Proposal for an ab initio-driven nuclear EDF

T. Duguet ${ }^{1,2,3}$, M. Bender ${ }^{4}$, J.-P. Ebran ${ }^{5}$, T. Lesinski ${ }^{6}$, V. Somà ${ }^{1}$

${ }^{1}$ CEA Saclay, France
${ }^{2}$ KU Leuven, Belgium
${ }^{3}$ MSU, USA
${ }^{4}$ CENBG, France
${ }^{5}$ CEA Bruyères-le-Châtel, France
${ }^{6}$ CEA ESNT, France

arXiv:1502.03672

The future of multireference Density Functional Theory
Warsaw, 26 June 2015

Motivation

Ab initio approaches
$\xrightarrow{\prime} \rightarrow$ Considerable progress over last few years, still limited applicability
$\rightarrow \rightarrow$ New techniques available

- Symmetry breaking [Somà et al. 2011, Hergert et al. 2013, Signoracci et al. 2014]
- Symmetry restoration [Duguet 2015, Duguet \& Signoracci in preparation]

(Nuclear Energy Density Functionals

$\xrightarrow{\prime \prime} \rightarrow$ Extended reach, SR \& MR codes with fantastic potential
$n \rightarrow$ However empirical parameterisations plagued with critical pathologies in MR

Can ab initio techniques help in developing safe/correlated/improvable EDFs?

Ab initio vs EDF approaches

Beyond classic MR schemes

© Possible routes

\Rightarrow Regularisation schemes
$" \rightarrow$ Stick to pseudopotentials
m Work at SR level only?
" \rightarrow....

This proposal

1) Effective Hamiltonian based method
2) Use ab initio techniques to systematically enrich EDF kernels with correlations
3) Newly developed symmetry broken/restored MBPT allows for SR/MR implementation
[T. Duguet, J. Phys. G 42025107 (2015)]

MBPT of off-diagonal kernels

Symmetry group

\rightarrow Consider here the group associated to rotations

$$
\begin{gathered}
S U(2) \equiv\left\{R(\Omega), \Omega \in D_{S U(2)}\right\} \\
R(\Omega)=\mathrm{e}^{-\frac{i}{\hbar} \alpha J_{z}} \mathrm{e}^{-\frac{i}{\hbar} \beta J_{y}} \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} \gamma J_{z}}
\end{gathered}
$$

$\rightarrow \rightarrow$ Matrix elements of the IRREPS of $S U(2)$ are given by the Wigner functions

$$
\left\langle\Psi_{\mu}^{J M}\right| R(\Omega)\left|\Psi_{\mu^{\prime}}^{J^{\prime} K}\right\rangle \equiv \delta_{\mu \mu^{\prime}} \delta_{J J^{\prime}} D_{M K}^{J}(\Omega)
$$

$\xrightarrow{\prime \rightarrow}$ Consider a reference state that mixes several IRREPS $|\Phi\rangle$

$$
\downarrow
$$

rotated reference state

$$
|\Phi(\Omega)\rangle \equiv R(\Omega)|\Phi\rangle
$$

MBPT of off-diagonal kernels

Exact (fully correlated) off-diagonal kernels
$" \rightarrow$ Introduce time-evolution operator $\quad \mathscr{U}(\tau) \equiv e^{-\tau H_{\text {eff }}}$

$$
|\Psi(\tau)\rangle \equiv \mathscr{U}(\tau)|\Phi(0)\rangle \quad \longrightarrow \quad H_{\mathrm{eff}}|\Psi(\tau)\rangle=-\partial_{\tau}|\Psi(\tau)\rangle
$$

and kernels $\quad \begin{aligned} N(\tau, \Omega) & \equiv\langle\Psi(\tau)| \mathbb{1}|\Phi(\Omega)\rangle \\ H(\tau, \Omega) & \equiv\langle\Psi(\tau)| H_{\text {eff }}|\Phi(\Omega)\rangle \\ J_{i}(\tau, \Omega) & \equiv\langle\Psi(\tau)| J_{i}|\Phi(\Omega)\rangle \\ J^{2}(\tau, \Omega) & \equiv\langle\Psi(\tau)| J^{2}|\Phi(\Omega)\rangle\end{aligned} \quad \Rightarrow \quad \mathscr{O}(\tau, \Omega) \equiv \frac{O(\tau, \Omega)}{N(\tau, 0)}$

MBPT of off-diagonal kernels

Exact (fully correlated) off-diagonal kernels

$\xrightarrow{\prime} \rightarrow$ Introduce time-evolution operator $\quad \mathscr{U}(\tau) \equiv e^{-\tau H_{\text {eff }}}$

$$
|\Psi(\tau)\rangle \equiv \mathscr{U}(\tau)|\Phi(0)\rangle \quad \longrightarrow \quad H_{\mathrm{eff}}|\Psi(\tau)\rangle=-\partial_{\tau}|\Psi(\tau)\rangle
$$

All this is exact... how to expand these kernels around some reference state?

MBPT of off-diagonal kernels

© Reference state

$\xrightarrow{\prime} \rightarrow$ One starts with splitting $H_{\text {eff }} \equiv H_{0}+H_{1} \quad$ where $\quad H_{0} \equiv T+U$ and $\quad H_{1} \equiv V^{\text {eff }}-U$
${ }^{\prime \rightarrow}$ E.g. Hartree-Fock $U \equiv \sum_{\alpha \beta} u_{\alpha \beta} c_{\alpha}^{\dagger} c_{\beta} \quad$ where $\quad u_{\alpha \beta}^{\mathrm{HF}}=\sum_{\gamma \delta} \bar{v}_{\alpha \gamma \beta \delta}^{\mathrm{eff}} \rho_{\delta \gamma}^{00}$

$$
\begin{aligned}
H_{0}|\Phi(0)\rangle & =\varepsilon_{0}|\Phi(0)\rangle \\
\varepsilon_{0} & =\sum_{i=1}^{A}\left(e_{i}-\mu\right)
\end{aligned}
$$

MBPT of off-diagonal kernels

© Reference state

$\xrightarrow{\prime} \rightarrow$ One starts with splitting $H_{\text {eff }} \equiv H_{0}+H_{1} \quad$ where $\quad H_{0} \equiv T+U$ and $\quad H_{1} \equiv V^{\text {eff }}-U$
$\xrightarrow{\prime \prime}$ E.g. Hartree-Fock $U \equiv \sum_{\alpha \beta} u_{\alpha \beta} c_{\alpha}^{\dagger} c_{\beta} \quad$ where $\quad u_{\alpha \beta}^{\mathrm{HF}}=\sum_{\gamma \delta} \bar{v}_{\alpha \gamma \beta \delta}^{\mathrm{eff}} \rho_{\delta \gamma}^{00}$

$$
\begin{aligned}
H_{0}|\Phi(0)\rangle & =\varepsilon_{0}|\Phi(0)\rangle \\
\varepsilon_{0} & =\sum_{i=1}^{A}\left(e_{i}-\mu\right)
\end{aligned}
$$

Off-diagonal one-body density matrix

$$
\begin{aligned}
& \rho^{0 \Omega}=\left(\begin{array}{cc}
\mathbb{1}^{h h} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
R(\Omega) M^{-1}(\Omega) & 0
\end{array}\right) \\
& \equiv \rho^{00}+\wp^{0 \Omega}
\end{aligned} \quad \text { with } \begin{aligned}
& R_{\alpha \beta}(\Omega) \equiv\langle\alpha| R(\Omega)|\beta\rangle \\
& \\
& \\
& \\
& \\
& \\
& \text { vanishes for for } \Omega=0
\end{aligned} \quad \begin{aligned}
& \\
&
\end{aligned}
$$

MBPT of off-diagonal kernels

(2) First-order expansion of the energy kernel

$\xrightarrow{m} \rightarrow$ Expand the evolution operator in powers of H_{1}

$$
\mathscr{U}(\tau)=e^{-\tau H_{0}} \mathrm{~T} e^{-\int_{0}^{\tau} d t H_{1}(t)} \quad \text { where } \quad H_{1}(\tau) \equiv e^{\tau H_{0}} H_{1} e^{-\tau H_{0}}
$$

and the perturbation series for any operator can be derived \Rightarrow diagrammatic techniques

MBPT of off-diagonal kernels

(2) First-order expansion of the energy kernel

$\xrightarrow{m} \rightarrow$ Expand the evolution operator in powers of H_{1}

$$
\mathscr{U}(\tau)=e^{-\tau H_{0}} \mathrm{~T} e^{-\int_{0}^{\tau} d t H_{1}(t)} \quad \text { where } \quad H_{1}(\tau) \equiv e^{\tau H_{0}} H_{1} e^{-\tau H_{0}}
$$

and the perturbation series for any operator can be derived \Rightarrow diagrammatic techniques
m One first proves that any operator factorises as $O(\Omega) \equiv o(\Omega) N(\Omega)$ contains all connected diagrams linked to O

$$
H(\Omega) \equiv h(\Omega) N(\Omega)
$$

MBPT of off-diagonal kernels

* First-order expansion of the energy kernel

$\xrightarrow{m} \rightarrow$ Expand the evolution operator in powers of H_{1}

$$
\mathscr{U}(\tau)=e^{-\tau H_{0}} \mathrm{~T} e^{-\int_{0}^{\tau} d t H_{1}(t)} \quad \text { where } \quad H_{1}(\tau) \equiv e^{\tau H_{0}} H_{1} e^{-\tau H_{0}}
$$

and the perturbation series for any operator can be derived \Rightarrow diagrammatic techniques
$" \rightarrow$ One first proves that any operator factorises as $O(\Omega) \equiv o(\Omega) N(\Omega)$ contains all connected diagrams linked to O

$$
H(\Omega) \equiv h(\Omega) N(\Omega)
$$

" \rightarrow First-order MBPT diagrams give

$$
\begin{aligned}
h^{(1)}(\Omega) & =\frac{\langle\Phi(0)| H_{\mathrm{eff}}|\Phi(\Omega)\rangle}{\langle\Phi(0) \mid \Phi(\Omega)\rangle} \\
& =\sum_{i} t_{i i}+\sum_{i a} t_{i a} \wp_{a i}^{0 \Omega} \\
& +\frac{1}{2} \sum_{i j} \bar{v}_{i j i j}^{\mathrm{eff}}+\sum_{i j c} \bar{v}_{i j c j}^{\mathrm{eff}} \wp_{c i}^{0 \Omega} \\
& +\frac{1}{2} \sum_{i j a b} \bar{v}_{i j a b}^{\mathrm{eff}} \wp_{a i}^{0 \Omega} \wp_{b j}^{0 \Omega}
\end{aligned}
$$

MBPT of off-diagonal kernels

Bi-orthogonal basis

$\xrightarrow{\prime} \rightarrow$ Introducing the so-called bi-orthogonal basis

$$
\begin{aligned}
B(\Omega) & \equiv \mathbb{1}+\wp^{0 \Omega} \\
|\tilde{\imath}\rangle & =|i\rangle+\sum_{k c}|c\rangle R_{c k}(\Omega) M_{k i}^{-1}(\Omega) \\
|\tilde{a}\rangle & =|a\rangle
\end{aligned}
$$

$$
\begin{aligned}
& B^{-1}(\Omega) \equiv \mathbb{1}-\wp^{0 \Omega} \\
& \langle\tilde{j}|=\langle j| \\
& \langle\tilde{b}|=\langle b|-\sum_{k l} R_{b k}(\Omega) M_{k l}^{-1}(\Omega)\langle l|
\end{aligned}
$$

It is possible to write the first-order expansion in a compact form

$$
\begin{aligned}
h^{(1)}(\Omega) & =\frac{\langle\Phi(0)| H_{\mathrm{eff}}|\Phi(\Omega)\rangle}{\langle\Phi(0) \mid \Phi(\Omega)\rangle} \\
& =\sum_{i} t_{i i}+\sum_{i a} t_{i a} \wp_{a i}^{0 \Omega} \\
& +\frac{1}{2} \sum_{i j} \bar{v}_{i j i j}^{\mathrm{eff}}+\sum_{i j c} \bar{v}_{i j c j}^{\mathrm{eff}} \wp_{c i}^{0 \Omega} \\
& +\frac{1}{2} \sum_{i j a b} \bar{v}_{i j a b}^{\mathrm{eff}} \wp_{a i}^{0 \Omega} \wp_{b j}^{0 \Omega}
\end{aligned}
$$

$$
\begin{aligned}
h^{(1)}(\Omega) & =\sum_{i} t_{\tilde{u}}(\Omega)+\frac{1}{2} \sum_{i j} \bar{v}_{\tilde{i} \tilde{j} \tilde{j}}^{\mathrm{eff}}(\Omega) \\
& =\langle\Phi(0)| \tilde{H}_{\mathrm{eff}}(\Omega)|\Phi(0)\rangle
\end{aligned}
$$

transformed operator

MBPT of off-diagonal kernels

$m \rightarrow$ In fact, one can always reduce the analytical expansion (for any operator) of the off-diagonal kernel to the one of the diagonal kernel but with the rotated operator
$\xrightarrow{ } \rightarrow$ E.g. at second order

$$
\begin{aligned}
o^{(2)}(\Omega) & =\frac{\langle\Phi(0)|\left[1+\mathscr{T}_{1}^{\dagger(2)}(\Omega)+\mathscr{T}_{2}^{\dagger(2)}(\Omega)\right] O|\Phi(\Omega)\rangle_{c}}{\langle\Phi(0) \mid \Phi(\Omega)\rangle} \\
& =\langle\Phi(0)|\left[1+\mathscr{T}_{1}^{\dagger(2)}(\Omega)+\mathscr{T}_{2}^{\dagger(2)}(\Omega)\right] \tilde{O}(\Omega)|\Phi(0)\rangle_{c}
\end{aligned}
$$

with cluster amplitudes defined as

One-body

$$
\begin{aligned}
\mathscr{T}_{i a}^{\dagger(2)}(\Omega) \equiv & -\frac{1}{e_{a}-e_{i}}\left[\sum_{j} \bar{v}_{i j a j}^{\mathrm{eff}}-u_{i a}\right] \\
& -\sum_{j b} \frac{\bar{v}_{i j a b}^{\mathrm{eff}}}{e_{a}+e_{b}-e_{i}-e_{j}} \wp_{b j}^{0 \Omega}
\end{aligned}
$$

MBPT of off-diagonal kernels

© Second-order expansion of the energy kernel

$$
\begin{aligned}
h^{(2)}(\Omega) & =\sum_{i} t_{\tilde{l} \tilde{l}}(\Omega)+\sum_{i a} \mathscr{T}_{i a}^{\dagger(2)}(\Omega) t_{\tilde{a} \tilde{l}}(\Omega) \\
& +\frac{1}{2} \sum_{i j} \bar{v}_{\tilde{i} \tilde{j} \tilde{j}}^{\operatorname{eff}}(\Omega)+\sum_{i j a} \mathscr{T}_{i a}^{\dagger(2)}(\Omega) \bar{v}_{\tilde{a} \tilde{j} \tilde{j} \tilde{j}}^{\operatorname{eff}}(\Omega) \\
& +\frac{1}{4} \sum_{i j a b} \mathscr{T}_{i j a b}^{\dagger(2)}(\Omega) \bar{v}_{\tilde{a} \tilde{b} \tilde{j} \tilde{j}}^{\mathrm{eff}}(\Omega)
\end{aligned}
$$

$\rightarrow \rightarrow$ Standard MBPT(2) codes can be employed
$\xrightarrow{\prime \prime} \rightarrow$ There exist techniques to reduce computational cost from $\mathbf{N}_{\mathbf{b}}{ }^{5}$ to $\mathbf{N}_{\mathbf{b}}{ }^{\mathbf{3}} \mathbf{x} \mathbf{N}_{\mathbf{h}}$
[see e.g. Khorosmkaia \& Khoromskij 2014]
\rightarrow Reduces to standard MBPT(2) for $\Omega=0$

MBPT of off-diagonal kernels

© Expansion of the norm kernel

$$
E_{0}^{J}=\frac{\sum_{M K} f_{M}^{J *} f_{K}^{J} \int_{D_{S U(2)}} \mathrm{d} \Omega D_{M K}^{J *}(\Omega) h(\Omega) \mathcal{N}(\Omega)}{\sum_{M K} f_{M}^{J *} f_{K}^{J} \int_{D_{S U(2)}} \mathrm{d} \Omega D_{M K}^{J *}(\Omega) \mathcal{N}(\Omega)}
$$

$\xrightarrow{\prime} \rightarrow$ The norm kernel has to be computed consistently with the energy kernel
$\xrightarrow{\prime \prime} \rightarrow$ Argument: require that applying the restoration scheme to the Casimir and infinitesimal generator of the group one gets the expected values at each order of truncation

In the case of $\mathrm{SU}(2) \quad J^{2} \Rightarrow J(J+1) \hbar$ and $J_{z} \Rightarrow M \hbar$
$\xrightarrow{\prime} \rightarrow$ This leads to a set of three coupled ordinary differential equations \mathcal{N} has to satisfy

MBPT of off-diagonal kernels

© ODEs for the norm kernel

$$
\begin{aligned}
& \frac{\partial}{\partial \alpha} \mathscr{N}(\Omega)=-\frac{i}{\hbar} j_{z}(\Omega) \mathscr{N}(\Omega) \\
& \frac{\partial}{\partial \beta}\left(\sin \beta \frac{\partial}{\partial \beta}\right) \mathscr{N}(\Omega) \\
& +\frac{1}{\sin ^{2} \beta}\left(\frac{\partial^{2}}{\partial \alpha^{2}}+\frac{\partial^{2}}{\partial \gamma^{2}}\right) \mathscr{N}(\Omega) \\
& -2 \frac{\cos \beta}{\sin ^{2} \beta} \frac{\partial^{2}}{\partial \alpha \partial \gamma} \mathscr{N}(\Omega)=-\frac{1}{\hbar^{2}} j^{2}(\Omega) \mathscr{N}(\Omega) \\
& \begin{aligned}
\frac{\partial}{\partial \gamma} \mathscr{N}(\Omega)= & -\frac{i}{\hbar} \sin \beta \cos \alpha j_{x}(\Omega) \mathscr{N}(\Omega) \\
& -\frac{i}{\hbar} \sin \beta \sin \alpha j_{y}(\Omega) \mathscr{N}(\Omega)
\end{aligned} \\
& -\frac{i}{\hbar} \cos \beta j_{z}(\Omega) \mathscr{N}(\Omega)
\end{aligned}
$$

MBPT of off-diagonal kernels

© ODEs for the norm kernel
$\xrightarrow{\prime \rightarrow} \rightarrow$ At a given order n one has to compute $\mathbf{j}_{\mathbf{x}}{ }^{(n)}, \mathbf{j}_{\mathbf{y}}{ }^{(\mathbf{n})}, \mathbf{j}_{z}{ }^{(\mathbf{n})}$ and $\mathbf{j}^{\mathbf{2}(\mathbf{n})}$
e.g. at $2^{\text {nd }}$ order $\left.\quad j_{k}^{(2)}(\Omega)=\sum_{i}\left(j_{k}\right)\right)_{\tilde{u}}(\Omega)+\sum_{i a} \mathscr{T}_{i a}^{\dagger(2)}(\Omega)\left(j_{k}\right)_{\tilde{i}}(\Omega)$
and determine the norm from the ODEs

MBPT of off-diagonal kernels

© ODEs for the norm kernel
$\xrightarrow{\prime \rightarrow} \rightarrow$ At a given order n one has to compute $\mathbf{j}_{\mathbf{x}}{ }^{(n)}, \mathbf{j}_{\mathbf{y}}{ }^{(\mathbf{n})}, \mathbf{j}_{z}{ }^{(\mathbf{n})}$ and $\mathbf{j}^{\mathbf{2}(\mathbf{n})}$

$$
\text { e.g. at } \left.2^{\text {nd }} \text { order } \quad j_{k}^{(2)}(\Omega)=\sum_{i}\left(j_{k}\right)\right)_{\tilde{u}}(\Omega)+\sum_{i a} \mathscr{T}_{i a}^{\dagger(2)}(\Omega)\left(j_{k}\right)_{\tilde{u} \tilde{i}}(\Omega)
$$

and determine the norm from the ODEs
$\xrightarrow{\prime} \rightarrow$ The resulting norm can be written as

$$
\begin{aligned}
& \qquad \mathscr{N}^{(2)}(\Omega) \equiv \mathfrak{N}^{(2)}(\Omega)\langle\Phi(0) \mid \Phi(\Omega)\rangle \\
& \downarrow \\
& \text { at first order } \mathfrak{\aleph}^{(1)}(\Omega)=1
\end{aligned}
$$

(cf. ODEs fulfilled by the plain overlap, i.e. uncorrelated norm kernel)

Conclusive remarks

The present formalism consistently treats non-dynamical and dynamical correlations
$\quad \mathrm{m} \rightarrow$ Non-dynamical correlations through MR mixing
$\mu \rightarrow$ Dynamical correlations through expansion of kernels in terms of $p h$ excitations
$\xrightarrow{\prime \prime} \rightarrow$ In addition, one can enrich $H_{\text {eff }}$ with higher-body operators
When augmenting the content of the kernels and/or $H_{\text {eff, }}$ parameters of $H_{\text {eff }}$ must be re-optimised fully

- Consistent treatment of energy and norm kernels is crucial

A All other operators can be treated on the same footing
(First obvious step is MBPT(2), but other many-body expansions can be envisioned
$" \rightarrow$ Optimise balance between complexity of many-body expansion and that of the effective Hamiltonian

The formalism allows to perform safe MR calculations, however it does not guarantee it
$\| \rightarrow$ Incautious many-body truncations might still induce self-interactions/ self-pairing
$\| \rightarrow$ Further study of which are the safe truncations is needed

Appendix

Working scheme for the ab initio-based EDF

A Reference state
(a) Solve, e.g., symmetry-unrestricted Hartree-Fock equations in terms of $H_{\text {eff }}$ in the basis of interest to obtain the (deformed) reference state $|\Phi(0)\rangle$. This amounts to using

$$
h^{(1)}(0)=h^{(1)}\left[\rho^{00}\right]
$$

as an input diagonal functional. We denote by $N_{b}=N_{h}+$ N_{p} the dimension of the one-body Hilbert space, where N_{h} denotes the number of occupied states of $|\Phi(0)\rangle$ and N_{p} the number of unoccupied states.
(b) Store single-particle energies $\left\{e_{\alpha}\right\}$ and wave-functions $\left\{\varphi_{\alpha}\right\}$.

B Single-reference calculations
(a) Build the diagonal one-body density matrix ρ^{00} along with the matrix elements of $T, V_{\text {eff }}, J_{k}$ and any other observable O in the eigenbasis $\left\{\varphi_{\alpha}\right\}$ of H_{0}.
(b) Compute from it the diagonal energy kernel at the chosen order n

$$
E_{\mathrm{SR}} \equiv h^{(n)}(0)=h^{(n)}\left[\rho^{00} ;\left\{e_{\alpha}\right\}\right]
$$

Proceed similarly for all the other observables O of interest, i.e. compute

$$
O_{\mathrm{SR}} \equiv o^{(n)}(0)=o^{(n)}\left[\rho^{00} ;\left\{e_{\alpha}\right\}\right]
$$

Working scheme for the ab initio-based EDF

C Multi-reference calculations
(a) Discretize the intervals of integration over the three Euler angles $\Omega \equiv(\alpha, \beta, \gamma)$.
(b) For each combination of Euler angles
i. Build the $N_{b} \times N_{b}$ matrix $R_{\alpha \beta}(\Omega) \equiv\langle\alpha| R(\Omega)|\beta\rangle$ and its $N_{h} \times N_{h}$ reduction $M_{i j}(\Omega)$ to the subspace of hole states of $|\Phi(0)\rangle$. Compute the inverse $M^{-1}(\Omega)$.
ii. Build the $N_{p} \times N_{h}$ rectangular matrix

$$
\wp_{a i}^{0 \Omega}(\Omega) \equiv \sum_{i=1}^{N_{h}} R_{a j}(\Omega) M_{j i}^{-1}(\Omega) .
$$

iii. Build the bi-orthogonal bases according to Eqs. 61 and 63.
iv. Transform the matrix elements of $T, V_{\text {eff }}, J_{k}$ and any other observable O of interest into the bi-orthogonal system to generate the matrix elements of $\tilde{T}(\Omega)$, $\tilde{V}_{\text {eff }}(\Omega), \tilde{J}_{k}(\Omega)$ and $\tilde{O}(\Omega)$, respectively.
v. Compute and store the off-diagonal linked/connected kernels at the chosen order n

$$
\begin{aligned}
h^{(n)}(\Omega) & =h^{(n)}\left[\rho^{0 \Omega} ;\left\{e_{\alpha}\right\}\right], \\
o^{(n)}(\Omega) & =o^{(n)}\left[\rho^{0 \Omega} ;\left\{e_{\alpha}\right\}\right], \\
j_{k=x, y, z}^{(n)}(\Omega) & =j_{k=x, y, z}^{(n)}\left[\rho^{0 \Omega} ;\left\{e_{\alpha}\right\}\right] .
\end{aligned}
$$

(c) Using $j_{k=x, y, z}^{(n)}(\Omega)$ for the discretized values of the Euler angles, along with the initial condition $\mathscr{N}^{(n)}(0)=1$, integrate the three coupled ODEs (Eq. 70) to obtain

$$
\mathscr{N}^{(n)}(\Omega) \equiv \mathfrak{N}^{(n)}\left[\rho^{0 \Omega} ;\left\{e_{\alpha}\right\}\right]\langle\Phi(0) \mid \Phi(\Omega)\rangle
$$

for each combination of the Euler angles.
(d) Solve the Hill-Wheeler-Griffin equation to obtain the weights f_{K}^{J} (Eq. 27).
(e) Calculate the energy of the yrast states through
$E_{\mathrm{MR}}^{J}=\frac{\sum_{K^{\prime} K} f_{K^{\prime}}^{J *} f_{K}^{J} \int_{D_{S U(2)}} d \Omega D_{K^{\prime} K}^{J *}(\Omega) h^{(n)}(\Omega) \mathscr{N}^{(n)}(\Omega)}{\sum_{K^{\prime} K} f_{K^{\prime}}^{J *} f_{K}^{J} \int_{D_{S U(2)}} d \Omega D_{K^{\prime} K}^{J *}(\Omega) \mathscr{N}^{(n)}(\Omega)}$.
Proceed similarly to compute other observables O of interest ${ }^{18}$.

Working scheme for the ab initio-based EDF

