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Motivation

@ Ab initio approaches

= Considerable progress over last few years, still limited applicability

 New techniques available
o Symmetry breaking [Soma et al. 2011, Hergert et al. 2013, Signoracci et al. 2014]

o Symmetry restoration  [Duguet 2015, Duguet & Signoracci in preparation]

@& Nuclear Energy Density Functionals
~ Extended reach, SR & MR codes with fantastic potential

~ However empirical parameterisations plagued with critical pathologies in MR

Can ab initio techniques help in developing safe/correlated/improvable EDFs?



Ab initio vs EDF approaches
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Beyond classic MR schemes

@ Possible routes
= Regularisation schemes

= Stick to pseudopotentials
= Work at SR level only?
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@& This proposal
1) Effective Hamiltonian based method
2) Use ab initio techniques to systematically enrich EDF kernels with correlations

3) Newly developed symmetry broken/restored MBPT allows for SR/MR implementation

[T. Duguet, J. Phys. G 42 025107 (2015)]



MBPT of off-diagonal kernels

W Symmetry group

= Consider here the group associated to rotations
SU(2) = {R(£2), 2 € Dsy»}
R(Q) = e~ 1%:e =il e =itk

= Matrix elements of the IRREPS of SU(2) are given by the Wigner functions
(¥ R(@) ‘ YJ;’K> = 5,8, D (Q)

= Consider a reference state that mixes several IRREPS |®)

l

rotated reference state

|@(2)) = R(2)|D)



MBPT of off-diagonal kernels

@ Exact (fully correlated) off-diagonal kernels

= Introduce time-evolution operator %/ (1) = o THeit

¥(1)) = % (7)|P(0)) > Her|[¥(1)) = —0:|¥(7))
7 ™
N(7,Q) = (¥(1)[1]|P(Q2))
and kernels H(7,Q) = (W(7)|Hei| P(L2)) =  0(1,Q)= O(r,L)
Ji(7,Q) = (P(0)l1]|P(Q)) N(z,0)
Jz(’C,.Q) — <qj(,c) ]2|€D(.Q)> reduced kernels
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MBPT of off-diagonal kernels

@ Exact (fully correlated) off-diagonal kernels

= Introduce time-evolution operator %/ (7:) — o Hefr
¥ (7)) = % (7)|2(0)) > He|V(7)) = —0:|¥(7))
g Y
N(7,Q) = (¥(1)|1|P(£2))
and kernels H(7,Q) = (W(7)|Hei| P(L2)) =  0(1,Q)= O(r,L)
Ji(7,Q2) = (¥(7)lJi|D(R)) N(z,0)
Jz(’C,.Q) — <qj(,c) ]2|€D(.Q)> reduced kernels
- "J
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All this is exact... how to expand these kernels around some reference state?



MBPT of off-diagonal kernels

@ Reference state

= One starts with splitting Hef = Hy+H; where Hy=71+U and

= E.g. Hartree-Fock U = zl;.”aﬁcjxcﬁ where ugg = z(;’vgf}f,ﬁ 5 pgg),
o ¥
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MBPT of off-diagonal kernels

@ Reference state

 One starts with splitting Hesf = Hy+Hy where Ho=1T+U and H; = vl —u

= E.g. Hartree-Fock U = zl;.”aﬁcjxcﬁ where ugg = z(;’vgf}f,ﬁ 5 pgg),
o ¥

' ™\
Hy|2(0)) = &|P(0))
A
€ = Z(ei—ﬂ)
\ =1 A

@ Off-diagonal one-body density matrix

(e _ (%4 (oo ) Vo Rap(@)=(aR@)B)
00 R(Q)M(Q) 0 M;;(£2) =R for hole states
= 00 | 0
- \\ W,
vanishes for for Q=0 pgg = 10 S+ (1 — 1)) 103%



MBPT of off-diagonal kernels

@& First-order expansion of the energy kernel

 Expand the evolution operator in powers of Hi

Y (’L’) — o THo Te—fo’f dtH (t) where H (1) = efHOHle_THO

and the perturbation series for any operator can be derived = diagrammatic techniques



MBPT of off-diagonal kernels

@& First-order expansion of the energy kernel

 Expand the evolution operator in powers of Hi

Y (’L’) — o THo Te—fo’f dtH (t) where H (1) = efHOHle_THO

and the perturbation series for any operator can be derived = diagrammatic techniques

 One first proves that any operator factorises as O(£2) (£2)

/

contains all connected diagrams linked to O H(Q) =h(Q)N(Q)



MBPT of off-diagonal kernels

@& First-order expansion of the energy kernel

 Expand the evolution operator in powers of Hi

Y (’L’) — o THo Te—fof dtH (t) where H (1) = eTHOHle_THO

and the perturbation series for any operator can be derived = diagrammatic techniques

 One first proves that any operator factorises as O(£2) (£2)

/

contains all connected diagrams linked to O H(Q) =h(Q)N(Q)

= First-order MBPT diagrams give j (D (Q) = <¢(O) \Heff ’¢(Q)>
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MBPT of off-diagonal kernels

& Bi-orthogonal basis

= Introducing the so-called bi-orthogonal basis

4 ™
B(Q) =1+ &
7) = i>+;IC>R M (2)
@) = |a)
\. w,

B H(Q)=1-p" |
(J] = (J]
(] = (b| - Y. R ()M, (Q) (/]

kl }‘

It is possible to write the first-order expansion in a compact form
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_|_
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MBPT of off-diagonal kernels

= In fact, one can always reduce the analytical expansion (for any operator) of the

off-diagonal kernel to the one of the diagonal kernel but with the rotated operator

= E.g. at second order

r A
o) = PO+ A @)+ 7 V@) ole(@).
0 —
(P(0)|P(R2))
= (@(0)|[1+ 72 (@)+ 7 P (@2)|0(2)|@(0).
\ y
with cluster amplitudes defined as
One-body Two-body
1) 1 1) i
_ _eff _ ija
<7ia (‘Q> — _ea_el [ - Vijaj Mza} ‘Zjab (Q) - €qtep—€ —¢€;j
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MBPT of off-diagonal kernels

@& Second-order expansion of the energy kernel

8 ™y
@) = Zfﬁ( Z Q) 17:(£2)
ri zv;{g +Y 710 (@)ret (@)
ija
+ 3 L 7 (@)@
. : A

= Standard MBPT(2) codes can be employed

= There exist techniques to reduce computational cost from Ny’ to N> x Np

[see e.g. Khorosmkaia & Khoromskij 2014]

= Reduces to standard MBPT(2) for Q=0



MBPT of off-diagonal kernels

& Expansion of the norm kernel

o ™
o Dl SR Jpyy, 92 Dtk () h(D) N(@)
Ey =
: ot J% Jpg,,, 42 Diik (@) N (€)
. o

 The norm kernel has to be computed consistently with the energy kernel

= Argument: require that applying the restoration scheme to the Casimir and infinitesimal
generator of the group one gets the expected values at each order of truncation

l

In the case of SU(2) P=J(J+1)h and ], = Mh

 This leads to a set of three coupled ordinary differential equations V" has to satisfy



MBPT of off-diagonal kernels

@ ODEs for the norm kernel
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MBPT of off-diagonal kernels

@ ODEs for the norm kernel

= At a given order n one has to compute jx, j;', j2 and j* @

e.g. at 2nd order il@) = ) (ji)a(€ Z ) (i )ar(£2)

and determine the norm from the ODEs



MBPT of off-diagonal kernels

@ ODEs for the norm kernel

= At a given order n one has to compute jx, j;', j2 and j* @

e.g. at 2nd order il@) = ) (ji)a(€ Z ) (i )ar(£2)

and determine the norm from the ODEs

 The resulting norm can be written as

at first order X)(Q)=1

(cf. ODEs fulfilled by the plain overlap, i.e. uncorrelated norm kernel)



Conclusive remarks

& The present formalism consistently treats non-dynamical and dynamical correlations

 Non-dynamical correlations through MR mixing
= Dynamical correlations through expansion of kernels in terms of ph excitations

 In addition, one can enrich Hef with higher-body operators

@ When augmenting the content of the kernels and / or Hefr, parameters of Heg must be
re-optimised fully

@ Consistent treatment of energy and norm kernels is crucial
& All other operators can be treated on the same footing
& First obvious step is MBPT(2), but other many-body expansions can be envisioned

= Optimise balance between complexity of many-body expansion and that of the
effective Hamiltonian
& The formalism allows to perform safe MR calculations, however it does not guarantee it

= [ncautious many-body truncations might still induce self-interactions/ self-pairin
y y & P &

= Further study of which are the safe truncations is needed



Appendix



Working scheme for the ab initio-based EDF

A Reference state
(a) Solve, e.g., symmetry-unrestricted Hartree-Fock equa-
tions in terms of H.g 1n the basis of interest to obtain
the (deformed) reference state |@(0)). This amounts to
using

A0(0) = nD[p™),

as an input diagonal functional. We denote by N, = N, +
N, the dimension of the one-body Hilbert space, where
N, denotes the number of occupied states of |®(0)) and
N, the number of unoccupied states.

(b) Store single-particle energies {eq} and wave-functions

{ o}

B Single-reference calculations
(a) Build the diagonal one-body density matrix p? along
with the matrix elements of T, Vy,J; and any other ob-
servable O in the eigenbasis { @y } of Hy.
(b) Compute from it the diagonal energy kernel at the cho-
sen order n

Esg = h"(0) = 1" [p%; {eq}].

Proceed similarly for all the other observables O of in-
terest, 1.e. compute

Osr = 0" (0) = 0" [p"; {eq}].



Working scheme for the ab initio-based EDF

C Multi-reference calculations
(a) Discretize the intervals of integration over the three Eu-
ler angles Q = («, 3,7).
(b) For each combination of Euler angles
i. Build the N}, X N, matrix Rgp(2) = (a|R(L2)[B)
and its Nj, x Nj, reduction M;;(£2) to the subspace of
hole states of |@(0)). Compute the inverse M~ (Q).
ii. Build the N, X Nj, rectangular matrix

Np
2 (Q) = ;Raj(Q)Mﬁ-l(Q)-

ii1. Build the bi-orthogonal bases according to Egs. 61
and 63.

iv. Transform the matrix elements of 7', Vegr, J; and any
other observable O of interest into the bi-orthogonal
system to generate the matrix elements of T (),
Vet (2), Ji () and O(Q), respectively.

v. Compute and store the off-diagonal linked/connected
kernels at the chosen order n

" (Q) = M [p*: {eq}],
0" (Q) = 0™ [p*? {eq}],
() = 3 1P {ea)].

(c) Using j,(ci)xy .(£2) for the discretized values of the Eu-

ler angles, along with the initial condition .4 (1) (0)=1,
integrate the three coupled ODEs (Eq. 70) to obtain

A(Q) = ™[ {ea}] (2(0)|D(R)).

for each combination of the Euler angles.

(d) Solve the Hill-Wheeler-Griffin equation to obtain the
weights flé (Eq. 27).
(e) Calculate the energy of the yrast states through

Eyig = ; ;

Yk fa fx fDSU(z)d'Q Dyt () A/ 0(Q)
Proceed similarly to compute other observables O of in-
terest!S.



Working scheme for the ab initio-based EDF

Auxiliary diagonal kernel

e e e

Symmetry group
h(l) [ 00}

“5 G={R(Q);Q € Dg}
pOO Generator(s) = .J},
{ {ea} IRREP = D, ()
~
0Q2
P eat Esr = h™ [p%; {ea}]
2 Osr = 0™ [p%; {ea}]
Off-diagonal kernels at order n in MBPT 1
o M@= o
s0bservable 0™ (Q) = o™ [,OOQ; {ea}]
3

<Generator(s) ]Ign) Q) = j]gn) [pOQ; {ea}} ODEs

<Norm N Q) = N [POQ5 {ea}]
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