frac{2 \pi k}{L} N}=e^{-i \frac{2 \pi k}{L} N+L}
$$

The sum rule runs over a number of different N equal to M instead of from $-\infty$ to $+\infty$

Sum rule contributions
${ }^{120}$ Sn (Skyrme SIII, \#=19)

Regularization scheme for PNP

Fluctuation of the projected energy far from the expected value $\langle N\rangle$

(No) differences between PNP and regularized PNP

${ }^{120}$ Sn (Skyrme SIII)

Energy behaviour as function of β_{20} deformation parameter

Future development:

- new tests to figure out improvement of the regularization
- simultaneous projection on neutron and proton number

