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Abstract

This thesis presents examples of a perturbative construction of HamiltoniansHλ for effective
particles in quantum field theory (QFT) on the light front. These Hamiltonians (1) have a
well-defined (ultraviolet-finite) eigenvalue problem for bound states of relativistic constituent
fermions, and (2) lead (in a scalar theory with asymptotic freedom in perturbation theory in third
and partly fourth order) to an ultraviolet-finite and covariant scattering matrix, as the Feynman
diagrams do.λ is a parameter of the renormalization group for Hamiltonians and qualitatively
means the inverse of the size of the effective particles. The same procedure of calculating the
operatorHλ applies in description of bound states and scattering. The question of whether this
method extends to all orders in QFT is not resolved here.

The relativistic Hamiltonian formulation of QFT is based on a global regularization of all
terms in a relativistic operatorH∆ (a canonical Hamiltonian with an ultraviolet cutoff∆, plus
counterterms). The renormalization group procedure for effective particles (RGPEP) makes it
possible to find the structure of the counterterms inH∆ and calculate the effective Hamiltoni-
ansHλ for λ ranging from infinity down toλ on the order of masses of bound states.

I investigate bound states of two relativistic fermions using Yukawa theory as an example.
I give an explicit form of the effective HamiltonianHλ in the second order, and discuss the
reduction of its eigenvalue equation to a Schrödinger equation for the wave function of the con-
stituents. Every interaction term in the HamiltonianHλ contains a form factorfλ generated
by RGPEP, which eliminates overlapping divergences in the bound-state eigenvalue problem
expressed in terms of effective particles. The overlapping divergences appear in the eigenvalue
problem expressed in terms of pointlike particles and without the form factorsfλ, and result
from relativistic relative motion of fermions. Such divergences appear in all Hamiltonian the-
ories of pointlike particles with spin, and in particular in quantum chromodynamics (QCD).
The advantage of the Yukawa theory is that it allows one to investigate the ultraviolet behav-
ior in bound states of fermions without additional complications of QCD. The form factorsfλ
also cause the bound state to be dominated by the lowest sectors in the Fock-space basis built
with effective particles. The ultraviolet complications of local QFT are contained in a complex
structure that emerges in the effective particles as a result of dressing of the bare particles of the
initial canonical theory.

My description of scattering in an asymptotically free scalar field theory ofφ3 type in 5+1
dimensions starts from constructing explicitly counterterms inH∆ by calculatingHλ . I then
use the HamiltonianH∆ to calculate a scattering amplitude for a process analogous toe+e−→
hadronsin perturbation theory up to the ordere2g2, i.e., in one loop (e is an analogue of the
electric charge of electrons in QED, andg of the color charge of quarks in QCD). I show
that counterterms found using RGPEP without referring to the S matrix, remove the divergent
regularization dependence from the calculated amplitude. I also give the explicit form of the
finite parts of the counterterms inH∆ that lead to a covariant result for the scattering amplitude.
I show that the dependence of the amplitude calculated this way on the momenta of the colliding
particles, is the same as the dependence derived from Feynman diagrams (the diagrams are
regularized covariantly and without defining a regularized Hamiltonianab initio).

I prove a theorem that states that the scattering amplitude obtained usingH∆ is the same
as the scattering amplitude obtained usingHλ . Note that in the calculation usingH∆ physical
states of colliding particles are expressed in terms of bare particles and one uses the renor-
malized interaction HamiltonianH∆

I . In the calculation usingHλ physical states of colliding
particles are expressed in terms of non-pointlike effective particles and one uses the effective
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interaction HamiltonianHλ I with form factors in all vertices. In the case of the considered am-
plitude of the typee+e−→ hadronsin a one-loop approximation, this theorem implies that the
effective HamiltonianHλ leads to the same predictions for the scattering matrix as the Feynman
diagrams.

I also present an alternative, simplified procedure for deriving the Hamiltonian counterterms
needed for the description of the scalar analogue ofe+e− → hadrons. I illustrate the simpli-
fied procedure by giving mass and some vertex counterterms in QCD coupled to QED, in the
Appendices.
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Streszczenie

Niniejsza praca podaje przykłady perturbacyjnej konstrukcji takich HamiltonianówHλ dla czą-
stek efektywnych w kwantowej teorii pola (KTP) na froncieświetlnym, które (1) mają dobrze
zdefiniowany (ultrafioletowo skónczony) problem własny dla stanów związanych relatywistycz-
nych fermionów-składników, oraz (2) w skalarnej teorii z asymptotyczną swobodą w rachunku
zaburzén do trzeciego i czę́sciowo czwartego rzędu przewidują ultrafioletowo skończoną i ko-
wariantną macierz rozpraszania, taką jak diagramy Feynmana.λ jest parametrem grupy renor-
malizacji dla hamiltonianów i jakósciowo oznacza odwrotność rozmiaru cząstek efektywnych.
Ta sama procedura obliczania operatoraHλ stosuje się w przypadku opisu stanów związanych i
rozpraszania. Dowód stosowalności metody do wszystkich rzędów w KTP nie jest rozważany.

Relatywistyczne hamiltonowskie sformułowanie KTP opiera się na globalnej regularyzacji
wszystkich wyrazów w relatywistycznym operatorzeH∆ (hamiltonian kanoniczny z ultrafiole-
towym obcięciem∆, plus kontrczłony). Procedura grupy renormalizacji dla cząstek efektyw-
nych (RGPEP) pozwala znaleźć strukturę kontrczłonów wH∆, a następnie obliczýc hamiltonian
efektywnyHλ dlaλ z zakresu od nieskończonósci do małych wartósci rzędu mas stanów zwią-
zanych.

W przypadku stanów związanych dwóch relatywistycznych fermionów (zbadanym na przy-
kładzie teorii Yukawy) podana jest jawna postać hamiltonianu efektywnegoHλ w drugim rzę-
dzie rachunku oraz redukcja jego równania własnego do równania Schrödingera na funkcję fa-
lową efektywnych składników. HamiltonianHλ zawiera w oddziaływaniach czynniki kształtu
fλ wygenerowane przez RGPEP, które usuwają nakrywające się rozbieżności (overlapping di-
vergences) w problemie własnym stanu związanego. Nakrywające się rozbieżności pojawiają
się w problemie własnym zapisanym za pomocą cząstek punktowych bez czynnikówfλ, i są
spowodowane relatywistycznym ruchem względnym fermionów. Takie rozbieżności pojawiają
się we wszystkich hamiltonowskich sformułowaniach teorii cząstek punktowych ze spinem, a w
szczególnósci w chromodynamice kwantowej (QCD). Zaletą teorii Yukawy jest możliwość zba-
dania ultrafioletowego zachowania fermionów w stanie związanym niezależnie od dodatkowych
komplikacji w QCD. Czynnikifλ powodują również, że w stanie związanym dominują najniż-
sze sektory Focka cząstek efektywnych. Ultrafioletowe komplikacje lokalnej KTP zawarte są w
skomplikowanej strukturze, która powstaje wewnątrz cząstek efektywnych na skutek ubierania
się cząstek gołych wyjściowej teorii kanonicznej.

W przypadku teorii rozpraszania, jawna konstrukcja kontrczłonów wH∆ na podstawie obli-
czén Hλ jest przeprowadzona w przypadku asymptotycznie swobodnej skalarnej teorii pola
typu φ3 w 5+1 wymiarach. Następnie hamiltonianH∆ jest użyty do obliczenia amplitudy
rozpraszania dla procesu analogicznego doe+e− → hadronyw rachunku zaburzén do rzędu
e2g2, tj. w jednej pętli (e jest analogiem ładunku elektronów w QED ag ładunku kolorowego
kwarków w QCD). Kontrczłony znalezione za pomocą RGPEP bez odwoływania się do ma-
cierzy rozpraszania, usuwają rozbieżną zależność od regularyzacji w obliczonej amplitudzie.
Podane są jawne wzory na skończone czę́sci kontrczłonów wH∆, prowadzące do kowariant-
nego wyniku na macierz rozpraszania. Zależność otrzymanej w ten sposób amplitudy od pędów
zderzających się cząstek jest taka jak otrzymana z diagramów Feynmana (zregularyzowanych
kowariantnie i bez definicjiab initio zregularyzowanego hamiltonianu).

Podane jest twierdzenie, które mówi, że amplituda rozpraszania otrzymana za pomocąH∆

jest taka sama, jak amplituda otrzymana za pomocąHλ . W rachunku zH∆ stany fizyczne zde-
rzających się cząstek są reprezentowane za pomocą cząstek gołych i rachunek zaburzeń jest
prowadzony przy użyciu zrenormalizowanego hamiltonianu oddziaływaniaH∆

I . W rachunku z
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Hλ stany fizyczne zderzających się cząstek są reprezentowane za pomocą cząstek efektywnych
i rachunek zaburzén jest prowadzony przy użyciu efektywnego hamiltonianu oddziaływania
Hλ I , zawierającego czynniki kształtufλ we wszystkich wierzchołkach. W przypadku rozwa-
żanej amplitudy typue+e−→ hadronyw przybliżeniu jednej pętli, z tego twierdzenia wynika
wniosek, że wyliczony efektywny hamiltonianHλ przewiduje taki sam wynik na macierz roz-
praszania jak diagramy Feynmana.

Podano również alternatywną, uproszczoną procedurę otrzymywania hamiltonowskich kontr-
członów potrzebnych do opisu skalarnego odpowiednika procesue+e−→ hadrony. Ilustracją
uproszczonej procedury są wzory na kontrczłon masowy i niektóre kontrczłony wierzchołkowe
w QCD sprzężonej z QED (podane tylko w dodatkach).
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Chapter 1

Introduction

The problem of the relativistic description of bound states of particles in quantum field theory
(QFT) has fascinated physicists for more than a half a century. Yet the theory is still not under-
stood well enough to precisely describe strongly bound particles starting from first principles.
The problem is most acute in the case of quantum chromodynamics (QCD), because of the
strength of the interactions involved and the inapplicability of perturbation theory. Although
high-energy scattering processes can be treated perturbatively in asymptotically free theories,
it is not clear how to calculate interactions that govern the formation of bound states at low
energies.

The leader in the field of low-energy effects is lattice gauge theory. Its impressive and un-
paralleled successes elevate lattice gauge theory to the central stage of strong interactions. Still,
there is a problem of how the phenomenology of hadrons that is based on the constituent picture
could be incorporated using lattice in a single, complete formulation of the theory that could
cover both bound and scattering states. Other methods, such as Dyson-Schwinger equations or
methods based on the operator product expansion, are advancing at a rapid pace and attempt to
compete with, supplement, or take advantage of lattice calculations; however, in principle they
also face the problem of how to provide a complete formulation.

The author of this thesis believes that a Hamiltonian approach with a single Hamiltonian
defining the whole theory, scattering through an S-matrix calculation, and bound states through
an eigenvalue problem, could potentially contribute to the field if one only knew how to calcu-
late the required Hamiltonians. Although we are still far away from a complete Hamiltonian
picture, and this approach is much less researched than the currently dominant approaches, this
thesis shows that, in some simple cases, recently developed methods for evaluating Hamiltoni-
ans for effective particles in QFT, can be employed in construction of the required operators.
The main issues I discuss in this thesis are (1) universal regularization of all terms in the entire
Hamiltonian operator; (2) construction of Hamiltonian counterterms (these are not the same
as in the standard Lagrangian approach to scattering); (3) systematic method for evaluating
interaction terms in Hamiltonians for bound states (these are not calculable from perturbative
S-matrix considerations); (4) a path to resolution of the problem that an infinite number of bare
particles is involved in the bound-state eigenvalue equation; (5) resolution of the overlapping
divergences in the bound-state eigenvalue problems that are limited to a small number of con-
stituents; and (6) construction of the finite parts of the Hamiltonian counterterms that guarantee
covariance of observables. In addition, an important result of this thesis is that the Hamilto-
nians for effective particles can produce the same scattering matrix that is obtained from the
canonical QFT.

1



2 Introduction

We do not yet know how to overcome all of the conceptual and technical difficulties asso-
ciated with the so-called small-x singularities in gauge theories (due to interactions that involve
massless gauge bosons that carry small longitudinal momentum), but it is possible that these sin-
gularities are a benefit in a Hamiltonian formulation and a source of useful effects (especially
regarding confinement), rather than artificial singularities that ought to be entirely removed.
This thesis does not answer the question of how to seek a solution to the small-x problem in
gauge theories, but it does develop a Hamiltonian approach and achieves some success in tack-
ling the six issues listed above.

To place the Hamiltonian approach studied here in the context of the struggle with the de-
scription of hadrons using QCD, let us mention that the Feynman-diagram approach, combined
with parton models and operator product expansion, is still so far from a direct connection with
the constituent classification of hadrons that recent studies of pentaquarks – a flurry of pub-
lication activity – involve all kinds of methods and are largely free from the strict theoretical
constrains of QCD with exactly three colors and six flavors of quarks. Similar problems plague
studies of exotics with constituent gluons – one might even wonder how it is possible that mass-
less gluons are not visible in the hadronic spectrum like photons that correspond to the Coulomb
potential with the Balmer series of energy levels. Some QCD-motivated string picture or flux-
tube models may correspond to lattice calculations, but how gluons bind and what makes them
so greatly inactive in the classification of hadrons is still entirely unclear. This is in a sharp con-
trast with the success of precise QCD predictions in the high-energy domain, where the widths
of hadronic wave functions are small in comparison to the energies and momenta that matter.
Therefore, any systematic approach that could offer some hope for constructing a relativistic
constituent description of hadrons (to replace a parton model) and a description of scattering
processes for the constituents (as Feynman diagrams can for quarks and gluons) is worth in-
vestigating. An example of entirely unexpected possibilities that Hamiltonian approaches to
QFT may offer is that QCD has an infrared renormalization group limit cycle behavior, whose
treatment is perhaps beyond the scope of all other methods. However, this thesis does not deal
directly with QCD since the issues (1) to (6) above have to be solved even in much simpler
cases before an admissible Hamiltonian approach to QFT can be proclaimed to exist.

I begin my discussion inChapter 2, which is based on a joint publication with Masłowski
[1], by presenting an extremely simple Hamiltonian model. This serves the purpose of explain-
ing in concrete terms what type of structure an admissible relativistic Hamiltonian formulation
of a theory should have. The model is restricted to two Fock sectors only, but this does not
represent a drawback. The simplification allows a relativistic description of bound states and
scattering amplitudes to exist with full control over analytic expressions. In particular, it is
shown how strict conditions can be placed on Hamiltonian counterterms so that both bound
states and scattering satisfy the constraints of special relativity: a physical fermion is described
by a Dirac equation and fermion-boson scattering amplitude is fully covariant when proper
renormalization conditions are satisfied. One of the critical questions addressed in this thesis
is whether similar conditions can be formulated for counterterms in full QFT, which is much
more complex than the model Hamiltonian that I use for heuristic purposes.

Chapter 3 presents the general methods that I apply to bound-state and scattering issues
in selected QFTs in the chapters that follow. The first part of Chapter3 contains a brief in-
troduction to the light-front quantization of fields, starting from the more familiar standard
approach and proceeding to the light-front Hamiltonian dynamics that forms the core of this
thesis. Next, a renormalization group procedure for effective particles (RGPEP), based on the
work of Głazek, is reviewed concisely. I use it to develop a theory of effective particles that is
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1. Introduction 3

applied in Chapters4 and5 to relatively simple QFTs, according to the outline of the heuristic
model presented in Chapter2. This review is also useful at this point because it allows me to
present the notation used in this thesis and introduce equations that appear often in the main
discussion.

Chapter 4, which is based on a joint publication with Głazek [2], discusses the issues of
regularization of the initial Hamiltonian operator, construction of mass counterterms, systematic
evaluation of effective Hamiltonians for bound states, and removal of overlapping divergences
in the case of fermions. I take the example of Yukawa theory, which is considerably simpler
than QCD, as it does not involve the small-x singularity. On the other hand, theories of the
Yukawa type are not asymptotically free (which poses problems in perturbation theory), and
suffer from the problem of triviality. However, the bound-state problem for effective particles
is shown to be free from the ultraviolet divergences that occur in the Tamm-Dancoff approach,
and the treatment of bound states I describe is more generic than the actual example I consider:
namely, the overlapping divergences are removed by the from factors that emerge from RGPEP
and will emerge in a similar way in the treatment of bound states in asymptotically free theories.
RGPEP thus allows us to derive from QFTs well-defined equations for bound states.

Chapter 5 is entirely new. Taken together with Chapters2 and4 it completes my investi-
gation of whether the heuristic reasoning outlined in a very simple model in Chapter2 can be
applied to QFT, at least in lowest orders.

Chapter5 applies the Hamiltonian approach developed in this thesis to scattering processes,
which are treated in perturbation theory in the simplest asymptotically free theory of which I am
aware: scalar theory in 5+1 dimensions. I address the issue of complete regularization of the
Hamiltonian for the entire theory (not a loop-by-loop type of approach, but the regularization
of an operator in a Fock space). I explicitly construct the counterterms that lead to covariant
scattering amplitudes. The most difficult part of the construction is establishing finite parts of
the counterterms, that is, the parts of the Hamiltonian operator that are independent of the cutoff
parameters but nevertheless depend on regularization. I provide explicit expressions for these
finite parts. I also demonstrate in a one-loop example of a model amplitude (analogous to the
amplitudee+e−→ hadrons) the details of cancellations between different terms and factors of
a Hamiltonian quantum-mechanical calculation of the scattering process. These cancellations
are responsible for obtaining covariant results, despite the fact that the initial Hamiltonian is
regularized in a way that is not fully covariant (it explicitly preserves boost invariance, but not
rotational invariance). This is possible because of light-front Hamiltonian dynamics. An inter-
esting aspect of the whole calculation, despite the fact that it is effectively only a third-order
perturbative calculation, is that it can be carried out using a Hamiltonian for effective particles
that appear to have all the properties required of constituents such as constituent quarks and glu-
ons in hadrons. The interactions of the effective particles are highly non-local because they are
modulated by form factors whose width is a renormalization-group parameter and can be tuned
for optimal economy of calculations. Nevertheless, the physical scattering amplitude obtained
in perturbation theory is completely independent of the renormalization-group parameter, and
exactly the same as in local asymptotically free theory. This is established by showing that the
Hamiltonian theory leads to the same answers as the Feynman diagrams, independently of all
details of the explicitly non-covariant elements involved in defining the Hamiltonian operator
in the Fock space. Additionally, I consider two procedures, a full one (complete RGPEP in the
third order) and a simplified one (limited to dressing by strong interactions only), and I show
that they both lead to the same counterterms that contribute to my scalar analog of the amplitude
e+e− → hadrons. However, the Hamiltonians that I obtain contain interaction terms that are
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4 Introduction

completely different from the terms that are typically inferred from Born-like approximations
for scattering amplitudes. For example, the Hamiltonian terms have well-defined off-energy-
shell behavior that cannot be deduced from the on-shell S-matrix calculus and they contain
dynamical information reaching far beyond the perturbative aspects of the theory. (This is sim-
ilar to the situation with the Coulomb potential, which describes an unimaginable richness of
bound states of charged particles despite the fact that it is only of ordere2). I provide a few
examples of counterterms that are calculated by the same methods in QED and QCD.

Chapter 6summarizes the key findings of this thesis. It is followed by a series of appendices
that contain the details of the material presented in the main part of the thesis. A summary of
the notation used in this thesis is given in AppendixA.
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Chapter 2

Model of a relativistic Hamiltonian for
simultaneous description of bound states
and scattering processes in a single
formalism

2.1 Introduction

In this chapter I present a simple model that features a bound state and scattering states. The
model is based on quantum field theory of fermions and bosons coupled by Yukawa interaction,
but so severely simplified, that a number of analytic results can be obtained at the expense
of a relatively small effort. The bare model interaction leads to infinities when calculating
physical observables. Therefore, one is forced to introduce cutoffs in order to obtain finite
results. However, this is done according to principles of the renormalization group procedure for
Hamiltonians, and the introduction of cutoffs is accompanied with insertion of Hamiltonian (not
Lagrangian, as in the Euclidean path-integral approach) counterterms whose structure is found
from well-defined finiteness conditions imposed on an effective Hamiltonian theory and from
threshold and covariance conditions on the results for bound states and scattering amplitudes
that follow from the effective theory. This chapter explains the meaning of the above statements.
The model has attractive properties and serves as a heuristic example to follow in the case
of QFT.

In particular, despite the fact that the cutoff is introduced in a non-covariant way, the proper
choice of finite parts of the counterterms leads to the scattering matrix which is not only finite
but also covariant. The same choice of counterterms guarantees that the structure of a physical
fermion agrees with demands of the Dirac equation for the wave function that describes motion
of the center of mass of the fermion. Nonetheless, the interaction between bare fermions and
bare bosons include a vertex that has an unusual structure, and one has to correlate four constants
using three conditions to obtain physical results that obey conditions of symmetry of special
relativity and proper threshold behavior.

This chapter is not meant to be exhaustive. It aims to present a general picture and ideas
that are developed further in the following chapters, where more complex model theories are
considered.

This chapter, and the corresponding AppendixC.4, is based on a paper published by Masło-
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6 Model of a relativistic Hamiltonian for simultaneous description of bound states and . . .

wski and myself [1]. In the quotations used here, I have made small changes to simplify the
notation and unify it with the rest of this thesis. I have also left out parts of the quotations that
are not relevant in this chapter.

In the joined paper with Masłowski, we studied the similarity renormalization scheme for
Hamiltonians to the fourth order in perturbation theory using a model Hamiltonian for fermions
coupled to bosons. The model consists of onlytwo sectors in the Fock space. This great
simplification of the space of states allowed for a complete analysis of the renormalization
scheme and still included typical factors and divergences that appear in quantum field theory.
Therefore, the model could be used as a good testing ground. Our model was based on Yukawa
theory.

The Hamiltonian of Yukawa theory truncated to one fermion and one fermion plus one
boson Fock sectors leads to infinities in the fermion-bosonT matrix. Therefore, we introduced
an ultraviolet (high-energy)cutoff ∆ for the momentum transfer in the interaction part of the
Hamiltonian. The similarity transformation [3] allowed us to constructcounterterms in the
initial Hamiltonian. The complete Hamiltonian gives finite, cutoff independent results for theT
matrix. We constructed renormalized Hamiltonians using expansion in powers of the effective
fermion-boson coupling constant and including terms up to the fourth order.

In thesimilarity renormalization scheme, one constructs effective HamiltoniansHλ whose
form is a function of the widthλ. Hλ is obtained by a unitary transformation from the initial
HamiltonianH∆ with counterterms. The transformation and counterterms are found order by
order in perturbation theory using the requirement that matrix elements ofHλ are independent
of the cutoff∆ when the cutoff goes to infinity.

To find values of theunknown finite parts of the countertermswe calculated theT matrix
for fermion-boson scattering. The condition that theT matrix is covariant implies relations
between the finite parts of different counterterms. We also required, that the physical fermion
is described by the Dirac equation with the fermion mass equal to the fermion mass term in
the fermion-boson sector. This requirement also provides a relation between finite parts of
counterterms called the threshold condition [4].

In this chapter, the so-called algebraic version of the similarity renormalization scheme is
used. Although it may be considered simpler, it is not used in complicated cases because it in-
troduces sharp similarity form factors that complicate numerical calculations. Sharpθ functions
are also used here for ultraviolet cutoffs.

The model Hamiltonian we studied was originally considered by Głazek and Perry [5]. They
guessed the form of counterterms which remove divergences inT matrix and they obtained
covariant results for theT matrix to all orders.

Our main question about the model was if the systematic similarity calculation carried out
in perturbation theory would produce the same solution to the Hamiltonian renormalization
problem as guessed by Głazek and Perry. The cutoff in the model is limited by the triviality
bound [5], but one can assume that the coupling constant is small enough for reliable use of the
perturbation theory.

2.2 The model

The initial Hamiltonian is a light-front Hamiltonian for Yukawa theory projected on two Fock-
space sectors, namely, one with a fermion and one with a fermion and a boson. The reasons for
using light-front formulation are explained in Section3.3.4.

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



2.2 The model 7

The model Hamiltonian is:

H∆ = H0 f +H0 f b +H∆
Y +H∆

+ +X∆ . (2.1)

The free part is

H0 f = ∑
σ

∫
[p] |pσ〉〈pσ| p

2 +m2

p+ , (2.2)

H0 f b = ∑
σ

∫
[p,k] |pσ,k〉〈pσ,k|

(
p2 +m2

p+ +
k2 +µ2

k+

)
, (2.3)

where|pσ〉〈pσ| is an operator projecting on a Fock state of one fermion of momentum~p =
(p+, p⊥) and spinσ, and|pσ,k〉〈pσ,k| projects on a one-fermion (~p,σ) plus one-boson

(
~k
)

state. This free Hamiltonian assigns the same massm to fermions in both Fock sectors, and
massµ to the boson (cf. Eq. (3.48)). Boson creation and annihilation vertices, proportional to
the coupling constantg, are

H∆
Y = g ∑

σ1,σ2

∫
[p1, p2,k]θ(∆2−M 2

p2,k)δ̃(p1− p2−k)×

×
[
|p2σ2,k〉〈p1σ1| ū(p2,σ2)u(p1,σ1)+H.c.

]
= H∆

>−+H∆
−< , (2.4)

+

and the seagull term, of orderg2, is

H∆
+ = g2 ∑

σ1,σ2

∫
[p1, p2,k1,k2]θ(∆2−M 2

1 )θ(∆2−M 2
2 )δ̃(p2 +k2− p1−k1)×

×|p2σ2,q2〉〈p1σ1,k1| ū(p2,σ2)
γ+

2(p+
1 +k+

1 )
u(p1,σ1) . (2.5)

X∆ in Eq. (2.1) is an unknown counterterm.
Cutoffs on the free1 invariant massM 2 = (p+k)2 of the two particle sector in the interaction

parts of the Hamiltonian,H∆
Y andH∆

+ (see also [6]). For example, theta function in Eq. (2.4)
permits creation of only low-energy fermion-boson pairs, that is, only if theirM 2 is smaller
than∆2.

The standard three-dimensional integration measure[p], three-momentum conservation delta
function δ̃, Fock states|p〉 and spinorsum(p,σ) are defined in detail in AppendixA. Note, that
spinorsu depend on the mass of the fermion. In this chapter all spinors correspond to the
fermion massm in H0 (i.e. u(p,σ) := um(p,σ)), unless stated otherwise (cf. Eq. (2.33)).

1In the definition of the invariant mass the energy (k−, a light-front analogue ofk0) enters. Therefore, the value
of M 2 assigned to a state depends on how one assigns an energy to this state. “Free invariant mass” means, that to
any Fock state a corresponding eigenvalue of the free HamiltonianH0 is assigned.M 2 defined this way is invariant
under kinematical Lorentz transformations (see Section3.3).
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8 Model of a relativistic Hamiltonian for simultaneous description of bound states and . . .

2.3 Renormalization

The similarity transformationUλ transformsH∆ to a new HamiltonianHλ :

Hλ = U†
λ H∆Uλ . (2.6)

Expressions forUλ andHλ are found in perturbation theory. The procedure is tailored in such
a way that the effective HamiltonianHλ is band diagonal. Namely, one chooses suitable form
factors fλ – functions of momenta in a vertex, which are to limit ranges of possible momenta of
particles involved in the effective interaction – and uses renormalization group equations [3] to
calculate the transformationUλ, which leads to a HamiltonianHλ with such form factors. The
result is that the rotated HamiltonianHλ is band diagonal (each term has a factorfλ), but the
matrix elements ofHλ within the band get changed in such a way that both Hamiltonians are
unitarily equivalent (see also Figure3.9on page45, and Section3.4). X∆ in H∆ is fitted order
by order ing, so thatHλ does not have∆-dependent (i.e., divergent) matrix elements for∆→∞.
This can be guaranteed in any finite order in perturbation theory.2

Form factorsfλ (the diagonal proximum operator) for the calculation of this chapter are
presented in AppendixC.4.

In the zeroth order, the transformation gives an unchanged free Hamiltonian:

Hλ 0 = H∆
0 . (2.7)

In the first order (Fig.2.1), one gets:

H (1)
λ = g ∑

σ1,σ2

∫
[p1, p2,k]θ(λ2−

∣∣∣M 2
p2,k−m2

∣∣∣)δ̃(p1− p2−k)×

×
[
|p2σ2,k〉〈p1σ1| ū(p2,σ2)u(p1,σ1)+H.c.

]
=

= fλH∆
Y (2.8)

– rotation of the basis leads to an interaction term with an induced factorfλ (also, in the presence
of fλ, one can take the limit∆→ ∞, and thus there is no initial cutoff factor in the above
expression).

In the second order, the transformation gives:

H (2)
λ = fλ

(
H∆

+ +X(2)∆− 1
2

[{
(1− fλ)H

∆
Y

}
0
,(1+ fλ)H

∆
Y

])
. (2.9)

The curly brackets denote the free energy denominator, square brackets a commutator, andfλ
is the form factor (see AppendixC.4).

In the fermion-boson sector, Eq. (2.9) reads:

H (2)
λ , f b− f b = fλ

(
H∆

+−
1
2

{
(1− fλ)H

∆
>−

}
0
(1+ fλ)H

∆
−< +

1
2
(1+ fλ)H

∆
>−

{
(1− fλ)H

∆
−<

}
0

)
.

(2.10)

2The differential equation for renormalization group procedure based on the idea of similarity rotation is dis-
cussed in detail in Section3.4. However, for the model described in the current section it was enough to intro-
duce simple sharp cutoffs (2.4-2.5) and sharp similarity form factorsfλ (C.78). For such factors, the differential
equations cannot be easily used, and the model calculation is based on an algebraic similarity renormalization
procedure. Although the motivation of Section3.4 is the same as here, the actual formulae used here are given in
the algebraic version of the same procedure, and are the same as those presented in detail in ref. [3].

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



2.3 Renormalization 9

a)

v) +

c) +

Figure 2.1: Terms in the effective model Hamiltonian in the first and the second orders. (a)

Effective vertexH(1)
λ is limited by a form factorfλ. (b) In the fermion-boson – fermion-boson

part of H(2)
λ , apart from a seagull term with a form factor, there is a new interaction term,

which makesHλ unitarily equivalent toH∆. (c) The second order fermion – fermion termHλ is
divergent, which enforces existence of a counterterm and determines its form. In all figures, the
factors coming from the similarity renormalization group (combinations of the form factors, cf.
(2.9)) are marked with grayed circles.

This expression is not divergent for∆→ ∞. Hence, no counterterm is needed in this sector.
However, in the fermion-fermion sector, one obtains:

H (2)
λ , f− f =−

{
(1− fλ)H

∆
−<

}
0
H∆

>−+X(2)∆ . (2.11)

The loop integration in the first term is quadratically divergent in∆. The form of this divergence
dictates the form of the second-order counterterm. Explicitly, one has to choose:

X(2)∆ = ∑
σ

∫
[p] |pσ〉〈pσ| 1

p+
g2

16π2

[
1
2

∆2 +(3m2−µ2) log
∆2

m2 +A

]
. (2.12)

This term acts in fermion–fermion sector only and means an infinite fermion mass-shift (cf. Eq.
(2.2)), whereA is an undetermined finite constant.

Higher-order calculations lead to the following expressions forX(3)∆ andX(4)∆
f b− f b:

X(3)∆ = X(3)
Y +X(3)

+ =
1
4

g2

16π2 log
∆2

C
H∆

Y +

+ ∑
σ1,σ2

∫
[p1, p2,k]θ(∆2−M 2

p2,k)δ̃(p1− p2−k)×

×3
2

g3

16π2m log
∆2

D

[
|p2σ2,k〉〈p1σ1| ū(p2,σ2)

γ+

2p+
1

u(p1,σ1)+H.c.

]
, (2.13)

X(4)∆
f b− f b =

1
2

g2

16π2 log
∆2

B
H∆

+ , (2.14)

whereB, C, andD are finite unknown constants.
There is also another counterterm of orderg4 in the fermion-fermion part ofX∆ . We did not

have to calculate it because our goal was to investigate the possibility of fitting finite parts of
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10 Model of a relativistic Hamiltonian for simultaneous description of bound states and . . .

counterterms by requesting theT matrix covariance in the fermion-boson channel (Sec.2.4.1)

and the emergence of the Dirac equation for physical fermions. AsX(4)∆
f− f does not contribute

either toT(4) or the second-order Dirac equation, it was irrelevant for our considerations. Also,

X(4)∆
f− f is more complicated to calculate than the terms we need to discuss here, because it in-

volves two correlated loop integrations.

2.4 Relativistic covariance and finite parts of counterterms

The renormalization procedure does not determine values of the finite parts of counterterms.
To find them, we need to introduce additional conditions. In principle, the constants should be
fitted to the experiment. Still, it is interesting to look for theoretical requirements of symmetries,
which may constrain these constants. TheT matrix calculated with the general counterterms
(2.12)-(2.14) is not automatically covariant. Therefore, the covariance of theT matrix provides
useful conditions. Another condition will be provided by the study of the bound-state eigenvalue
equation for the full Hamiltonian. In this simple model, the eigenvalue problem reduces to an
equation for the physical fermion, and it will be required to reduce to a free Dirac equation.

2.4.1 T matrix

TheT matrix which describes fermion-boson scattering can be calculated using the formula [7]:

T(E) = HI +HI
1

E−H0 + iε
HI + · · · . (2.15)

The only non-vanishing terms are those of even order ing.
The second-orderT matrix has a covariant form and does not depend on the counterterms –

Fig.2.2a. X∆ starts contributing in the fourth order. The explicit∆-dependence of counterterms
cancels divergences in the loop integrations in other terms. This leads toT(4) (Fig. 2.2b) which
is finite, but not automatically covariant:

〈p2σ2,k2|T(4) |p1σ1,k1〉=
g4

16π2θ(∆2−M 2
1 )θ(∆2−M 2

2 )δ̃(p2 +k2− p1−k1)×

× ū(p2,σ2)
[

Γ1(s)
/
P+Γ2(s)+Γ3(s)

γ+

2(p+
1 +k+

1 )

]
u(p1,σ1) , (2.15)

whereP+ = p+
1 + k+

1 , P⊥ = p⊥1 + k⊥1 , P− = (p⊥2 + m2)/p+ +(k⊥2 + µ2)/k+ ands= PµPµ =
(p1 + k1)2 = M 2

1 . To obtain a covariant result forT(4), we demand that the functionΓ3(s)
vanishes for arbitrarys. Its explicit form reads:

Γ3(s) =
1

s−m2

[
(s−m2)

1
2

log
C
B

+3m2 log
m2

D
−A+16π2α f (s)(s−m2)+ γ f (s)

]
. (2.16)

Functionsα f (s) and γ f (s) are given in AppendixC.4, Eqs.(C.79)-(C.81). The combination
16π2α f (s)(s−m2)+γ f (s) turns out to be real and independent ofs, and the conditionΓ3(s) = 0
implies two relations:

B = C (2.17)

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



2.4 Relativistic covariance and finite parts of counterterms 11

a) +

b) + + +

Figure 2.2: Fermion-bosonT matrix in the orderg2 (a) andg4 (b). In the orderg4, there are
also terms with sea-gulls and counterterms on the lines on the right-hand side of diagrams (not
shown above).

and

A =−m2 +µ2 log
µ2

m2 +3m2 log
m2

D
. (2.18)

These two equations relate constantsA, B, C andD, but there are additional requirements due
to the eigenvalue equation.

2.4.2 Eigenvalue equation

To describe a physical state in terms of free Fock states, one considers the eigenvalue equation

H∆ |Pσ〉physical=
P⊥2 +m2

P+ |Pσ〉physical . (2.19)

The physical fermion state is a superposition of the bare fermion and fermion-boson states:

|Pσ〉physical= ∑
σ2

cσ
σ2
|Pσ2〉+∑

σ2

∫
[p,k]δ̃(P− p−k)φσ

σ2
(x,M 2) |pσ2,k〉 . (2.20)

By following the steps given in Ref. [5], one can reduce Eq. (2.19) to(
ρ1
/
Pm−ρ2m+ρ3

γ+

2P+

)
ψ = 0 , (2.21)

for the one-body sector wave functionψ. Pµ
m =

(
P+,P−m ,P⊥

)
with P−m = (P⊥2+m2)/P+. Using

our Hamiltonian with counterterms restricted by conditions (2.17) and (2.18), one gets:

ρ1 = 1+
g2

16π2

[
3
2

log
∆
D
−β(m2)

]
+o(g4) , (2.22)

ρ2 = 1+
g2

16π2α(m2)+o(g4) , (2.23)

ρ3 = 0+o(g4) . (2.24)

The earlier demand of theT matrix covariance established the value of the mass counterterm
X(2)∆ in a way that also leads to the vanishing ofρ3 in orderg2.

In general, one can expand both nonzero termsρ in a power series ing:

ρ = ρ(0) +ρ(2)g2 +ρ(4)g4 + · · · (2.25)
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12 Model of a relativistic Hamiltonian for simultaneous description of bound states and . . .

and translate the requirement thatm is the mass of a physical fermion:(/
Pm−

ρ(0)
2 +ρ(2)

2 g2 +ρ(4)
2 g4 + · · ·

ρ(0)
1 +ρ(2)

1 g2 +ρ(4)
1 g4 + · · ·

m

)
ψ = 0 (2.26)

into the condition for all coefficients:

ρ(i)
1 = ρ(i)

2 . (2.27)

This is the threshold condition [4] that makes theT matrix threshold appear ats= (m+ µ)2,
wherem is the position of its fermion pole.

Let us now investigate which terms of the Hamiltonian contribute toρ(i). If one putsg = 0,
then the only condition one gets is:

|Pσ〉physical= |Pσ〉 . (2.28)

Technically, the zeroth order termsρ(0)
1 andρ(0)

2 come from the inversion of∑σ uPσmūPσm =/
Pm+m, which is a part ofH>−H−<. Dirac equation results in this order automatically:ρ(0)

1 =

ρ(0)
2 .

Likewise, it is clear that the second order termsρ(2)
1 andρ(2)

2 partly come from the term

H>−X(3)
+ . Thus, one needs third order vertex corrections, such asX(3)

+ , to determine all second

order contributions to the Dirac equation. There is an unknown finite parameterD in X(3)
+ . The

conditionρ(2)
1 = ρ(2)

2 and Eqs. (2.22) and (2.23) lead to the condition:

log
D
m2 =

2
3
·16π2[α f (m2)+β f (m2)

]
. (2.29)

The functionsα f (s) andβ f (s) are given in AppendixC.4, in Eqs. (C.83)-(C.85).
Altogether, the requirement thatm is equal to the mass of a physical fermion implies one

more condition on the free parts of counterterms.

2.4.3 Discussion

Taking conditions (2.17), (2.18) and (2.29) together and looking at the structure of the coun-

terterms, one can observe the following:X(3)
Y can be accounted for by changing the coupling

constant ofH∆
Y :

g→ g+
g3

64π2 log
∆2

C
(2.30)

in the original Hamiltonian, whileX(4)∆
f b− f b shiftsg2 in the seagull termH∆

+:

g2→ g2 +
g4

32π2 log
∆2

C
. (2.31)

Thus, these two counterterms can be absorbed in one∆-dependent coupling constant (2.30).
Note that, in physical results,∆-dependent logarithms log∆

2

m2 cancel each other, leaving

g+
1
4

g3

16π2 log
m2

C
. (2.32)
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2.5 Heuristic meaning of the model 13

Thusg andC will never appear independently and there is only one parameter, combination
(2.32), that can be fixed from experiment.

X(2)∆ shifts the mass in the one fermion free energy. The sum ofH∆
Y and one of the third-

order counterterms,X(3)
+ , reproduces the same interaction term, but with a shifted mass of the

spinor in the one-particle sector, according to the formula (cf. AppendixB.4):(
1+

γ+δm
2p+

)
um(p,σ) = um+δm(p,σ) . (2.33)

The same model has been analyzed by other authors – see Ref. [5]. They have shown that,
in this model, to get finite and covariant results for theT matrix to all orders of perturbation
theory, and to get the mass in the Dirac equation which is required by the threshold condition,
it is enough to: (1) add to the bare cutoff Hamiltonian a term that shifts the mass of fermions
in the free partH0 f ; (2) correspondingly, change the spinor mass in the vertex – see Eq. (2.33);
and (3) allow the coupling to depend on∆.

This simple result – renormalization leading just to redefinition of the constants in the canon-
ical Hamiltonian – works only for the severe truncation of the model considered in this section.
The authors of Ref. [5] write: “If we were to consider a Tamm-Dancoff truncation that allowed
more particles (e.g., two fermions and one boson), we would need terms that are not found in
the canonical Hamiltonian to obtain covariant results.”

If one rewrites the Hamiltonian of Ref. [5] using the invariant mass cutoff and expands it in
powers of ˜g(m) up to the fourth order, one gets the same result as we obtained in our similarity
calculation, with:

g+
1
4

g3

16π2 log
m2

C
(2.34)

replaced by:

g̃(m)− 1
2

g̃3(m)α f (m2) . (2.35)

Hence, one may chooseC to obtain the same result as in Ref. [5].
The results presented in Ref. [5] were obtained before the introduction of the similarity

renormalization scheme and were guessed, based on the experience of the authors. Such guess-
ing would be hard, if not impossible, in the case of realistic QFTs. Thus the systematic proce-
dure of this chapter offers a huge advantage.

2.5 Heuristic meaning of the model

The results presented in this chapter, based on [1], provide an example of the application of the
similarity renormalization scheme for Hamiltonians in its algebraic version. We have shown
how this systematic procedure leads from a divergent Hamiltonian to a finite one. The finite
Hamiltonian has well-defined eigenvalue equation for bound states and produces finite and co-
variant results for theSmatrix. The question I address in the remainder of this thesis is whether
one can apply a similar procedure in QFT. In Chapter3, I review the formalism of Renormal-
ization Group Procedure for Effective Particles (RGPEP) which is an extended version of the
similarity renormalization scheme used above. RGPEP is formulated in differential form (rather
than the algebraic form used above) and in terms of creation and annihilation operators in a Fock
space. In Chapter4, I apply RGPEP to a bound state of fermions in a Yukawa theory. This re-
sults in a well-defined bound-state equation, which I contrast with divergent equations based on
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14 Model of a relativistic Hamiltonian for simultaneous description of bound states and . . .

the Tamm-Dancoff truncation. In Chapter5, I show that counterterms found from RGPEP lead
to finiteSmatrix, and their finite parts can be chosen in such a way that theSmatrix is covariant.
Therefore, both key results of the model calculation presented above appear obtainable in QFT,
although the calculations I will discuss are limited to low orders and the required extension to
all orders is not yet completed.

Let me remark that even though I have presented the simple Hamiltonian model of this
chapter mainly to familiarize the reader with the aim of the thesis, the model itself is interesting
because it may find applications in pion-nucleon physics when another Fock sector, with one
fermion and two bosons, is included [6].
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Chapter 3

Renormalization group procedure for
Hamiltonians in quantum field theory

3.1 Introduction

In this chapter I present the formalism which forms the basis of the Chapters4 and5.
Section3.2summarizes the basic concepts of Quantum Field Theory (QFT) in the language

of Hamiltonians. I review the standard formulation, using as an example a scalar theory withφ3

interaction, and I introduce the notation used in this thesis. After I present the standard equal-
time quantization and show some of its problems in Section3.2.6, I introduce the light-front
Hamiltonian approach, which avoids similar problems, beginning with Section3.3.

Section3.4summarizes the Hamiltonian renormalization procedure called Renormalization
Group Procedure for Effective Particles (RGPEP), whose application is the key focus of this
thesis. I present here the motivation behind its use and some basic results; the application of
RGPEP to bound states and scattering processes is described in Chapters4 and5.

3.2 Canonical Quantum Field Theory

This section reviews the basic construction of Quantum Field Theory (QFT), the basis for the
modern description of elementary particles, in the language useful in Hamiltonian dynamics.

One of the best known QFTs is Quantum Electrodynamics (QED) [8-14]. Its formulation
is based on two rules. The first of these is the correspondence principle: Maxwell equations
of classical electrodynamics described very well most of electromagnetic phenomena known
at the end of XIX century; quantum theory had to reproduce these equations in certain limits.
The second rule is agreement with the requirements of special relativity. This led first to the
formulation of the Dirac equation and then to the conclusion that a complete theory is not
consistent within the framework of quantum mechanics of a fixed number of particles.

As the correspondence of quantum mechanics to classical mechanics was already well un-
derstood, QFT followed a similar path. The first attempts at formulating relativistic quantum
mechanics led to some paradoxes (such as the Klein paradox) and prompted the introduction
of the concept of antiparticles and interactions changing the number of particles. Relativistic
quantum mechanics, based on a concept of a fixed number of interacting particles, proved un-
tenable and only the introduction of quantum field theory put relativistic quantum theory into a
consistent framework.

15



16 Renormalization group procedure for Hamiltonians in quantum field theory

In this section, I describe the key steps in the Hamiltonian construction of a quantum theory
of scalar fields. This example demonstrates the main steps, avoiding many of the complications
of gauge theories. QED and QCD are only mentioned briefly here; the canonical quantization
procedure for these theories is described in AppendixE.

3.2.1 Classical field theory Lagrangian

The path towards a first guess for the quantum theory of particles begins with a Lagrangian
for a classical field. At this point it is easy to introduce into the theory the Lorentz symmetry
or other symmetries. Nevertheless, it is not obvious that all such symmetries will hold in the
quantum case (and, in fact, for some theories not all the symmetries will). Lagrangian also
provides a way to connect the interacting theory, with a certain coupling constantg 6= 0, with
the free theory in the limitg→ 0. The free theories are simpler and better understood, and for
weak couplings many effects can be analyzed as perturbations around the free case.

One of the key assumptions of the quantum theories is that there exists a hermitian Hamil-
tonian operator, which is a generator of time evolution: time derivatives of operators are equal
to their commutators with the Hamiltonian (times a universal constant). This assumption leads
to conservation of probability. The Hamiltonian, however, is not a Poincaré scalar, and there
is no easy way to require or check its Poincaré symmetry. Nevertheless, if the Hamiltonian is
build according to the canonical rules, the Heisenberg equations for time evolution are equiv-
alent to the classical Euler-Lagrange equations (which are covariant, provided the Lagrangian
is a Poincaré scalar). This not only eases the building of symmetries into the theory, but also
allows for correspondence with the classical theory. For example, following this path in the
case of Quantum Electrodynamics (QED) leads to the Heisenberg equations which look like the
classical Maxwell equations. One may then try to follow the path opened by QED in the case
of other theories, even if the classical correspondence principle does not apply to them.

The standard construction consists of the following steps:

1. A Lagrangian densityL is constructed;

2. Classical energy-momentum tensorTµν is calculated;

3. The fields are required to fulfill canonical commutation relations at equal time;

4. One of the components ofTµν defines a Hamiltonian density.

Certain important points have been excluded from the list above – for example, as the quantum
fields do not commute, it is important in which order they are written inTµν. Usually, fields are
expressed in terms of their Fourier components (which have a clear interpretation of creation
and annihilation operators of particles) and the resulting operators (e.g.H) are normal ordered
(corresponding to subtraction of the energy of the vacuum from all energies).

However, quantum theory as defined in this way leads to infinities when one calculates
physical observables. To arrive at meaningful results that can be compared to experiments
two more steps are required: the introduction of some form of regularization (to parametrize
the infinities in terms of an ultraviolet cutoff) and renormalization (to remove artificial cutoff
dependence). This can be done at the level of physical observables, e.g. a scattering matrix.
However, such an approach cannot easily be extended to other types of predictions: knowing
how to calculate a scattering matrix in a meaningful way does not automatically allow us to
formulate a well-defined bound-state problem, and there is no clear connection between the
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3.2 Canonical Quantum Field Theory 17

way one describes bound states and scattering when divergences are taken seriously. This is
particularly important as there are experiments in which bound states are involved in scattering
and the bound states structure matters in the final results.

Therefore, it is preferable to introduce renormalization already at the level of the quantum
Hamiltonian (rather than observables, such as the scattering matrix). In principle this allows
us to discuss all kinds of phenomena within a single theoretical description. However, as men-
tioned above, symmetry requirements are hard to maintain in a Hamiltonian approach: the
cutoffs break the connection with the initial Poincaré-invariant Lagrangian, and there is the
important question of whether it is possible to construct counterterms in the Hamiltonian that
remove cutoff dependence from physical results and lead to covariant predictions and, if so,
how it may happen. That it is, in fact, possible in the case of a simple model has been shown in
Chapter2; a similar result in the case of divergent QFTs is presented in Chapter5.

An important fact about classical Lagrangians is that, using this language, symmetry re-
quirements are very simple to formulate. Since the action of the theory is defined as a four-
dimensional integral of the Lagrangian density:∫

dtL [φ,∂µφ] =
∫

d4xL (φ(x),∂µφ(x)) , (3.1)

it is enough to require the classical Lagrangian density to be a Poincaré invariant in order to
define a classical theory respecting special relativity. This simple rule is obscured in the quan-
tum theory because of the necessity of regulating divergences. Despite that, there is probably
no better starting point for construction of a quantum field theory as a tool for particle physics.

Another advantage of the Lagrangian formulation is that, through the Noether theorem,
independence of a Lagrangian from some variables automatically leads to conservation laws.
In the case of Eq. (3.1), the fact that the Lagrangian density does not depend directly on the
space and time coordinates,~x andx0, leads to conservation of momentum and energy.

In the following, I consider the example of a Lagrangian density describing a scalar field
φ(xµ):

L =
1
2

(
∂µφ∂µφ−m2φ2)+ 1

3!
gφ3 . (3.2)

The terms in parenthesis are kinetic terms with a massm. These terms would correspond to
a free field evolution (i.e. wheng = 0). The last term is an interaction term; its strength is
determined by a coupling constantg.

3.2.2 Classical equations of motion

Classical equations of motion (Euler-Lagrange equations) for the fieldφ are:

∂µ ∂L
∂∂µφ

=
∂L
∂φ

. (3.3)

In the case of Eq. (3.2), there is just one equation:

(
∂µ∂µ+m2)φ =

1
2

gφ2 . (3.4)
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18 Renormalization group procedure for Hamiltonians in quantum field theory

3.2.3 Energy momentum tensor

The energy-momentum tensor density is:

Tµν :=
∂L

∂(∂µφ)
∂νφ−gµνL . (3.5)

The integrals of its components over space represent energy and momenta – quantities which
are conserved due to the explicit independence of the Lagrangian density fromxµ.

By defining energy density, one can rewrite equations of motion in a formally equivalent
Hamiltonian form. This is a canonical transformation of variables, from fieldsφ and their time
derivativesφ̇ in the Lagrangian to fieldsφ and corresponding momentaπ in the Hamiltonian.

The energy of the field at a given timex0 is defined by the integral:

H =
∫

x0=const
d3xT00 , (3.6)

and the canonical momentumπ is:

π =
∂L
∂0φ

. (3.7)

For theφ3 theory defined by Eq. (3.2), these quantities are:

π = ∂0φ (3.8)

T00 =
1
2

(
π2 +(~∂φ)2 +m2φ2

)
− 1

3!
gφ3 . (3.9)

The equations of motion are: 
∂0π = −∂T00

∂φ

∂0φ =
∂T00

∂π
.

(3.10)

(3.11)

By substituting the second of these equations into the first one, one can verify that this set of
equations reproduces (3.4).

3.2.4 Field quantization, creation and annihilation operators

One of the most important lessons from classical quantum mechanics is that, if the position and
momentum variables are replaced by operators, proper commutation relations between them
are required. When their evolution is generated by the canonical Hamiltonian, then quantum
equations of motion correspond to their classical counterparts. It can be demonstrated that, in
the classical Ehrenfest limit, matrix elements of these quantum operators evolve in agreement
with the classical equations of motion.

The same applies to field theories. One can require that, at a given timex0:

[φ(~x),π(~y)] = iδ3(~x−~y) (3.12)

[φ(~x),φ(~y)] = [π(~x),π(~y)] = 0 . (3.13)

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



3.2 Canonical Quantum Field Theory 19

In this case, the quantum equations of Heisenberg picture are:

φ̇ = i [H,φ] (3.14)

π̇ = i [H,π] . (3.15)

These equations state thatH is the generator of a time-translation. Similarly, other space in-
tegrals ofTµν have an interpretation of generators of space translations (momenta), rotations
(angular momenta), or boost generators.

One can introduce creation and annihilation operators at timex0 = 0 via a spatial Fourier
transform of the fields:

φ(~x,x0 = 0) =
∫

d3k
2(2π)3k0

(
a†
~k

e−i~k~x +a~ke
i~k~x
)

(3.16)

π(~x,x0 = 0) =
∫

d3k
2(2π)3k0

(
k0

ma†
~k

e−i~k~x−k0
ma~ke

i~k~x
)

. (3.17)

In both equations, there are only three-dimensional space-like integrals. Both equations are
needed to express creation and annihilation operators in terms of fields. Note that the appear-

ance of an extra free energy factor,k0
m =

√
~k2 +m2, introduced in the second of these equations

to represent the time derivative, means that some assumption about field evolution was made.
In this case, it was assumed that at the timex0 = 0 field φ evolves as a free field. The stan-
dard momentum integration measures are marked by[k] := d3k/

(
2(2π)3k0), and a frequently

encountered delta-functioñδ(k) := (2π)3δ3(~k) =
∫

d3x exp(−~k~x).
Eq. (3.12) implies that the operatorsak fulfill:[

a~k,a
†
~p

]
= 2k0δ̃(~k−~p) . (3.18)

The Hamiltonian, given in Eq. (3.6) in terms of fieldsφ and momentaπ, can be expressed in
terms of creation and annihilation operators. Further, the space of states on which all operators
act is defined in terms of creation and annihilation operators. By definition, there is a unique
vacuum state|0〉 – the state that is annihilated by all annihilation operators:

a~k |0〉= 0 . (3.19)

All states can be written as combinations of the following basis states:

|p1, . . . , pn〉= a†
~p1

. . .a†
~pn
|0〉 . (3.20)

The space of all states with this basis is called the Fock space. Note that the action on any state
of the form (3.20) of any operator expressed in terms of creation and annihilation operators, can
be calculated using Eqs. (3.18) and (3.19). For example, for the free theory

(
(Eq. 3.2) with

g = 0
)
, the Hamiltonian is1:

H0 =
∫

[k]
√

~k2 +m2 a†
~k

a~k , (3.21)

and, when acting on|p1, . . . , pn〉, it gives:

H0 |p1, . . . , pn〉=
(
p0

1,m+ · · ·+ p0
n,m

)
|p1, . . . , pn〉 , (3.22)

1Actually, a constant c-number term was dropped, see discussion at the beginning of Sec.3.2.5.
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20 Renormalization group procedure for Hamiltonians in quantum field theory

wherep0
i,m =

√
~p2

i +m2. Thus, the Fock space basis (3.20) is the basis of the eigenstates of
the free HamiltonianH0. It is a complete basis, and can be used in interacting theory, where
eigenstates ofH may be complicated combinations of these basis states.

Note also that, withH0 given by Eq. (3.21), the energy of the vacuum is zero:

H0 |0〉= 0 . (3.23)

3.2.5 Quantum Hamiltonian of interacting theory

One may express the Hamiltonian operator of quantum field theory (3.6) in terms of the creation
and annihilation operators, by substituting the quantum fieldsφ andπ with their Fourier expan-
sions (3.16)-(3.17). Using the commutation relations, one can order each expression in such a
way that annihilation operators stand to the right of the creation operators. In the process, the
δ-functions from commutators contribute additional c-number terms. Thes terms simply add
the same – and in fact, infinite – quantity to the energy of each state. Since physically observ-
able quantity is the difference between energies (e.g. of two different states) such terms may
be dropped. The procedure of commuting annihilation operators to the right and dropping the
δ-functions is called “normal ordering” and it is indicated by double dots (colon) to the left and
right of an operator.

This leads to:

H =
∫

x0=0
d3x : T00: = H0 +HY +H3+∈ (3.24)

H0 =
∫

[k] k0
ma†

kak = (3.25)

HY =−1
2

g
∫

[123]δ̃(1−2−3)
(

a†
1a2a3 +a†

3a†
2a1

)
= + (3.26)

H3+∈ =− 1
3!

g
∫

[123]δ̃(1+2+3)
(

a1a2a3 +a†
3a†

2a†
1

)
= + . (3.27)

(In the above equations, I have used numbers to mark specific momenta: 1 means~k1, etc.)
The first term,H0, is the free Hamiltonian. Acting on a bare vacuum|0〉 it gives zero, and on

one particle statea†
k |0〉, H0 gives an eigenvalue factor – the free energyk0

m =
√

~k2 +m2. This
part does not change the structure of the state (the number of particles or their momenta).

The second and third terms,HY andH3+∈ constitute the interaction Hamiltonian. In the
limit g→ 0, they both vanish. These are two distinct parts. Terms inHY change the number of
particles by one. For example, when this term acts on four-particle states, it gives a combination
of three- and five-particle Fock states. Each term inHY has a creation operator on the left-hand-
side and an annihilation operator on the right-hand-side, and therefore gives zero, both when
acting on the vacuum ket and in matrix elements with the vacuum bra.

The third term,H3+∈, changes the particle number by three. The part with three creation
operators is the only part ofH that does not vanish when acting on the vacuum, a fact that has
important consequences (see Sec.5.2.5).

3.2.6 Problems

Although the Hamiltonian (3.24) appears quite reasonable, in fact it leads to a number of prob-
lems. I list some of them briefly here.
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x3

x3′

x0 x0′

A

B
C

Figure 3.1: In equal-time coordinates (Sec.3.2), boosts are dynamical. For example, for a
classical trajectory of a heavy particle (A) decaying into two lighter ones (B andC), it is possible
that in one reference frame an observer sees the particle before the decay (at the timex0 = 0)
while an observer in another frame sees the result, after the decay (at the timex0′ = 0). Hence,
one must know the dynamics in order to be able to describe processes in a boosted reference
frame. Contrary to this, in the light-front coordinates (Sec.3.3), boosts are kinematical, and
information about the state atx+ = 0 in one reference frame can be immediately translated to
the moving reference frame.

The first problem is that in the equal-time formulation of QFT, boost generators depend on
interactions and are complicated. This means that, even if one knows a state in one reference
frame, one still needs to know all the dynamics in order to predict the corresponding state seen
by a moving observer (see Fig.3.1). The situation is especially unsatisfactory for bound-state
calculations. Spectra and wave functions of bound states are usually calculated in their rest
frame of reference, and the theory is supposed to automatically take care of describing the
states in motion. Yet, it would appear that no such explicit construction has been successfully
carried out.

The second problem is, thatH3+∈ term inH does not vanish when acting on the vacuum.
Thus the “bare vacuum”|0〉 is not an eigenstate of the Hamiltonian and a good starting point
for solving the theory is lacking. The true vacuum – the ground state of the theory – has to be
determined from dynamical equations and may be a very complicated state, involving infinitely
many different Fock sectors (i.e., components with different numbers of bare particles).

There are many effects in QFT which are commonly interpreted as a result of the compli-
cated vacuum structure (for example, spontaneous symmetry breaking). Nevertheless, it would
be very useful if the theory could be reformulated in such a way that the vacuum was simple,
and all “vacuum” effects reproduced by additional interaction terms in the Hamiltonian [15].

The third problem concerns requirements of special relativity in divergent QFTs. Let us
imagine, for example, that we want to calculate the energy of a state of one physical particle of
momentum~k. If the relativistic dispersion relation,

E =
√

~k2 +const. , (3.28)

is to be preserved, then the only acceptable correction is a change in the value of the particle’s
mass (const. in Eq. (3.28)). Assuming that the mass shiftδm2 is small (compared to~k2 or the
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a)

b) +

c)

Figure 3.2: Examples of corrections to one-particle energy in the equal-time old fashioned
perturbation theory (a-b) and light-front calculation (c). The vacuum term (a) shifts energy of
all states and thus has no physical significance. Only two terms (b) (the “O” and the “Z” terms)
contribute in the equal-time old-fashioned approach. But in the case (c) of the corresponding
old-fashioned light-front Hamiltonian calculation there are no “Z” terms.

initial bare massm2) for small coupling constants, the square root can be expanded in a series:

E =
√

~k2 +m2 +δm2≈ E(0)
k +

1
2

δm2

E(0)
k

− 1
8

(
δm2

)2
(E(0)

k )3
+ . . . (3.29)

Thus, any small correction to the one particle energyE(0)
k =

√
~k2 +m2 has to be of the form

const./E(0)
k , or the result will not be relativistic.

Let us now look at the two important second-order corrections to the one-particle energy.
Up to the second order in the coupling constant, there are four terms:

Ek =
√

~k2 +m2 +∆E(2)
k−O−+∆E(2)

kZ +∆E(2)
0 . (3.30)

The first term is the initial, free energyE(0)
k . The second term comes from theHY acting twice,

and corresponds to the first diagram in Figure3.2(b). Next part comes fromH3+∈ acting twice,
and corresponds to the second diagram in Figure3.2(b) (a “Z” term). The final part comes from
H3+∈ acting twice, but forming a disconnected expression corresponding to the Figure3.2(a).

Since the second-order vacuum energy is exactly∆E(2)
0 , the shift of the physical energy of one

particle state (that is, how much more energy than the vacuum this state has) in the second order
in g is:

∆E(2)
k = ∆E(2)

k−O−+∆E(2)
kZ . (3.31)
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One may calculate it for 1+1 dimensional theory, obtaining a finite result:

∆E(2)
k =

1
2

δm2

E(0)
k

(3.32)

δm2 = − g2

4πm2 · f
(

k
m

)
(3.33)

f (u) =
∫ ∞

−∞
dp

 1√(
p+ u

2

)2 +1
+

1√(
p− u

2

)2 +1

×
× 1

−(u2 +1)+
(√(

p− u
2

)2 +1+
√(

p+ u
2

)2 +1

)2 (3.34)

(Note that in 1+1 dimensions, the coupling constantg has dimension ofmass2 – see Appendix
A.5.) We can evaluate

f (0) =
2π

2
√

3
, (3.35)

and the physical mass is:

m2
phys= m2− g2

6
√

3m2
. (3.36)

(The light-front approach presented in Section3.3 leads to the same result without relying on
the expansion of the square root in Eq. (3.29), cf. Eq. (5.51)-(5.53).)

In the case of scalar theory in 3+1 dimensions, however, the second-order correction to the
energy of one particle is divergent. It requires regularization and renormalization. One has to
make sure that both diagrams in Figure3.2(a) are regulated in a consistent way, and that there
is no additional non-covariant finite dependence on regularization (for example, as a function
of~k/m). Covariant regularizations, such as the dimensional regularization or Pauli-Villars reg-
ularization, are not easy to extend to the Hamiltonian formulation in its explicit operator form.
And when one cuts off momenta the result of integration will produce a whole function of~k
divided by the cutoff parameter.

A similar problem, discussed in more detail in Chapter5, occurs due to non-covariant reg-
ularization in scattering amplitudes. It is difficult to introduce regularization in standard canon-
ical Hamiltonians that lead to diagrams with different orderings (analogous to the−O− and
Z energy corrections discussed above) in such a way that the whole expression preserves the
Poincaré symmetry. These problems with a momentum cutoff regularization seem very un-
fortunate, because Hamiltonian-based calculations – in particular, the old-fashioned perturba-
tion theory – are very attractive from a conceptual point of view. Among its advantages are a
clear physical interpretation of the energy operator and an explicit construction of states in the
Fock space. Nevertheless, because of the problems with ultraviolet divergences, regularization
and renormalization of Hamiltonians, it was long believed that Hamiltonian-based calculations
could not produce relativistic results, and this approach to QFT was neglected for many years.
Covariantly regularized Feynman diagrams are beautiful and more effective in perturbation the-
ory for scattering processes. It is very interesting to observe, the the properties of Hamiltonian
calculations dramatically change when one switches from the standard time evolution to the
light-front of dynamics introduced in the next section.
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3.3 Light-front Hamiltonian dynamics

3.3.1 Forms of relativistic dynamics

Different forms of relativistic classical dynamics were analyzed by Dirac in [16]. The dynamical
problem is usually formulated as follows: certain arbitrary initial conditions are imposed on a
given hyperplane in the space-time. The dynamical equations (Euler-Lagrange equations in
Lagrangian dynamics) then allow us to predict what happens with the system elsewhere in the
space-time.

Three forms were considered by Dirac:

1) Equal-time (“instant”) form : this is the standard form presented in Section3.2. The initial
conditions are specified at a timex0 = 0 (or some other fixed time), and the generator of
evolution in the time direction is the energyP0;

2) Point form : here, the initial conditions are specified at a 4-dimensional hyperboloidx2
0−

~x2 = a, and the evolution proceeds in directions perpendicular to this hyper-surface;

3) Light-front form : here, the initial conditions are specified on a planex0 = −x3 (which is
tangent to a light cone, Fig.3.3), and dynamical evolution proceeds inx+, the dynamical
generator beingP−.

Choosing one of these three forms looks like a simple choice of parameters for describing
one and the same physics. However, from the point of view of special relativity and quantum
mechanics, there are some important differences between them.

Special relativity requirements can be formulated in terms of the Poincaré algebra (gener-
ators of translations, rotations, and boosts). The same reference frame can be reached by per-
forming different transformations in different orders. Whatever transformations one chooses,
and in whatever order they are placed, the description of physical processes must produce the
same results. Therefore, there are fixed relations that have to be fulfilled by the Poincaré gener-
ators. In a classical theory, these are:

{Pµ,Pν} = 0

{Mµν,Pρ} = gνρPµ−gµρPν (3.37)

{Mµν,Mρσ} = gµσMνρ−gµρMνσ−gνσMµρ +gνρMµσ,

wherePµ are generators of translations andMµν are generators of rotations and boosts2. In the
quantum case, the Poisson brackets

{}
are replaced by commutators.

In the free case, all these generators are easy to construct on the basis of general rules. In
interacting theory, the situation is more complicated. For example, let us look at the equal-
time theory defined in Section3.2.5. For the free theory, withP0 = H0 of Eq. (3.21), all other

2More specifically, the angular momentum operators are (i = 1,2,3):

Li =
1
2

εi jkM jk ,

and boosts are generated by:
K i = M0i .

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



3.3 Light-front Hamiltonian dynamics 25

generators are easy to find: for example, the space translation generators are:

~P =
∫

[k]~k a†
kak . (3.38)

In the interacting theory (i.e., the one with the coupling constantg 6= 0) the conditions defin-
ing the Poincaré algebra (3.37) can be split into two parts. Becausegµν is diagonal, the(i, j)
components ofP andM are not influenced by the change of the interaction part ofP0. They
are “kinematical” (i.e., simple, not influenced by the interaction – their form in the interacting
theory is exactly the same as in the free theory). However,M0i generating boosts have to fulfill
the condition: [

M0i ,P0] = −Pi . (3.39)

This means that whenP0 changes (i.e. when there is an additional interaction term),M0i has to
change accordingly, such that the commutators still produce the kinematical momentumPi of
the known, simple form.

There does exist a geometrical interpretation of these considerations, albeit a slightly sim-
plified one. In the equal-time form of dynamics, one specifies initial conditions atx0 = 0 hy-
perplane, andP0 (the time evolution operator) is responsible for generating the solution of the
dynamical problem at all other times. IfP0 is changed, a different solution will be generated.
Now, all other Poincaré algebra generators can be split into two groups. The six transformations
that do not change thex0 = 0 plane (three translations and three rotations) do not change the
system in any way that depends on the interaction inP0. On the other hand, the three boosts
move the system off thex0 = 0 plane:

x0→ x0′ = x0coshω+
~v·~x
|v|

sinhω (3.40)

(with tanhω = v where~v is the speed of the new reference frame (x′) relative to the old one (x)),
and must be modified in the interacting theory (c.f. Fig.3.1).

3.3.2 Light-front coordinates

Dirac’s LF form of dynamics [16] contains as many as seven kinematical Poincaré generators.
This makes it easier to formulate a relativistic theory in the LF form than in the equal-time form.

Light-front dynamics is defined in terms of new coordinates:(
x+,x−,x1,x2) (3.41)

x+ = x0 +x3 (3.42)

x− = x0−x3, (3.43)

instead of(x0,x1,x2,x3). One specifies the initial conditions atx+ = 0 (see Fig.3.3). New+,−
components of any covariant four-vector are specified in the same way.

The metric tensor is:

gµν =


0 1/2 0 0

1/2 0 0 0
0 0 −1 0
0 0 0 −1

 . (3.44)
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x
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3

x
0

x
1,2

Figure 3.3: Light-front initial conditions are specified on a hyperplanex+ = x0+x3 = 0 (a null-
plane tangent to the light cone); dynamical evolution determines the system’s state at different
light-front timesx+.

For example, a four-dimensional product of two four-vectors,xµ andpµ is:

xµpµ =
1
2

x+p−+
1
2

x−p+−x⊥p⊥ , (3.45)

wherex⊥ = (x1,x2). In particular, this means that a momentum conjugate tox+ (i.e., the evolu-
tion operator – the Hamiltonian) is:

1
2

p− = p+ = i
∂

∂x+ , (3.46)

and a momentum conjugate tox− is p+ =−i2∂/∂x−.
Further, square of a four-vectorpµ in the light-front coordinates is:

pµpµ =
1
2

p+p−+
1
2

p−p+− p⊥2 = p−p+− p⊥2 , (3.47)

and the dispersion relation for a particle on mass shell (m2 = pµpµ = p−p+− p⊥2) becomes:

p−m =
p⊥2 +m2

p+ . (3.48)

This is a light-front analogue of the equal-time dispersion relation:

p0
m =

√
~p2 +m2 . (3.49)
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~p
p0 = +

√
~p2 +m2

p0 =−
√

~p2 +m2

p0

(a)

p+p−

p− = p⊥2+m2

p+

(b)

Figure 3.4: (a) In the equal-time dynamics, for each space-like momentum~p there are two
values ofp0 possible on mass shell:p0 = ±

√
~p2 +m2; evolution of particles forward in time

(p0 ≥ 0) is an additional condition which cannot be imposed as a condition on momenta~p.
(b) In the light-front dynamics, positiveness ofp+ momentum results in a positive value of the
light-front energyp− = (p⊥2 +m2)/p+.

There are a number of important differences. First,p− is not squared in Eq. (3.47) and therefore
knowledge of the three-momentump+,⊥ determines the light-front energyp− without ambigu-
ity in its sign. This has important consequences. For example, as shown in Chapter5, for phys-
ical three-momentump+,⊥, the scalar particle’s propagator has only one pole at physicalp−

(3.48). This is quite different from the equal-time variables, where for each three-momentum
there are two corresponding poles: atp0 greater than, and less than zero. Thus, in the equal-
time form, one has to specify the condition of forward-evolution of particles as an additional
condition on their energiesp0 ≥ 0, which is needed irrespective of particle’s three-momentum
~p. In the light-front dynamics, the conditionp− ≥ 0 automatically follows from a kinemati-
cal conditionp+ ≥ 0. In other words, a requirement on the light-front space-like momentum,
p+ ≥ 0 chooses the forward light-cone for the evolution of particles (Fig.3.4).

In the light-front form, thep− is the Hamiltonian and~p= (p+, p⊥) constitutes a three-vector
of generators of translations in space directions(x−,x⊥).

Let us consider a boost in the directionx3:

x0 −→ x0coshω+x3sinhω (3.50)

x3 −→ x0sinhω+x3coshω . (3.51)

By adding and subtracting these equations, one gets:

x+ −→ eωx+ (3.52)

x− −→ e−ωx− . (3.53)

This leads to a second difference. In the light-front coordinates, this boost is a simple rescaling
operation: it does not mix light-front time (x+) and space (x−,⊥) coordinates, and it preserves
the hyperplanex+ = 0.

In total, there are seven kinematical Poincaré generators in the front form (compared to six
in the equal-time form): three space-like translations (P+,⊥), z-direction boost (M+−), rotation
aroundz-axis (M12), and two mixtures of boosts and rotations (M+i) [17]. Only the other
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28 Renormalization group procedure for Hamiltonians in quantum field theory

three Poincaré transformations (M−i) are dynamical and are modified when the Hamiltonian
P− changes.3

3.3.3 Quantum Field Theory Hamiltonian

For introduction to light-front quantization see [18-23] and [24]. For a review of modern appli-
cations of the light-front formalism in QFTs, see e.g. [25].

For the scalarφ3 Lagrangian (3.2), one can introduce canonical momentumπ:

π = ∂+φ = 2
∂

∂x−
φ , (3.54)

and request commutation relations:

[φ(x),π(y)]x+=y+=0 = iδ(x−−y−)δ2(x⊥−y⊥) . (3.55)

Note that the space-like derivative in (3.54) can be formally inverted, leading to:

[φ(x),φ(y)]x+=y+=0 =
−i
4

sgn(x−−y−)δ2(x⊥−y⊥) (3.56)

(this can be also verified by differentiating the last equation overy−).
Fourier expansion of the field atx+ = 0 introduces creation and annihilation operators:

φ(x+ = 0,x−,x⊥) =
∫

[k]
(

a†
kei(k+x−/2−k⊥x⊥) +ake

−i(k+x−/2−k⊥x⊥)
)

, (3.57)

where[k] = d2k⊥dk+θ(k+)/2(2π)3. Eq. (3.55) requires thatak fulfill:[
ak,a

†
p

]
= 2(2π)3p+δ(k+− p+)δ2(k⊥− p⊥) . (3.58)

Using (3.5), one may calculate the+− component of the energy momentum tensor:

T+− = ∂⊥φ∂⊥φ+m2φ2− 1
3

gφ3 , (3.59)

and the Hamiltonian:

P− =
∫

x+=0
d2x⊥dx+ : T+− : . (3.60)

This Hamiltonian can be split into two parts:H0, HY.

H = H0 +HY (3.61)

H0 =
1
2

∫
d2x⊥dx− : (∂⊥φ∂⊥φ+m2φ2) : =

∫
[k]

k⊥2 +m2

k+ a†
kak (3.62)

HY =
1
2

∫
d2x⊥dx− : (−1

3
gφ3) : = (3.63)

= −g
2

∫
[123]2(2π)3δ2(1⊥+2⊥−3⊥)δ(1+ +2+−3+)

(
a†

1a†
2a3 +a†

3a1a2

)
. (3.64)

3Sometimes in the literature, all the dynamical Poincaré generators are referred to as “Hamiltonians”.
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In this Hamiltonian, there are no terms similar to (3.27) in the equal-time Hamiltonian, such as:

H3 = − 1
3!

g
∫

[123]2(2π)3δ2(1⊥+2⊥+3⊥)δ(1+ +2+ +3+)a†
1a†

2a†
3 . (3.65)

This term would create three additional particles when acting on any state. Note, however, that
p+ momenta of these particles would have to add up to zero. As allp+ in this expression are
greater than or equal to zero, all three created particles would havep+ momenta equal exactly
to zero. For the massive particles considered here, such momenta mean infinite free energyp−,
and are not possible. Figure3.4shows that there is no point on thep2 = m2 hyperboloid which
would corresponds to such situation. Instead, zerop+ momenta would correspond to a limit of
a particle moving with the speed of light in the direction−x3. But as long as the limit is not
reached, even for a very fast particle,p+ 6= 0. On the other hand, allp+

i = 0 are possible if
all the created particles are massless. In this thesis, only the bosons in Chapter4 are massless.
Nevertheless, in a term such as the one above, they would be accompanied by a massive fermion
and an anti-fermion for whichp+ cannot be equal zero. Thus, terms of the type (3.65) do not
matter in this thesis.4

Let us turn now to the question of whether results presented here could be extended to other
theories. The question arises of whether the terms in a Hamiltonian, such as (3.65), should be
taken into account in a massless theory. Particles of zerop+ are the ones moving exactly in the
direction of−x3, see also Fig.5.2. For an external particle scattered on a target, it is enough
to choose thex3 axis not in the direction of motion of the incoming particle to avoid such a
problem, and the result should not depend on an artificial choice of coordinates. But for mass-
less particles whose momenta are not fixed by experimental conditions (for example, the final
particles in a measurement of a total cross-section),p+ cannot be made non-zero by a simple
choice of coordinates (for example, because one integrates over all possiblep+). Moreover, in
the standard calculation of scattering cross sections based on Feynman diagrams, massless par-
ticles in the final state may also create complications. These are usually handled by treating the
particles as massive and, in the final result, taking a limitm→ 0. This is equivalent to including
a low-energy (infra-red) cutoff, parametrized by the artificial mass. In Hamiltonian light-front
theory, the situation is even more complicated. For gauge theories, choosing the light-front
gauge leads to additional powers ofp+-momenta in denominators of certain expressions (see
for example a sea-gull term (E.51) and other expressions in AppendixF). This leads to terms
divergent forp+→ 0, irrespective of whether the particles are massive or not. An additional
cutoff parameter must be added, and renormalization is more complicated. This additional (and
perhaps inevitable) small-p+ cutoff means that, again, there are no particles of exactly zerop+,
and the delta function in (3.65) cannot be fulfilled.

Within this approach, the canonical light-front Hamiltonian forφ3 scalar theory has only two
kinds of terms: (3.62) and (3.64). There are no terms of type (3.65). This simplifies the theory
significantly compared to the equal-time Hamiltonian theory. For example, the LF Hamiltonian,
when acting on the vacuum state, gives zero: the Fock space vacuum is the physical vacuum,
i.e., the eigenstate of the Hamiltonian. As there are no particles ofp+ = 0 in this theory (all
particles are massive, or a small-p+ cutoff is introduced), the physical vacuum is simple, having
no components with a non-zero number of particles.

This simplification is not possible in the equal-time formulation presented in Section3.2.
The three-dimensional delta function in Eq. (3.27) can be easily fulfilled with the creation of

4When I discuss counterterms in QED and QCD, the small-x divergences pose an additional problem but not
of the ultraviolet type. See AppendixF.
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30 Renormalization group procedure for Hamiltonians in quantum field theory

three particles of finite momenta (and finite energies). In particular, the Fock vacuum state
(“free” or “bare” vacuum) is coupled to a huge range of states and it is hard to find the physical
vacuum which should be the starting point for any description of physical processes. Neverthe-
less, the two formulations of the theory may be consistent – one expects that the introduction
of the small-p+ cutoff in P− operator, which leads to a simple vacuum, will be accompanied
by extra counterterms in the Hamiltonian, which may create effects usually attributed to a com-
plicated vacuum structure [15]. See also [26, 27], where issues of discretization ofp+ are
considered. Discretizedp+ has also been used by Pauli and Brodsky [28, 29]. One has to be
careful when discussing global lower bounds onp+, because they violate boost invariance and
canonical representation of boost symmetry in quantum mechanics does not allow for scaling
of the lower bound onp+ when one boosts bound states [30].

Readers interested in vacuum issues related to small-p+ singularities can consult Refs.
[31-34]. Vacuum studies in Lagrangian approach can be traced starting from [35,36].

3.3.4 Arguments for and against the light-front Hamiltonian approach

The light-front approach to QFT has a number of pros and cons compared to the equal-time
approach. I summarize some of the advantages bellow; the specific examples in Chapters4 and
5 will make them even more explicit.

First of all, the light-front form of dynamics features kinematical boosts. To describe a
process in a boosted frame of reference (or to describe, e.g., a bound state in relativistic motion),
one does not have to solve a complicated dynamical problem. This allows one to connect
measured or calculated properties of a bound state at rest and in motion with huge energy
[37,38].

The second advantage is that this approach is simpler than the equal-time Hamiltonian the-
ory due to the following facts. The requirement thatp+ of all particles is greater than zero can
be imposed even for massless theory, and there are no terms in LF Hamiltonians of type (3.65).
This leads to two effects. First, Z diagrams do not appear in perturbation theory (cf. Fig.3.2),
and it is possible to introduce cutoffs and counterterms in such a way that the Hamiltonian
calculation leads to relativistic results for a scattering amplitude (see Chapter5). Second, the
vacuum structure is simple. Thus, the bare vacuum is a good starting point when building phys-
ical states, although additional terms may be needed in Hamiltonians to represent dynamical
effects usually associated with the vacuum structure.

The third advantage of the LF form is that the dispersion relation (3.48) is considerably
simpler than its equal-time counterpart, since the dependence of energyp− on the momenta
p+,⊥ is a rational expression.

However, the light-front approach also introduces a number of problems. Probably the most
important is lack of manifest rotational invariance. Formally, one may calculate all components
Mαβ of the Poincaré generators:

Mαβ =
∫

x+=0
d2x⊥dx+

(
xαT+β−xβT+α

)
. (3.66)

But in the case of the interacting theory not only the HamiltonianP−, but also all the dynam-
ical generatorsM−i lead to divergences. For example, one cannot exponentiate a dynamical
generator to get a Poincaré operator, because already a square of any dynamical operator is
infinite. One is forced to include regularization to make the operators meaningful, but this in
turn leads to violation of the Poincaré algebra, as the regulated generators no longer commute
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as expected (cf. Eq. (3.37)). Thus, any divergent quantum theory may lead to violation of
Poincaré symmetries, and it is necessary to find counterterms not only in the HamiltonianP−,
but also in other dynamical operators. Recently, Masłowski and Głazek have shown [39] that
the effective particles approach allows one to construct regularized and renormalized effective
Poincaré generators which fulfill the algebra conditions order by order in perturbation theory
(despite the use of Hamiltonian form factors and non-covariant cutoffs).

3.4 Renormalization Group Procedure for Effective Particles

Below I present key elements of the Renormalization Group Procedure for Effective Particles
(RGPEP). I show how this procedure works in the case of a scalarφ3 theory, deriving the ef-
fective Hamiltonian up to the second order in perturbation theory in the bare coupling constant.
I show the differences between theories in 1+1 and 3+1 dimensions (in 1+1 dimensions, the
theory is not divergent and no counterterms are needed); I also review theories other thanφ3.
The renormalization procedure presented here is applied to the description of bound states and
scattering in Chapters4 and5.

3.4.1 Regularization

Both the equal-time Hamiltonian (3.24) and the light-front Hamiltonian (3.61) lead to divergent
results when physical observables (such as scattering cross-section) are calculated in perturba-
tion theory. Since one cannot even multiply these operators, a statement such as “e−iHx+/2 is an
operator of translation inx+ time” is not mathematically meaningful.

Regularization means that the interaction terms in a Hamiltonian are supplied with factors
limiting the range of integration over momenta. These can be sharpθ cutoffs on particles
momenta or smooth functions that vanish fast enough for large momenta. They are arbitrary,
and are included in the theory only in order to make the Hamiltonian expression meaningful.
Each cutoff factor adds a cutoff parameter (∆), which determines how big a range of momenta is
included in the Hamiltonian. The physical results calculated using the regularized Hamiltonian
depend on∆, and diverge for∆→ ∞. It is assumed that one can add to the Hamiltonian extra
terms (counterterms) that explicitly depend on∆ in such a way that physical results have finite,
well-defined limits for∆→ ∞. The procedure of finding counterterms for a given cutoff is
called renormalization.

By introducing the cutoffs, the naive connection between the quantum Hamiltonian and
the classical Lagrangian is lost. In particular, regulating factors usually violate some of the
symmetries of the classical theory. Yet, some form of regulators are necessary, since quantum
theory is mathematically meaningful only if the regulators are there. The quantization procedure
allows for a reasonable first guess of the quantum theory Hamiltonian, but extra (steps such as
the regularization) are needed. The fact that the Hamiltonian is not strictly derived from classical
theory does not have to invalidate the procedure: we are trying to build the quantum theory, and
the canonical Hamiltonian represents a good starting point.

Of course, this does not mean that it does not matter how one regularizes the Hamiltonian.
Finding the proper counterterms may be easier or more difficult depending on the regularization.
This brings us to the question of what regularization is the best. Here, above all, one should try
to break as few classical symmetries as possible, if they are to be respected by physical results.
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32 Renormalization group procedure for Hamiltonians in quantum field theory

If regulators violate them, counterterms should be chosen in such a way that the symmetry is
restored; if possible, it is preferable not to break such symmetries in the first place.

Each term of the Hamiltonian annihilates some particles and creates others. It may act on a
state with many particles, some of which do not take part in the interaction. Regulators should
only involve momenta of particles taking part in the interaction. Otherwise, the counterterm
would have to depend on the spectator particles also, and would have to depend on a Fock sector
(and be written in terms of projections on some Fock sectors, rather than in terms of creation and
annihilation operators acting in the same way in different sectors). Such counterterms seem very
complicated, as they involve independent constants in different Fock sectors. In particular, the
results of an experiment involving one set of particles would not be enough to fix counterterms
that could be afterwards used for different processes in another set of particles.

Ideally, the regulators depend on relative momenta only. For each particle involved in the
interaction, a relative momentumx,κ⊥ can be defined:

p+
child = xc/pP+

parent (3.67)

p⊥child = xc/pP⊥parent+κ⊥c/p . (3.68)

For example, in a term on the following picture:

p2

p1
p3

there are two relative momenta, with the first child-particle having (x1/3,
κ1/3) and the second child-particle having (x2/3, κ2/3):

x1/3 =
p+

1

p+
3

= 1−x2/3 (3.69)

κ⊥1/3 = p⊥1 −
p+

1

p+
3

p⊥3 =−κ2/3 , (3.70)

while the parent-particle hasp+
3 andp⊥3 . x1/3 will be simply calledx, andκ⊥1/3 =: κ⊥.

The regularized Hamiltonian of theφ3 theory is thus:

H∆ = H0 +H∆
Y +X∆ , (3.71)

whereH0 is not changed (see (3.62)), H∆
Y is:

H∆
Y =−g

2

∫
[123]δ̃(1+2−3)

(
a†

1a†
2a3 +a†

3a1a2

)
r∆(x1/3,κ1/3)r∆(x2/3,κ2/3) , (3.72)

andX∆ are unknown counterterms which are to remove the dependence of the result on regula-
torsr∆ (the standard three-dimensional delta functionsδ̃ are defined in AppendixA).

The regulators used throughout the Chapters4 and5 are:

r∆(x,κ⊥) = exp

(
−κ⊥2

∆2

)
. (3.73)

In fact, it is possible use a more general form:

r∆(x,κ⊥) = exp

(
−η(x)

κ⊥2

∆2

)
(3.74)
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(cf. [40]). The advantage of (3.73) is that it is simpler, whereas proper choice of theη(x)
function may preserve more symmetries. For example, choosingη(x) = 1/x leads for the full
vertex (3.72) to the exponentκ2/(x(1−x)), which is very similar to the free invariant mass of
the created or annihilated particle pair. Many modifications are possible here, and each will
require different counterterms.5

The renormalization procedure is described in Section3.4.2. It is not entirely straightfor-
ward to find countertermsX∆ based on the condition that they remove divergent dependence
on regularization from physical observables. This is because observables usually involve some
special situation – for example, in anSmatrix, the free energy of initial and final particles is the
same, while a full operatorX∆ has to be defined also for momenta not respecting this restriction.
It is even more difficult to take into account the finite effects of regularization, and these have
an impact on whether the results are covariant.

A well-known example of the physically important finite effect of regularization is found
in the calculation of electron magnetic moment (g−2) in QED. The result in ordere3 is finite,
but it comes from a difference of two divergent terms [43]. If one regularizes them in a non-
covariant way, omitting the renormalization, the divergences will cancel each other and the
result will be finite, but wrong (in fact, it will be arbitrary, depending on the regularization).
Thus, a renormalization procedure has to take into account not only the divergent terms, but
also finite dependence on regularization. In the model example presented in Chapter2, finite
parts of counterterms had to fulfill certain relations for the theory to lead to relativistic results.
Fixing the finite parts of the counterterms so that they lead to covariant results will be further
discussed in Chapter5.

In discussing the finite effects of regularization, I use the more general form ofr∆, without
specifying the functionη(x).

In the case of gauge theories such as QED and QCD, there are additional divergences due
to small p+-momenta of particles involved in the interaction. As a result, extra regulators are
needed [15]. Such divergences do not appear in the theories considered in detail in this thesis
(see also the discussion in the end of Sec.3.3.3and AppendixF).

3.4.2 RGPEP — Physical motivation

The divergences in the results obtained from the canonical Hamiltonian are caused by the fact
that the Hamiltonian couples each state to other states in a huge range of momenta, and coupling
between small-free-energy (or small momentum) and large-free-energy (or large momentum)
states is important. The fact that a state is coupled strongly to high-energy states means that
it is also strongly coupled to other Fock sectors – Heisenberg’s uncertainty principle suggests
that if high-energy states are important, so is the creation of additional particles. This adds to
the complexities of quantum field theory: states of different momenta and different numbers
of particles are coupled and the eigenstates of the Hamiltonian are likely to be complicated,
multi-sector and wide-momentum-range states.

In renormalization theory, one assumes that there are counterterms in the regularized Hamil-
tonian that make low-energy dynamics independent of high-energy details of the theory, and in
particular of the ultraviolet cutoff. This is a requirement of existence of an effective theory: one
only has access to experiments at limited energies, and if low-energy predictions of the theory

5Note that (3.74) is still not the most general form of possibler∆. One should also be aware of other possible
regularizations, for example, introduction of Pauli-Villars bosons with imaginary couplings [41,42].
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were sensitive to all the details of the high-energy physics, the theory would have no predictive
power.

The RGPEP procedure is based on the idea of limiting the range of energies that interac-
tions can couple, rather than only looking at states of limited energies. The latter alternative
forms the basis of Wilson’s renormalization group [44]. In that formulation, it is hard to make
a Hamiltonian theory agree with special relativity, as the possible energy range is arbitrarily
limited.

RGPEP avoids the problem of Wilson’s theory in the case of Hamiltonians. It also intro-
duces effective particles that allow us to formulate a well-defined bound-state problem with a
few effective particles.

The idea of effective degrees of freedom is, in fact, more general. Essentially, it means that,
for particular process, a description in terms of specifically defined degrees of freedom (which
are superpositions of the original ones) may be significantly simpler (see [2]).

The effective theory should, however, describe the same physics. In particular, all the spec-
tra, S matrices, and other observables, should be the same as in the original theory. For a QFT
Hamiltonian, the easiest way to do this is to change the basis of the creation and annihilation
operators, i.e., to define new operatorsa†

λ as combinations of the originala, a† and re-express
the Hamiltonian in terms of new degrees of freedom:

Hλ (aλ) = H(a) . (3.75)

RGPEP introduces the simple, effective theory by the requirement that the effective Hamil-
tonianHλ contains form factors and its matrix is band-diagonal. This means thatHλ couples
each state to only a limited range of states of similar momenta; coupling between different Fock
sectors is also limited. Note that this is exactly what is expected of the effective (constituent)
quarks. The fact that a simple description of hadrons as bound states of a fixed number of
constituents is successful, means that the most important component (e.g., the one with three
quarks in the case of baryons), couples weakly with other sectors.

3.4.3 Effective particles and renormalization group equations

RGPEP is defined as a rotation of the basis of Fock-space operators [45, 46]. For each “bare
particle” created by an operatora†

∞, there is a family of “effective particles” (parametrized by a
parameterλ), defined as being created by unitarily equivalent operatorsa†

λ:

a†
λ = Uλa†

∞U†
λ . (3.76)

The same Hamiltonian operator can be expressed in terms of both operators:

Hλ (aλ) = H(a∞) , (3.77)

where the functional dependence of the Hamiltonian operator onaλ (markedHλ ) is different
from the functional dependence ona∞ (markedH). Re-expressing the last equation in terms of
one operator basis,a∞, and using the fact that each term ofH is a product of some number of
creation and annihilation operators, gives the equation:

Hλ (a∞) = U†
λ H(a∞)Uλ . (3.78)
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H∆ Hλ = U†
λ H∆Uλ
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Figure 3.5: By a unitary (similarity) rotation the bare HamiltonianH∆ is transformed into an
effective HamiltonianHλ , which is narrow (of widthλ), but equivalent toH∆ (because of an
appropriate change of elements within the non-vanishing near-diagonal band).

This means that elements of the operatorHλ come from a unitary rotation ofH.6 The unitary
equivalence ofH andHλ means that both operators describe the same physics. For example,
they have equal eigenvalues and eigenstates – the energy spectrum of physical states.

I now proceed to defining a specific form of the unitary operatorUλ. For more details
see [45,40].

As argued in Section3.4.2, Hλ will have interpretation of an effective Hamiltonian anda†
λ

of creation operators for effective particles, if the momentum range of non-vanishing elements
of Hλ is limited to a band close to the diagonal. RGPEP starts from choosing a form factorfλ
whose purpose is to limitHλ to a band-diagonal form. Next, using the differential equations,
one calculates – order by order in perturbation theory – the transformationUλ that generates
such form factors. The transformation also changes the elements ofHλ within the near-diagonal
band such thatHλ is unitarily equivalent toH (Fig.3.5). fλ may be chosen in any way one likes,
and can depend on the difference of energies of particles created and annihilated by a specific
term in Hλ , or on a difference of invariant masses. Below I showfλ depending on relative
momenta of particles created and annihilated in a Hamiltonian term. The difference of invariant
masses of statesa andb will be denotedab(for a detailed definition see AppendixA.3, cf. [40]).
fλ acting on an operator crating particlesb and annihilatinga is defined as:

fba = exp

(
−ab2

λ4

)
. (3.79)

This means that each term withfba will be exponentially weakened when the invariant mass
changes from stateb to a by more thanλ. Note that spectator particles do not influence this
expression.

Other choices offba are also possible and can influence the complexity of solving the theory
significantly. For example, Młynik and Głazek [47] analyzed an asymptotically free model: they
find the effective Hamiltonian in perturbation theory by solving RGPEP equations numerically
at each order and solved a nonperturbative eigenvalue problem for a small-window Hamiltonian
extracted from the effective Hamiltonian. They showed that, for a specific choice offλ, the
bound-state energy of the initial Hamiltonian is reproduced with 1% accuracy.

For the calculation presented in this thesis, it is sufficient to considerfλ defined by (3.79);
the possible advantages of different forms offλ will not be discussed here. Each term ofHλ

6Henceforth, each operator which does not have its operator basis explicitly indicated is understood to be
expressed in terms ofa∞.
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can be written as:
Hλ = fλG (3.80)

(note that I use the same symbolfλ for an operator and a function of momenta; for the definition
of fλ acting on an operator see AppendixA.2).

Differentiating equation (3.80) with respect toλ and using (3.78) leads to the equations:
T =

{(
(1− fλ)GI

)′}
0

d
dλ

G = [ fλGI ,T] ,

(3.81)

(3.82)

where prime means differentiation with respect toλ, and
{

A
}

0 marks an operatorA with extra
energy denominator, see Eq. (A.2) and AppendixC.

Fromthe first equation, (3.81), it follows that the operator structure ofT is the same asGI ,
despite that there are additional factors, i.e., the similarity form factorfλ, energy denominator{ }

0, and factors coming from differentiation ofGI . For example, ifGI has two creation and one
annihilation operator, the same is true forT. The only exceptions are terms proportional toa†

pap:
as stressed above, the similarity rotation does not change the diagonal Hamiltonian terms.7 Note
also, that (3.81-3.82) are written in terms ofa†

∞ which do not undergo the differentiation, since
they do not depend onλ.

The second equation(3.82) expressesG in terms of a commutator, therefore the resulting
operator will not have disconnected parts as long as the operators on the right-hand side do
not. If this equation is solved in perturbation theory, then-th order ofG on the left-hand side
depends on the(n−1)-th orders ofGI andT on the right-hand side, since the expansion of both
these operators starts at orderg and the right-hand side expansion starts at orderg2.

One may thus attempt to solve these equations in perturbation theory. There is a starting
point: in the zeroth and the first orders, the right-hand side of the second equation is zero. Thus
G (0) andG (1) do not depend onλ and are equal to their values atλ = ∞, i.e., to the canonical
Hamiltonian terms. UsingG (1), one can calculateT(1); from this, G (2); from this, T(2); and
so on.

This procedure also allows us to perform a systematic renormalization. The renormalization
is done in the following way. The resulting Hamiltonian is “narrow” in invariant masses and re-
quiring cutoff independence of its matrix elements, or coefficients in front of each combination
of creation and annihilation operators, makes it produce only finite results. This requirement
allows one to find divergent parts of the counterterms in the initial bare Hamiltonian.

The procedure thus works in two ways: it allows us to construct the effective Hamiltonian
Hλ and it also determines the initialH∆ (Fig.3.6). However, it does not fix the finite parts of the
counterterms. In Chapter2, I show that in a simple model, such finite constants can be used to
restore Poincaré covariance of physical observables. In the case of QFT, especially the gauge
theories, these finite parts may have to have a more complicated structure [15].

To show how this procedure works in practice, I describe in following sections the terms
in the effective Hamiltonian that result from the initial, bare Hamiltonian of Eq.(3.71) using
equations (3.81)-(3.82). I also describe how the barea∞ and the effectiveaλ are related.

7Note, however, that the form offλ is chosen in such a way that forab→ 0, the numerator of (3.81) goes to
zero faster than the denominator. Thus the absence of terms∼ a†a is not an artificial requirement here, e.g., it does
not violate unitarity ofUλ.
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H∆ =
︷ ︸︸ ︷
H∆

can+X∆ Hλ

Uλ

Figure 3.6: The unitary transformationUλ facilitates the calculation of the effective Hamiltonian
Hλ . In turn, the condition that the derivedHλ is independent of∆, determines the form of
countertermsX∆ in the initial, bare HamiltonianH∆.

3.4.4 RGPEP – Orderg0

In the zeroth order, the Hamiltonian does not change:

H (0)
λ = fλG (0) = H0 . (3.83)

For practical reasons, I list herea†
∞ expressed as a series ina†

λ, rather than the other way

around. Although it is interesting to see the structure ofa†
λ in terms ofa†

∞, a†
∞ written as a

series:
a†

∞ = a†(0)
∞ (a†

λ)+a†(1)
∞ (a†

λ)+a†(2)
∞ (a†

λ)+ . . . , (3.84)

where parenthesis denote functional dependence on the other set of operators, can be used to
express any operator which is known as a function of the bare particle creation operatorsa†

∞, in
terms of the operatorsa†

λ. The series can be inverted to expressa†
λ in terms ofa†

∞.
In the zeroth order:

a†(0)
∞ = a†

λ . (3.85)

3.4.5 RGPEP – Orderg1

In orderg1, G is also independent ofλ:

d
dλ

G (1) = 0 (3.86)

G (1) = H(1) . (3.87)

The first order effective Hamiltonian is:

H (1)
λ = fλG (1) =−g

2

∫
[123]δ̃(1+2−3)

(
a†

1a†
2a3 +a†

3a1a2

)
fλ(12,3) , (3.88)

where the regulatorsr∆ (cf. (3.72)) can be set to 1 in the limit∆→∞ becausefλ is present. The
general form offλ defined in Eq. (3.79) reduces in this expression to:

fλ = exp

[
− 1

λ4

(
κ⊥2 +m2

x(1−x)
−m2

)2
]

. (3.89)

This means a serious change in the form of the interaction Hamiltonian compared to the bare

HamiltonianHY. H (1)
λ has similar terms to the bare interaction Hamiltonian: it can create an
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g

H H λ

g

∆

λ

Figure 3.7: The main difference betweenH∆ andHλ is thatH∆ is for pointlike bare particles,
whereasHλ is for effective particles of sizeλ−1. In Hλ , interaction terms are limited by form
factors fλ, marked by a black blob.

additional particle or annihilate a pair and replace it by a single particle. But if the difference
of free invariant masses of the one particle and the two particles involved is large, elements

of H (1)
λ are weakened by the form factorfλ. Only states with similar invariant masses are

coupled strongly byH (1)
λ . In diagrams, the effective Hamiltonian vertices are marked with a

black circle, representing the form factor, as in Figure3.7. Wherever it is important to stress the
difference between the bare and effective particles, I use bold lines for the latter.8

One can also calculate the first-order operatorUλ and creation operatora†
λ.

u(1) =
{

(1− fλ)H
(1)
}

0
(3.90)

As expected from unitarity considerations (see AppendixC.1.2), u(1) is anti-hermitian. This is
due to the energy denominators

{ }
0, which can be written explicitly as:

u(1)
ba =

P+
ba

ba
(1− fba)H

(1)
ba . (3.91)

It can be easily verified that:

(1−u(1)
λ )H(1+u(1)

λ ) = H(0) + fλH(1) , (3.92)

if only terms up to orderg1 are retained. This simply confirms that the rotation byUλ = 1+
u(1)

λ + . . . indeed leads to the effective Hamiltonian with a form factorfλ.
In the first order, the relation between the creation operators of bare and effective particles

is:

a†(1)
k∞ =

[
a†

kλ,u
(1)
]

=
[
a†

kλ,
{

(1− fλ)H
(1)
}

0

]
. (3.93)

As far as the operator structure is concerned, this expression means that, in each term of the in-
teraction Hamiltonian, one annihilation operator and corresponding integration disappear, while
the momentum of this operator is replaced byk. Accordingly, in the first order, a bare opera-

tor creating a particle of momentumk, a†(1)
k,∞ , has a term with two creation operators (a†

k1,λa†
k2,λ

with k1 + k2 = k) and a term with one creation and one annihilation operator (a†
k1,λak2,λ with

k1−k2 = k).

8In the case of coupled QED and QCD, bold lines are also used in this thesis to distinguish between quarks
(bold) and electrons (plain lines).
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3.4.6 RGPEP – Orderg2

The canonical HamiltonianH (Eq.(3.61)) for the φ3 theories has only terms of order 0 (the
free Hamiltonian) and 1 (terms changing the number of particles by one). Introducing cutoffs
requires adding extra counterterms of order 2 and higher. In the theories considered in Chapters
4 and5 and in the Appendixes, the canonical Hamiltonian will have terms of orderg2. The
initial Hamiltonian can be written as a series in the coupling constant:

H = H0 +H(1) +H(2) + . . . (3.94)

In this expansion, the second-order effective Hamiltonian is:

H (2)
λ = H (2)

λ HH +H (2)
λ H2 (3.95)

H (2)
λ HH := fλ

(∫ λ

∞
dz
[

fzH
(1),u(1)

z
′
])

(3.96)

H (2)
λ H2 := fλH(2) . (3.97)

I explicitly show subscripts indicating the scale (λ or z) to which an operator corresponds. The
scalez is the scale one integrates over and the scaleλ corresponds to the calculated operator
Hλ .

H (2)
λ H2 is simply a second order counterpart ofH (1)

λ , Eq. (3.88). The comments in Section
3.4.5 also apply here, i.e., the operator structure of this part of the effective Hamiltonian is
identical to the structure of the bare HamiltonianH(2) apart from the form factorfλ.

The operator structure of the first part,H (2)
λ HH , is more complicated. It can be written as:

H (2)
λ HHac =: facF

(2)
abc H(1)

ab H(1)
bc

∣∣∣
connected

. (3.98)

The external similarity factorfac limits invariant mass change, possible whenH (2)
λ HH acts once.

For fλ defined by Eq.(3.79), F (2)
abc coming from the integral (3.96) is:

F (2)
abc =

P+
baba+P+

bcbc

ba2 +bc2 ( fba fbc−1) . (3.99)

The second order part of the rotation operatorUλ is:

u(2)
λ =

{
(1− fλ)H(2)

}
+

1
2

u(1)u(1) +
1
2

∫ λ

∞
dz
[
u(1)

z ,u(1)
z
′
]

. (3.100)

The first and the last parts of this expression are anti-hermitian. The middle (hermitian) part,
1/2 u(1)u(1), is exactly what is needed forUλ to be unitary (cf. (C.14)). Note that this hermitian

part is not a commutator, but a product of operators;u(2)
λ thus has disconnected parts.

For fλ defined by Eq. (3.79), the last part of (3.100) is:

u(2)
λHH =: a(2)

HHabc H(1)
ab H(1)

bc

∣∣∣
connected

, (3.101)

where the anti-hermitian factora(2)
HHabc is:

a(2)
HHabc =

P+
ac

ac
(1− fac)

P+
bcbc+P+

baba

bc2 +ba2 ( fba fbc−1)+

+
1
2

P+
baP

+
bc

babc

(
( fba− fbc)+

bc2−ba2

(ba2 +bc2)
( fba fbc−1)

)
. (3.102)
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The relation between the bare and effective creation operators in the second order is:

a†(2)
∞ =

[
a†

λ,
{

(1− fλ)H
(2)
}]

+
1
2

[[
q†

λ,u
(1)
λ

]
,u(1)

λ

]
+

+
∫ λ

∞
dz
[
a†

λ,
{

(1− fz)
[

fzH
(1),u(1)

z
′
]}]

+
1
2

∫ λ

∞
dz
[
a†

λ,
[
u(1)

z ,u(1)
z
′
]]

,(3.103)

see also [39].

3.4.7 Second order effective Hamiltonian forφ3 theory

In Sections3.4.5and3.4.6I listed perturbative solutions to RGPEP equations. However, I did
not analyze the resulting effective HamiltonianHλ in detail to find its dependence on the ul-
traviolet cutoff∆ and the counterterms. In this section, I use the equations presented above
to calculate the effective Hamiltonian for theφ3 theory and analyze the details which will be
important in Chapters4 and5, using similarity form factors of Eq. (3.79).

The starting point for the procedure is the bare, canonical Hamiltonian (3.71) with regulators
(3.73). In the zeroth order, the Hamiltonian does not change. The effective free Hamiltonian is
still (3.62). However, the effective mass is corrected in the second order. The first-order effec-
tive Hamiltonian has already been discussed in detail (cf. Eq.(3.88)). It has a one-additional-
particle-creation term and a one-particle-annihilation term. The only difference from the bare
HamiltonianH∆

Y , is that each term has a similarity form factorfλ.
Presence of form factors in the Hamiltonian interaction term is an important feature of the

effective theory. Matrix elements of the effective Hamiltonian are small between states whose
invariant mass differs greatly. However, if we consider a theory with massive particles – like
theφ3 – the invariant mass of a two-particle state must be at least 4m2, while the mass of any
one particle state ism2. Therefore,ba in the definition of fλ is at least 3m2 and, if λ is of the
order ofm, the factorfλ is extremely small, no matter what the momenta of the created particles
are. This means that these terms – connecting different Fock sectors of effective particles – are
extremely weak for a smallλ.

This is part of what is dubbed an effective particle: physics should be described well in
the approximation, in which the number of these particles is fixed. And this is, indeed, what
we observe inHλ : different Fock sectors are hardly coupled and theory splits into quantum
mechanics in each sector separately. The effects of interaction with other sectors are small and
can be taken into account in perturbation theory.

Below, I summarize the second-order effective Hamiltonian terms. These are all calculated
from Eq. (3.98).

The first type of terms are terms with closed loops (Fig.3.8b). All such terms may be writ-
ten as:

H (2)
λ ,∼a†a

=
∫

[k]
δm2

λ∆
k+ a†

kak , (3.104)

whereδm2
λ∆ is a constant, dependent on the cutoff∆ and the effective scaleλ, but independent

of momenta. If one compares this with the form of the free Hamiltonian, it is clear that this
term shifts the value of the effective particle mass, without changing the form of the relativistic
dispersion relationp−0 (p+, p⊥) of Eq. (3.48).
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a) H (0)+(1)+(2)
λ = +g +g2 +

+g2 +g2 +g2

b) = F (2) +

Figure 3.8: The effective Hamiltonian up to the second order has a) a free term, an order-g
vertex with a form factorfλ, and more complicated terms of orderg2. Among the terms of
orderg2, there are terms that do not change the number of particles, including a “potential”
term∼ a†

λa†
λaλaλ and b) a mass correction∼ a†

λaλ.

One of the requirements of RGPEP is that the effective Hamiltonian matrix elements should
be independent of∆ for ∆→ ∞. This is always true for theφ3 theory in 1+1 dimensions. Here,
in the limit ∆→ ∞ the effective mass is:

m2
λ,1+1 =

(g
2

)2 1
2πm2

∫ 1

0

dx
1−x+x2

{
exp

[
−2

m4

λ4

(
1−x+x2

)2
x2(1−x)2

]
−1

}
, (3.105)

a finite,λ-dependent result. But for the theory in 3+1 dimensions described above, the result
turns out to be a divergent function of∆:

m2
λ,3+1,∆ =

−g2

4·8π2 log
∆2

m2 +
g2

4·8π2

∫ 1

0
dxlogcη +

g2

4·8π2

∫ 1

0
dxlog(1−x+x2)− g2

4·8π2 Iγ+

+
g2

4·8π2

∫ 1

0
dx

∫ ∞

0

dz
z+1−x+x2 exp

[
−2

(
z+1−x+x2

)2
x2(1−x)2λ4/m4

]
, (3.106)

wherecη = 4 (Iγ is defined in the Appendix (see Eq.(K.3))). This determines the form of the
second order counterterm inH∆: it must be:

X∆(2) =
∫

[k]a†
kak

δm2
∆

k+ , (3.107)

wherem2
∆ is (−1) times the regularization dependent part of (3.106), plus an arbitrary constant

C′X:

m2
∆ =

g2

4·8π2 log
∆2

m2 −
g2

4·8π2

∫ 1

0
dxlogcη +C′X . (3.108)

X∆(2) contributes to the effective Hamiltonian without a change (Eq. (3.97)), leading to the
effective kinetic term:

H (0)+(2)
λ∼a†a

=
∫

[k]
k⊥2 +m2

λ
k+ a†

kak (3.109)

m2
λ =

g2

4·8π2

∫ 1

0
dx

∫ ∞

0

dz
z+1−x+x2 exp

[
−2

(
z+1−x+x2

)2
x2(1−x)2λ4/m4

]
+CX .(3.110)
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(for convenience, I introduce a new, shifted constantCX = C′X + g2

4·8π2

∫ 1
0 dxlog(1− x+ x2)−

g2

4·8π2 Iγ). In this expression,CX is a finite constant that is an unknown finite part of the countert-
erm. To fix its value, one can calculate the physical mass of a particle (the eigenvalue of the
Hamiltonian corresponding to a one-particle state) and compare it to the experimental value.
Calculating this in perturbation theory to the second order gives the following value:

m2
phys= m2 +CX . (3.111)

The same result is found if one starts from the effective Hamiltonian of any scaleλ (or even
from the initial bare Hamiltonian). The mass term of the effective Hamiltonian depends on the
scaleλ, Eq. (3.110), but the physical eigenvalue (3.111) does not. This is a consequence of
unitarity of the change of basis in RGPEP, and we will observe it also in the theories presented
in Chapters4 and5.

All other terms of the effective Hamiltonian are finite in the limit∆→∞. Thus, no additional
counterterm is needed in orderg2.

The first group of non-divergent effective Hamiltonian terms of orderg2 are the terms with
two creation and two annihilation operators. These can be still split into two parts. The first is
a potential with three particles in the intermediate stateb. The structure of this part is:

Hλ −−−−/
−−
−−

= facF
(2)

abcH−<H>−
∣∣
connected,−−−−/

−−
−−

. (3.112)

Terms like these will be analyzed in more detail in Chapter4. The second part consists of
“s-channel” terms with only one particle in the intermediateb state. The explicit expression is:

Hλ >−< = facF
(2)

abcH>−H−<
∣∣
connected,>−< . (3.113)

In the second order, there are also other terms which change the particle number by two (cf.
Fig.3.8). For example, the part which creates two additional particles is:

Hλ >−
−−〉− = facF

(2)
abcH>−H>−

∣∣
connected,>−−−〉−

. (3.114)

In each of the terms (3.112)-(3.114), the renormalization group factorsfλF introduce different
dependencies on the momenta of the particles involved. For example, particlesa andc may
have the same momenta in (3.112) and in (3.113) but the expressionabhas a different meaning
for each of these terms.

3.4.8 Other theories

Theories other thanφ3 in 3+1 dimensions will be discussed in detail in Chapters4 and5. Here,
I list the key features that differentiate them from the simple scalarφ3 theory described in
Section3.4.7. In the appendix one can find details of the effective Hamiltonians for Yukawa
theory, QED and QCD (calculated to different orders in the coupling constants).

One key difference between the scalar theory described above and any theory involving
fermions, is that spinor factors introduce additional powers of momenta in the numerator of
H(1). For example, if one does not add counterterms, the second-order effective fermion mass
term in Yukawa theory would be:

δm2
Yukawa,∆ =− g2

16π2

[
∆2

4

∫
dx

1
x

r2
δ +4m2 log

∆2

m2

]
+finite terms, (3.115)
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(cf. Eq. (D.28) in AppendixD). This expression is linearly divergent in∆2, which can be
contrasted with only logarithmic divergences in 3+1 scalar theory. Although calculating more
divergent expressions is more complicated (and may involve small-p+ regulatorsrδ), they do
not present fundamental problems. Simply, extra terms proportional to∆2 have to be present in
X∆ (cf. Eq. (4.21)).9

Another feature of Yukawa theory is that there are seagull “instantaneous” terms. These
do not influence the second order calculations significantly; however, some authors [48] use
“self-inertia” (terms that may be obtained from the seagulls when normal-ordering them) to get
covariant results, for example for the S matrix. Such an approach cannot easily be extended to
a higher order calculation, and is not required for the approach presented here.

Fermion spinors (B.42) introduce into matrix elements additionalp+ factors in denomi-
nators. For this reason, low-x regularization (used temporarily also for scalar fields to avoid
H3+∈-like terms) has to be included explicitly. However, in Yukawa theory the only low-x reg-
ularization dependence is in the∆2-divergent mass term (3.115), and this is removed by the
ultraviolet counterterm.

In gauge theories with vector bosons, there are likewise extra boson-line seagulls. Such the-
ories also lead to additional small light-frontx divergences that introduce many complications
(see AppendixF). QED and QCD are not analyzed in detail in this thesis, although the results
presented here are a necessary step towards an analysis of the two gauge theories.

3.4.9 Rotation of operators other than the Hamiltonian

After the basis of creation and annihilation operators for effective particles has been found, one
may turn to an examination of the operators other than the Hamiltonian in this basis.

First, it is interesting to describe how effective particles interact in more detail. One way
to systematize this description is to determine their relative angular momentum, i.e., a spin of
their bound state.

Any operator written in terms of bare creation or annihilation operatorsa∞ can be expressed
in terms of effective operators, for example by using equations (3.93),(3.103). Masłowski and
Głazek have done this for the dynamical Poincaré operatorsM−i . They found that in the basis of
effective particles, the Poincaré algebra relations are fulfilled in perturbation theory. A relativis-
tic angular momentum operator can be defined and used, for example, to classify eigenstates
of the effective HamiltonianP−λ or help in the construction of counterterms leading to a theory
which agrees with the requirements of special relativity.

There is another situation where expressing certain operators in terms of effective particles
may be useful. We may imagine a theory of two kinds of interactions of different strengths,
QED and QCD. The strong interactions determine most of the quarks interactions and their
electromagnetic interactions may be considered a small correction. One could perform RGPEP
taking asH the full Hamiltonian of QED and QCD. This would lead to effective particles that are
dressed both strongly and electromagnetically. All the terms of the full effective Hamiltonian
are narrow, i.e., have the form factorsfλ, but the theory becomes complicated: there are many
terms inHλ and not only quarks, but also electrons and all other particles, get dressed (cf.
AppendixC.2.3).

9Note that I have not analyzed here finite dependence on regularization. For the mass term, this would be a
finite constant, i.e., momentum-independent shift of the value. Leaving the counterterm in the form of an integral
with explicit regulators takes care of both finite and infiniter∆ dependence, but the degree of divergence is not as
explicit as in Eq. (3.115).
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One may also consider another way of introducing effective particles. As stated above, the
bulk of the interaction is due to the strong interactions. Accordingly, one can base RGPEP on
HQCD rather than the full HamiltonianHQCD+ HQED. This leads to a description in terms of
effective quarks and gluons, dressed up by the strong interaction (i.e., being a combination of
a bare quark, a quark and a gluon, a quark and a quark–anti-quark pair, etc., but not a quark
and a photon or a quark and an electron-positron pair). In such an approach, bare creation
and annihilation operators are used for particles that do not interact strongly. Now, having
the definition of effective quarks (fromHQCD), one can express the full Hamiltonian (HQCD+
HQED) in terms of them. This leads to an effective Hamiltonian expressed in terms of effective
quarks and gluons interacting with bare electrons and photons. This way one may simplify the
calculation of certainSmatrices. This is one of the approaches described in Chapter5.

The simplified form of RGPEP also seems natural from another point of view. If one wants
to describe strong bound states of quarks, there is no need to take into account in the first approx-
imation their electromagnetic interactions. One would define effective quarks and their bound
states looking at the strong interactions only. Next, one can investigate what the electromagnetic
interactions of such bound states look like. It seems natural to leave the bound states expressed
by the effective quarks defined by the strong interactions, rather than redefine the degrees of
freedom (and define new effective quarks, now dressed both strongly and electromagnetically).

Nevertheless, the electromagnetic interactions of the “strong” effective quarks differ from
the interactions of the bare quarks. The effective Hamiltonian in this approach is defined in de-
tail for two coupled scalar theories in AppendixC.3; certain terms of the effective Hamiltonian
of QCD coupled to QED are given in AppendixF.

These two approaches – RGPEP based on the full Hamiltonian, and the simplified one
based on the strong interaction Hamiltonian only – are used and compared in the description of
scattering in Chapter5.

3.4.10 Other renormalization procedures

The Hamiltonian renormalization group procedure presented in Section3.4 is similar to the
procedure discussed by Wilson [44]. In both procedures, an initial, artificial cutoff∆ is intro-
duced. The Hamiltonian is then transformed to an equivalent form, parametrized by an arbitrary
parameterλ. The results would be independent ofλ by construction if the transformation was
exact. Next, one requires that the resulting Hamiltonian matrix elements do not depend on∆
for ∆→ ∞.

In Wilson’s renormalization group,λ limited the space of states by limiting their energies.
One could calculate such a limited Hamiltonian matrix using Bloch transformation [49] or the
R transformation (presented in AppendixJ.2; see also Fig.3.9). Unfortunately, when one calcu-
lates this transformation in perturbation theory, small expressions appear in denominators, due
to differences of energies of the retained and eliminated states (cf. AppendixJ.7). This means
that the effective Hamiltonians have to be determined with infinite precision when looking for
the counterterms inH∆, and numerical or any other approximate treatment of renormalization
group equations is impossible. The situation is even worse for a theory with degeneracy: if one
wanted to eliminate some of the degenerate states, and leave others, theR transformation could
not be defined in a plane perturbative way at all.

RGPEP avoids these problems. When calculating the effective Hamiltonians, no small en-
ergy denominators are generated. This is because the similarity transformation does not elim-
inate any of the considered states; instead, it expresses the Hamiltonian in a different basis of
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Figure 3.9: (a) Wilson’s standard renormalization procedure is based on the reduction of a space
of states. This leads to small energy denominators in perturbation theory. (b) The RGPEP is
based on a rotation of basis. It avoids small denominators in perturbative derivation of effective
dynamics, by integrating out only these energy changes that are larger thanλ.

creation and annihilation.
This is a general feature of RGPEP that it shares with the Głazek-Wilson general similarity

approach [3,50]. However, this feature can also be observed explicitly order-by-order in pertur-
bation theory. For example, in the first order rotation (3.91), there is a denominator 1/ab that
may be small. But whenab→ 0, the similarity factor behaves as follows:

fλ(ab) = exp

(
−ab2

λ4

)
≈ 1− ab2

λ4 , (3.116)

and the factor(1− fλ) goes to zero faster than the denominator. This makes the calculation of
Hλ and counterterms inH∆ possible in practice.

The renormalization procedure for Hamiltonians in QFT described here is different from
that of the renormalization of Feynman diagrams. The latter is done by introducing regulariza-
tion in a specific expression for a physical observable: the scattering amplitude. Until such a
regularization is introduced, the expression (including the derivation of the Feynman diagrams)
is only formal. When a regularization is introduced, a counterterm to a specific scattering am-
plitude is constructed. Feynman’s approach, although extremely successful, is hard to extend to
a description of processes other than the scattering (see Chapter5).

Unlike the Feynman diagrams, the approach to Quantum Field Theory presented here aims
at defining a relativistic and finite Hamiltonian, that may be used to describe both bound states
(cf. Chapter4) and scattering (cf. Chapter5) within one theory using one set of parameters.
Note that the Hamiltonian has matrix elements between states of different free energies. When
it contributes to theS matrix, because of free-energy conservation, its contributions simplify

greatly. For example,F (2)
abc (cf. (3.99)):

F (2)
abc =

P+
baba+P+

bcbc

ba2 +bc2 ( fba fbc−1) , (3.117)

simplifies on energy shell to:
P+

ba

ba
( f 2

ba−1) , (3.118)
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because energy conservation in the S matrix elements means thatac= 0. Note that the factor in
(3.118) is, in fact:

P+
ba

ba
=

1

P−b −P−a
, (3.119)

andHλ contributes toS standard momentum functions. The external form factorfac≡ 1 for

ac= 0, and the squared form factorfλ in (3.118) is canceled by contributions fromH (1)
λ . Alto-

gether, the complicated effective HamiltonianHλ with form factors leads to a simple, standard
expression for the scattering matrixS (see Chapter5). Contrary to this, in bound state calcula-
tions, the full form ofHλ (including terms which do not conserve the free energy) is important.
In particular, the similarity form factorsfλ are the key to a well-defined bound state equation
for two effective fermions (see Chapter4).

Nevertheless, scattering processes are important and the lessons from the Feynman diagrams
are extremely useful. For example, comparing the scattering matrix calculated with the renor-
malized Hamiltonian with the corresponding relativistic Feynman diagrams may be used to fix
finite parts of Hamiltonian counterterms.

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



Chapter 4

Resolution of overlapping divergence
problem in bound-state dynamics of
fermions

4.1 Introduction

The development of quantum mechanics at the beginning of the 20th century was mainly fo-
cused on trying to understand the structure of matter. The two basic areas of investigation were
the description of atoms as bound states of electrons and nuclei, and the description of free
radiation which was used to observe this structure. The success of Schrödinger’s equation in
describing the hydrogen atom as a bound state of one proton and one electron was a basis for
further development. Further elements were added to the picture (most importantly, the descrip-
tion of the electron and proton as fermions), which allowed experimental results to be described
by nonrelativistic eigenvalue equations with great accuracy.

Today we view quantum mechanics as an approximation to the full description given by
QFT. However, it is still not fully understood how a QFT applies to bound states.

The first problem is that the width of the wave functions that solve a bound-state problem
depend on the coupling constant. For couplings as small as those in QED, wave functions do
not extend to large momenta and a nonrelativistic description may be consistent. This is not true
for large coupling constants – one of the reasons why our understanding of bound states in QCD
is complicated. The fact that the coupling constant at binding energy scales is large (bigger than
0.3) has two consequences. First of all, standard S-matrix computations based on perturbation
theory are no longer precisely valid and may only provide some motivation or starting point
for educated guesses. The description of bound states in strongly interacting theories is mainly
driven by phenomenology. The second effect of the wave function reaching high momenta is
that a bound state cannot be thought of as a state consisting of a fixed number of particles. If
large energy components are involved in the motion of bound-state constituents, the Heisenberg
uncertainty principle suggests that other Fock sectors with man more constituents will also be
important.

The second problem obscuring the connection between QFT and nonrelativistic quantum
mechanical models, is a complicated renormalization issue. Most of the developments in renor-
malization of relativistic quantum field theories has occurred in scattering problems, an it is not
clear to what extent similar approaches may be useful in the description of bound-states.

This chapter presents the derivation of the bound-state eigenvalue equation derived using
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RGPEP. It focuses on the readily accessible quantitative estimates that show the magnitude of
the difference between the convergent bound-state dynamics of two effective fermions and the
diverging dynamics of two bare fermions in the approaches based on the Tamm-Dancoff trunca-
tion in local QFT [51,52]. I start with the Tamm-Dancoff-like approach to local theory, because
it is more familiar. I then introduce the effective particle approach, with its new features exposed
through the contrast with the Tamm-Dancoff approach. Section4.3provides definitions of the
renormalized Tamm-Dancoff scheme in Subsection4.3.1, and the effective particle scheme in
Subsection4.3.2. Both approaches involve a universal procedure for obtaining a two-fermion
eigenvalue equation that can be compared with the nonrelativistic Schrödinger equation. This
universal procedure is calledreductionfor brevity. It is denoted by the symbolRand described
in Section4.3.3. Section4.4introduces a bare light-front Hamiltonian in Yukawa quantum field
theory that serves as a starting point for subsequent sections. The canonical Hamiltonian is
supplied with some regularization factorsr∆ and counterterms. Section4.5describes details of
the approach that treats bound states of fermions as if they could be viewed as made of two
bare fermions. This approach is calledapproach 1and encounters conceptual and calculational
difficulties in the large-momentum region that are removed by switching over to the approach
discussed in detail in Section4.6. In this section, I present the effective fermion approach,
calledapproach 2, comparing and contrasting it with approach 1. In approach 2, bound states
of fermions are treated as built from effective fermions of sizeλ−1. Conclusions are drawn in
Section4.7.

This chapter follows closely the description presented in an article co-authored with Głazek [2],
which described the example of a bound state of two effective fermions, coupled to massless
scalar bosons by Yukawa coupling. A number of details have been added (see especially Sec-
tion 4.4 and AppendixD). Quotations from the published material have been reworked in the
notation that is consistent with the other parts of this dissertation. I have often decided to use
verbatim quotations from Ref. [2], because I need to explain its content and I found it impossible
to shorten the original text without loosing clarity.

4.2 Critical aspects of bound-state dynamics of fermions

Nonrelativistic bound states

The notion of a bound state of fermions is based mainly on the examples of atoms and nuclei.
The common feature of these systems is that they arenonrelativistic. This means three things:
(1) Kinetic energies of the fermions are small in comparison to their rest mass energy; (2)
dominant interactions are not able to produce fast-moving fermions from the slow ones and
hence no significant large-momentum spin effects are generated; and (3) creation of additional
particles can be neglected and one can describe the bound states as built from a fixed number of
fermion constituents. These features are all related to the fact that the domain of large relative
momenta is not important in a bound states of two fermions, such as positronium or deuteron.
Their wave functions are self-consistent solutions to the nonrelativistic Schrödinger equation
H|Ψ〉= E|Ψ〉with HamiltonianH = H0+HI , whereH0 denotes the kinetic energy operator and
HI stands for the interaction operator. The matrix element〈12|HI |1′2′〉 is the quantum Coulomb
or Yukawa potential with a repulsive core, respectively. The ket|12〉 denotes a state of two
fermions labeled 1 and 2, with all their quantum numbers collectively denoted by these labels.
The self-consistency of this well-known picture means that thewave functionψ(1,2) = 〈12|Ψ〉
quickly vanisheswhen the relative momentum of fermions,~p = ~p1−~p2, becomes comparable
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with masses.

Description of hadrons

The success of the Schrödinger picture for bound states of fermions extends also to quarks.
This is reflected in theconstituent quark model (CQM)(see e.g. [53-60]1) used in classifica-
tion of hadrons in the particle data tables [61], and providing a benchmark for more advanced
approaches. However, the self-consistency of the nonrelativistic picture is much harder to main-
tain for bound states of up, down, and strange quarks, than for systems such as positronium and
deuteron. This is because the hadronic wave functions tend to have considerable components
with |~p| comparable to or exceeding the reduced massµ for the quarks, and the domain of
large relative momentabegins toplay a significant role in the binding mechanism. One is
also interested in the description of hadrons moving with speeds very close to the speed of
light. Since thefast-moving hadronsand their interactions cannot be consistently described
within a purely nonrelativistic Schrödinger framework, theorists use the Feynmanparton model
in that case [62,63,64]. Unfortunately, the binding mechanism of partons is not explained the
parton model. As alternative to these models, one can approach the issue of bound states of
fermions usingquantum field theory, where the corresponding operatorH appears to contain all
the relevant information about relativistic effects in the domain of large relative momenta of the
constituents.

Problems with applying QFT to hadrons

The relativistic description of bound states of fermions in QFT, especially in QCD in the case of
light quarks, makes the conceptual difficulties with the constituent picture even greater than in
the simple models. In the equationHQCD|Ψ〉 = E|Ψ〉, all factors remain unknown. This status
of the theory partly originates in the large-relative-momentum domain in the motion of virtual
particles. This is illustrated by the following examples. The first example is that local QFTs lead
to canonical interaction HamiltoniansHI that change individual bare particle energies by unlim-
ited amounts (spin-dependent factors grow with momentum transfers). The large-momentum
range is enhanced and leads to divergences, invalidating the concept of a nonrelativistic picture
entirely unless special conditions, such as an extraordinarily small coupling, are met. An-
other example is that the interactions create new bare particles and this effect contributes to
the boosting of bound states, which implies that the motion of bound states is associated with
multiparticle components and thead hoclimitation to a fixed number of bare constituents is
no longer consistent in relativistic QFTs. A third example is that even the state with no con-
stituent particles, i.e., the ground state of a theory, or vacuum, proves to be so complicated that
no approximate solution of verifiable accuracy has been conceived yet, although manyAnsätze
have to be and are employed in practical attempts. In these circumstances, the main theoretical
approach to bound states of quarks (mainly heavy ones that move slowly) is based on thelattice
version of QCD, and great progress has been achieved in numerical studies of the theory that
way [65-69]. Nevertheless, it appears that a quantitative explanation of how the constituent
picture with a simple Hamiltonian could be an approximate solution remains a conceptual and
quantitative mystery. No detailed constituent wave function picture for relativistic field quanta
in Minkowsky space has been theoretically identified or is expected to readily follow from the

1These references are provided as examples of most cited literature on the subject.
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lattice approach alone. The question of convergence of the binding mechanism in the domain
of large relative momenta of constituent particles remains open.

This chapter provides some numerical arguments that the required constituent picture with
well-controlled large relative momentum domain may become in principle identifiable if one
provides a precise definition of the constituents as effective particles, in distinction from the
bare quanta of the local theory. Thus, the process of solving a theory is arranged in two steps,
which is typical in lattice approach[65] or sum rules[70]. In the first step, one derives an
effective dynamics, and, in the second step, one attempts to solve the effective theory instead of
dealing directly with the original degrees of freedom. Here, one derives the effective fermions
of sizeλ−1 using a suitable boost-invariant perturbative renormalization group procedure for
their Hamiltonians. The procedure is carried out up to second-order perturbation theory, and
the resulting dynamics is compared with the standard picture, where the finite scaleλ is ab-
sent. In distinction from the diverging bare dynamics, the effective one comes out limited to the
momentum range given byλ, and this scale is reduced using differential equations to the scale
most suitable for description of bound-states properties in terms of a fixed number of the cor-
responding constituents. In the renormalized Hamiltonian picture, the pointlike bare particles
of the local theory correspond toλ = ∞ and their dynamics heavily involves large momenta,
and multiparticle states, for any finite value of the coupling constant. However, the situation is
completely changed whenλ is lowered to values comparable to the bound-state masses. The
binding is described by a new Schrödinger equation,Hλ |Ψ〉 = E|Ψ〉, where the Hamiltonian,
Hλ = Hλ 0 + Hλ I , is written in terms of creation and annihilation operators for the effective
particles,b†

λ andbλ for fermions,d†
λ anddλ for anti-fermions, anda†

λ andaλ for bosons. This
effective particle picture is discussed in this thesis, and in this chapter in the context of bound
states.

Bound states in QED (small coupling constant), nuclear theory (form factors), and QCD

The key physical reasons for the hope that theeffective constituent picturedoes emerge from
QFT can be understood by recalling what happens in the well-known cases of atoms (or positro-
nium) and nuclei (or deuteron). These systems can be understood in terms of constituents for
quite different reasons. The explanation of the difference is limited below to the positronium
and deuteron, but the two examples are sufficient to make the point that concerns all bound sys-
tems of fermions in QFT. In the Schrödinger quantum-mechanical picture of positronium, the
coupling constant that appears in the Coulomb potential is very small in comparison to 1, i.e.,
e2/4π = α ∼ 1/137. Therefore, the interaction produces quite small binding energy, of order
α2µ/2, and thee+e− bound-state mass is dominated by 2me. The relative-motion wave function
is proportional to(α2µ2 + |~p|2)−2, independently of the fermion spins. When one extends this
picture by embedding it in QED, one finds out that the initial wave function is so small for large
momenta~p, that no significant correction is able to emerge from that region and alter the origi-
nal picture with the Coulomb potential. This is found by expanding the theory term by term in
powers ofα around the initial Schrödinger picture. The interaction linear inα (Coulomb force)
is sufficient to describe the main features of fermionic bound states in QED, and higher powers
of α are not important for theoretical understanding of the bulk of the bound state structure. Al-
though the integrals in the corrections run over the momentum range that formally extends far
beyondµ, the coupling constant is too small for the relativistic fermion spin factors and particle
creation processes to produce any major modifications of the leading approximation.

In the meson-exchange models of the deuteron binding mechanism, the analogouscoupling

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



4.2 Critical aspects of bound-state dynamics of fermions 51

constant is three orders of magnitudelarger than in QED . If one attempted to use QFT to
derive the Yukawa potential using the same strategy as in QED, and to calculate corrections, the
perturbative procedure would fail. The interactions would accelerate nucleons to the speed of
light almost immediately on the bound-state formation time-scale, many new particles would be
created, and the large momentum relativistic “corrections” would dominate the “leading” non-
relativistic terms. One could then ask why the famous one-boson-exchange (OBE) potentials,
such as the Yukawa potential with a core, could still be used in phenomenology of relativistic
nuclear physics and work self-consistently in the nuclear bound-state equations anyway. What
saves the picture of a fixed number of relatively slow nucleons interacting through exchange of
mesons from serious inconsistency when one includes the elements of QFT, is that the interac-
tions responsible for emission and absorption of mesons by nucleons contain form factors that
limit momentum transfers to values so small that the interactions are effectively weak, much
weaker than a change ofα in QED by the factor 1000 would imply. Consequently, the binding
energy is much smaller than the sum of two nucleon masses, e.g., about 2.2 MeV for deuteron.
The wave functions of such relativistic nuclear physics picture are not overwhelmingly extend-
ing into the large-relative-momentum domain because the form factors eliminate coupling to
that region, and the nonrelativistic Yukawa potential with a repulsive core is not invalidated
by huge corrections. It could not be so with bare pointlike fermions in local QFT, but it does
work in the phenomenological picture of effective particles with the form factors. Incidentally,
this example is not intended to suggest that nucleon dynamics should be completely derivable
directly from a local QFT that ignores the existence of quarks. A scenario for how to derive
the effective nuclear physics picture from QCD is discussed in [2]. Nevertheless, the nuclear
physics picture does indicate that an effective particle dynamics may involve large coupling
constants in potentials that resemble perturbative second-order interactions with form factors.

In QCD, neither of the schemes can apply separately. On the one hand, the effective cou-
pling constant in the constituent QCD picture cannot be as small as in QED, because QCD is
characterized by asymptotic freedom, or infrared slavery. This means thatthe effective cou-
pling strength is expected to growwhen the scale of relevant momentum transfers decreases.
The coupling constant is already on the order of 0.1 at transfers on the order of 100 GeV and
it may be much larger for transfers on the order of nucleon masses. Therefore, the effects that
have marginal size in the eigenvalue problem for approximateHQED, such as spin splittings, are
expected to be much larger and more important for understanding eigenstates ofHQCD, and the
initial approximation is not as simple as in QED. On the other hand,one cannot freely insert
form factors into the local Lagrangian for quark and gluon fields because it would spoil the
local gauge symmetry structure. The contact with QCD would be irreversibly lost.

Similarity renormalization group procedure and RGPEP

The situation is changed when QFT is approached using the idea ofsimilarity renormaliza-
tion group procedurefor Hamiltonians [3], especially in the case of QCD [15], and when one
combines the similarity idea with the concept of form factors in the Hamiltonian interaction
vertices for effective particles [45,46]. Initially, the coupling constant is small due to asymp-
totic freedom and one can think of using the small coupling constant in canonical QFT to solve
the renormalization-group equations forHλ using a perturbative expansion. The method avoids
small energy denominators in the perturbative calculation entirely and the nonperturbative part
of the dynamics remains untouched in the perturbative calculation ofHλ . That way one de-
rives effective-particle Hamiltonians that involve vertex form factors of small widthλ in the
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interaction terms. One can have sizable couplings inHλ with smallλ, as required by infrared
slavery, without losing control over the size of corrections to the leading constituent picture
in diagonalizingHλ . The spectrum of such Hamiltonians can be sought numerically because
the form factors limit the range of momenta strongly enough for a discrete computer code to
cover the pertinent region, as in the nuclear physics case discussed above. This idea has al-
ready been studied qualitatively in a simple numerical matrix model [71] using Wegner’s flow
equation [72,73] (and its generalizations) and in [47] using RGPEP. The more detailed effective
particle calculus used in the present work in the case of Yukawa theory, is already known to
produce asymptotic freedom inHλ for QCD [74]. The new approach has been also extended to
the whole Poincaré algebra [39] in QFT.

Scope of discussion

This chapter describes numerical estimates of the orders of magnitude of the interactions that
appear in QFT in the bound-state dynamics of two effective fermions of sizeλ−1. Our discus-
sion is based on and quotes [2]. Yukawa theory is used to avoid complications related to gauge
symmetry (see, for example, problems described in [75, 76] and their resolution [77]) while
one still preserves some of the singular large-momentum components in the spinor factors that
characterize fermions. The well-known issue of triviality in Yukawa theory is irrelevant here
since our goal is to estimate the size of corrections in the bound-state dynamics in an effective
theory, rather than in the ultraviolet (UV) dynamics of the initial QFT. The Yukawa example
serves only as a source of typical UV factors that QFTs provide anyway, no matter if the theory
is trivial, asymptotically free, or otherwise.

The key qualitative question is by how much the HamiltonianHλ derived in QFT might dif-
fer from familiar models, especially from the nonrelativistic Schrödinger picture with a Yukawa
potential (or a Coulomb potential in the case of exchange of massless mesons), for given values
of α andλ. Another question is related to the fact that the exact solution of renormalization
group equations forHλ and subsequent exact diagonalization ofHλ should lead to spectra that
are independent ofλ. However, when one calculatesHλ in perturbation theory of low order,
such as the second order that characterizes the Coulomb and Yukawa potentials, the depen-
dence onλ must appear. Bound-state energies may depend onλ whenλ is made too small or
α is made too large. The question is how large is the residualλ dependence of second-order
corrections to the Coulomb-like picture. Another question is how large is a range of values of
α andλ that can be self-consistently (i.e., without significantλ dependence) reached in lowest
orders of perturbation theory. The second question concerns two cases of perturbation theory.
One perturbation theory is forHλ itself in the renormalization-group part of the calculation.
The other perturbation theory is for the eigenvalues and wave functions in the bound-state prob-
lem expanded around the Coulomb-likeAnsatz. Both questions are addressed in the following
sections by describing estimates (found in [2]) of the size of those corrections which are most
important for large momenta, and which would lead to divergences in the absence ofλ. The
results imply that the most dangerous corrections that might diverge in the absence ofλ turn out
to be quite small even for sizable coupling constants.
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4.3 Distinction between the Tamm-Dancoff approach and
effective-particle approach

This section describes two light-front Hamiltonian approaches to the bound-state dynamics
that were considered in [2], the renormalized Tamm-Dancoff approach (approach 1), and the
effective-particle approach (approach 2).

4.3.1 Renormalized Tamm-Dancoff approach

This approach is represented by the following diagram,

L 0→ : Hcan :
i→ : H∆

can : +X∆ ii←→ solve . (4.1)

(0) The initial step on the left denotes a canonical derivation of a field theory Hamiltonian
from its Lagrangian, quantization, and normal ordering with respect to the bare vacuum state,
and dropping all diverging terms on the basis of hindsight that the normal ordered Hamiltonian
will eventually contain counterterms of the same structure.

(i) The next step is regularization. To remove the artificial dependence of observables on
regularization, one has to add new terms to the Hamiltonian (called counterterms and denoted
X∆) that also depend on the regularization. The regularized Hamiltonian :H∆

can : +X∆ is denoted
by H∆.

(ii) The last arrow indicates solving of the eigenvalue equation forH∆. A two-step procedure
is used.

Step (a). First one finds eigenstates ofH∆ whose dominant component for vanishingly
small coupling constants is equal to one bare fermion. These states represent what one could
call a physical fermion. The solution is found from the eigenvalue equation for the wholeH∆

by reducing this equation with the help of operationR to an equivalent equation for the Fock
component with one bare fermion. If one requires the eigenvalue to be finite, one has to include
in X∆ a mass counterterm of a calculable form.

Step (b). Then, one makes a reductionR of the eigenvalue problem forH∆ to a two-bare-
fermion subspace, to find an eigenstate of the HamiltonianH∆ that is dominated by a pair of
bare fermions for infinitesimally small coupling constants. The parameters in the resulting two-
fermion eigenvalue problem are expressed in terms of the physical fermion mass found in step
(a) above. It turns out that the calculated eigenvalues still depend on the cutoff (some diverge if
∆→ ∞), although the individual matrix elements of the reduced two body Hamiltonian do not
depend on the cutoffs once one includes mass counterterms calculated in step (a). Therefore,
there is a problem of how to construct counterterms that would remove the∆-dependence from
physical results [78].

4.3.2 Renormalized effective particle approach

The procedure consists of three steps that can be represented by the diagram:

L 0→ : Hcan :
i→ : H∆

can : +X∆ Uλ←→ Hλ
iii→ solve (4.2)

The steps (0) and (i) are the same as before except that one works with the bare creation and
annihilation operators for efficient bookkeeping for Hamiltonian terms at all times, instead of
storing a huge number of selected matrix elements ofH∆.
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(ii) This step, marked withUλ in the diagram, is made using RGPEP [45, 46, 74]. Hamil-
toniansHλ are expressed in terms of the effective-particle creation and annihilation operators
that depend on the “width” parameterλ. λ ranges from∞ in H∆ to a finite value on the order of
bound-state masses in the effective constituent dynamics. The HamiltonianHλ cannot change
invariant masses of effective-particle Fock states by more than aboutλ in a single interaction.
Thus, the emission of effective bosons by effective fermions is possible only if the associated
kinetic energy change of relative motion of the particles does not exceedλ. Consequently, when
is λ small, Fock sectors with different numbers of effective particles are coupled weakly even
for sizable coupling constants, as in the nuclear physics example discussed on page50.

(iii) This step is analogous to step (ii) in approach 1 and amounts to solving the eigenvalue
problem for effective HamiltonianHλ . The key difference, however, is that when one works
using the basis of effective particles in the Fock space, states with two effective fermions couple
only to states with similar relative momenta. Therefore, the large relative momentum remains
suppressed, and it can be described using perturbation theory without assuming that the cou-
pling constant is very small. Thus, when one solves the eigenvalue equation forHλ , one can
introduce a new perturbation theory for the reduction operatorR, expanded in powers ofHλ I .
This gives an equivalent Hamiltonian that acts only in the dominant Fock space sectors. There
are two steps to do, as in approach 1.

In step (a), one first considers eigenstates dominated by one effective fermion, which de-
fines a physical mass of a physical fermion in approach 2. Next, in step (b) , one finds an
equation describing bound states of two effective particles.The parameter λ is the key to the
procedure. Its value determines whether derivation of the effective HamiltonianHλ and its
reduction by the operationR to a model subspace Hamiltonian, denoted byHR , is possible in
perturbation theory. The smallerλ, the simpler the approximate solutions for bound states of
effective fermions, in the sense that they tend to reduce to the dominant effective Fock sector.
But if λ is too small, step (ii) of the derivation ofHλ in perturbation theory loses accuracy (the
perturbative integration of renormalization-group equations begins to significantly cut into the
bound-state dynamics). Therefore,λ cannot be lowered too far using perturbation theory for
Hλ . The optimal choice ofλ is the one that combines the simplest perturbative expansion for
Hλ with the least complicated computer diagonalization ofHλ . The main criterion for choos-
ing the right range forλ is that the calculated observables are not sensitive to variation ofλ over
that range (see also [47]).

The final comment concerns Refs. [79-82], where a different a bound-state calculus has
been developed using coupling coherence in second-order perturbation theory for Hamiltonian
matrix elements, also in the similarity scheme but without the constraint to a boost-invariant
unitary rotation of creation and annihilation operators (see also [83-85]). In distinction from
these works, approach 2 is not based on the coupling coherence because no coherent structure
is knowna priori in the region of smallλ, far from the initial canonical structure. Instead, one
uses a perturbative expansion for the effective-particle renormalization-group flow in terms of
a suitably defined coupling constant and tries to find out the relevant structures in a prescribed
basis, in which the expansion in powers of the coupling constant may be extrapolated to its
physical values. One should stress, however, that the renormalized Tamm-Dancoff approach in
Ref. [4], enriched with similarity and coupling coherence [86,80,81], still remains an alternative
for nonperturbative studies.
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4.3.3 Reduction procedure

The following scenario occurs several times in the next sections. There is an eigenvalue equation
for a HamiltonianH = H0 +HI ,

H |ψ〉= E |ψ〉 , (4.3)

which is too large to solve exactly on a computer in the sense that the number ofa priori
important basis states is infinite. One looks then for an equivalent Hamiltonian that acts only in
a limited subspace of states. One way of constructing the model subspace dynamics is to use
the transformationR [49,44] (details of the transformation are given in AppendixJ.2).

The general idea is that one denotes the projection operator on the chosen subspace of the
whole Fock spaceF by P̂, and the projector on the complementary space, 1− P̂, by Q̂. If the
interaction HamiltonianHI is small (in the sense that it only weakly couples states from the
subspacêPF to states in the subspacêQF), then one can calculate an operatorR that produces
eigenstates ofH from eigenstates of a new HamiltonianHR that has eigenstates contained in the
subspacêPF. The transformationR leads to the following expression for the HamiltonianHR

acting in the subspacêPF, expanded in powers of the interaction HamiltonianHI (cf. Eq. (J.7)).

〈i|HR| j〉 = 〈i|
(

P̂HP̂+
1
2

P̂HI
Q̂

E j −H0
HI P̂+

1
2

P̂HI
Q̂

Ei−H0
HI P̂+ . . .

)
| j〉 . (4.4)

Note that the HamiltonianHR does not depend on the eigenvalues ofH, but only on the eigen-
valuesEi of H0, H0 |i〉= Ei |i〉. In particular, one can defineH0 in conjunction with the subspace
P̂F so thatHI = H−H0 is as weak as one can get, whilst simultaneously retaining control over
the spectrum ofH0.

4.4 Canonical light-front Yukawa theory

In this section, I present the derivation of the canonical light-front Hamiltonian of fermions
of two kinds interacting through a Yukawa coupling with scalar bosons. This is the common
starting point for both approaches (see Sec.4.3.1 and 4.3.2) to a two-fermion bound-state
dynamics. I present here only key steps, stressing the places where this theory differs from the
scalarφ3 theory introduced in Chapter3; details are given in AppendixD.

4.4.1 Classical Lagrangian density

The starting point is the classical field theory with Lagrangian density:

L = ψ f

(
i/∂−m−gφ f

)
ψ f +

1
2

(
∂µφ f ∂µφ f

)
, (4.5)

whereψ f is a doublet of fieldsψ f = (ψ1,ψ2). My aim in Sections4.5 and4.6 is to analyze
the bound state of two different fermions. I introduce the doublet of fermion fields to avoid
anti-symmetrization of expressions, and thus to simplify the model.

The Lagrangian consists of the kinetic term for two fermion fields of massm, the kinetic
term for massless scalar boson fieldφ f , and a pointlike Yukawa interaction of fermions with
bosons. Note that this interaction has a Yukawa form, in the sense that it involves the scalar
field φ and a product of fermion fieldsψ f ψ f . But, because the scalar field is massless, one
can expect that, if interaction of fermions can be described by some kind of nonrelativistic
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potential, it would be a Coulomb rather than a Yukawa potential. The first parenthesis in (4.5) is
diagonal in fermion indexes 1,2. This means that this Lagrangian does not couple two families
of fermions directly: in perturbation theory they are coupled only in orders equal to or higher
than 2, for example, through boson exchanges.

Euler-Lagrange equations are:(
i/∂−m−gφ f

)
ψ f = 0 , (4.6)

∂µ∂µφ f = −gψ f ψ f . (4.7)

Using projection matricesΛ± = 1
2γ0γ±, one can obtain fieldsψ f± = Λ±ψ f , and:

i∂+ψ f− =
(

i∂⊥α⊥+mβ
)

ψ+ +βgφpψ+ . (4.8)

This is a constraint equation and has to be explicitly fulfilled. Accordingly, the full fieldψ f

does not have a simple, unconstrained Fourier expansion.
One can introduce free fieldsψ. These fields consist of arbitraryψ+ components and ofψ−

components fulfilling the free constraint condition:

ψ− = ψ f−(g = 0) =
1

i∂+

(
i∂⊥α⊥+mβ

)
ψ+ . (4.9)

The full free fieldψ is2:
ψ = ψ−+ψ+ . (4.10)

The energy momentum tensor can be re-expressed using the relation

ψ f = ψ+
1

i∂+ βgφψ+ . (4.11)

The part of this expression with the inverse of the longitudinal derivative∂+, leads to the so
called “sea-gull” terms below, Eq. (4.15).

One can now state the canonical Yukawa Hamiltonian in terms of the free fields:

H = H0 +HY +H+ , (4.12)

H0 =
1
2

∫
d3x : φ

(
−∂⊥2

)
φ : + : ψγ+−∂⊥2 +m2

i∂+ ψ : , (4.13)

HY = g
∫

d3x : ψψφ : , (4.14)

H+ = g2
∫

d3x : ψφ
γ+

2i∂+ φψ : . (4.15)

: : indicates normal-ordering.

4.4.2 Bare Hamiltonian; regularization.

One can now substitute for each of the fields its Fourier expansion, thereby introducing bare
creation and annihilation operators (cf. AppendixB). I list below only the terms that re-occur
in later sections.

2 Note, however, that the mass parameter enters the free Euler-Lagrange equations, and so the fieldsφ andψ
depend on the mass.
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4.5 Tamm-Dancoff approach – bound states of two bare fermions 57

All the interaction terms require an ultraviolet cutoff∆. In normal ordering, the three-
particle creation and three-particle annihilation terms (similar to those in Eq. (3.65)) are dropped.
This can be seen as introducing a small cutoff on thep+ momentum of each particle. However,
for the Yukawa theory, a small-x cutoff is also needed after these terms have been dropped,
irrespective of whether the fermions are massive or not. This is due to two reasons. First,HY

involves spinor factorsuu. On the light-front these involvep+ momentum of a fermion in the
denominator (cf. Eq. (B.60) in AppendixB.4), and this leads to divergences in integrations
over the fermionp+. Second, the seagull term involves the exchangedp+ momentum in the
denominator, because of the∂+ in Eq. (4.15).

The full canonical regulated Hamiltonian for this theory is thus:

H∆ = H0 +H∆
Y +H∆

+ +X∆ , (4.16)

whereX∆ is an unknown counterterm to be calculated from RGPEP equations.
The free Hamiltonian is

H0 =
∫

[k]
k⊥2

k+ a†
kak +∑

σi

∫
[p]

p⊥2 +m2

p+

(
b(i)†

pσ b(i)
pσ +d(i)†

pσ d(i)
pσ

)
(4.17)

Here,i indicates the kind (or “flavor”) of fermion (1 or 2);σ is the fermion polarization; anda†,
b† andd† are boson, fermion and anti-fermion creation operators, respectively.

The Yukawa interaction term (4.14) is

HY = g∑
σηi

∫
[pkl]2(2π)3δ3(pcreated− pannihilated)×

×
[
a†

kb(i)†
pσ b(i)

lη upσulη +a†
kd(i)

pσb(i)
lη vpσulη−a†

kd(i)†
lη d(i)

pσvpσvlη +

+b(i)†
pσ b(i)

lη akupσulη +b(i)†
pσ d(i)†

lη akupσvlη−d(i)†
lη d(i)

pσakvpσvlη
]
r∆δ . (4.18)

This expression contains terms that can cause the following transitions: fermion into fermion+boson
(boson emission from a fermion), fermion+boson into fermion (boson absorption on a fermion),
analogous transitions with for anti-fermions, fermion-anti-fermion annihilation into a boson and
boson decay into fermion-anti-fermion pair.

r∆δ is an ultraviolet and small-x regulator:

r∆δ = exp

(
−κ2

∆2

)
rδ (x1) rδ (x2) . (4.19)

In this expression,κ⊥ indicates the relative transverse momentum of the two particles created
or annihilated, andx indicates the relative longitudinal momentum. I leave thex regulator
unspecified, requiring only that it cuts off smoothly anyx smaller thanδ. The seagull term does
not contribute to the bound-state calculation described below.

4.5 Tamm-Dancoff approach – bound states of two bare
fermions

This section reviews the renormalized Tamm-Dancoff procedure for two-fermion bound states.
I begin by examining the single-fermion eigenvalue problem, and then proceed to the two-
fermion case.
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4.5.1 One-fermion eigenstates

The one-fermion eigenvalue equation is obtained by assuming that the coupling constant in the
theory is infinitesimally small and the dominant part of the eigenstate is provided by a single
bare-fermion Fock state. The quantum numbers of the lowest-mass eigenstate correspond by
definition to one physical fermion associated with the fermion field in the initial Lagrangian.
When the coupling constant is no longer infinitesimally small – it is made finite and grows – the
eigenvalue equation cannot be solved exactly with currently known mathematical methods, and
one has to investigate results that follow from various attempts to find approximate solutions.
One such attempt is made by reducing a cutoff dynamics to the one-bare fermion Fock sector
for finite coupling constants also. Here, the projection operator in the operatorR (see Sec.4.3.3

and AppendixJ.2) has the formP̂ = ∑σ
∫
[p]b(1)†

p,σ |0〉〈0|b
(1)
p,σ. For finite cutoffs and sufficiently

small coupling constantsg, one uses expansion in powers ofg to evaluate the corresponding
HamiltonianHR. Up to orderg2, this leads to an equationHR|k〉= P− |k〉, with

P− =
k⊥2 +m2

∆
k+ +Xf f =:

k⊥2 +m2
f

k+ , (4.20)

wherem2
∆ results from emission and re-absorption of bosons andXf f is contributed by the

counterterm proportional tob†b. Sincem2
∆ is a diverging function of∆, Xf f has to be adjusted

to remove this effect. Note thatm2
f should not, and does not, depend on the fermion momentum

componentsk+ andk⊥ even in the presence of regularization (cf. discussion in Sec.3.2.6).
The result (4.20) for m2

∆ requires a counterterm of the form:3

X2 =
2

∑
i=1

∑
σ

∫
[p]b(i)†

pσ b(i)
pσ

1
p+

g2

16π2

[
∆2

4

∫
dx

1
x

r2
δ +4m2 log

∆2

m2 +C

]
, (4.21)

where the constantC is a finite part of dimensionm2. This condition removes∆-dependence
from the physical fermion massmf in the limit ∆→ ∞.

4.5.2 Two-fermion bound states

The reduction procedure described in Section4.3.3can be used to reduce the eigenvalue equa-
tion for H∆ to a two-bare-fermion Fock sector. This employs a projection operator:

P̂ = ∑
σ1σ2

∫
[p1p2]b

(1)†
1 b(2)†

2 |0〉〈0|b(2)
2 b(1)

1 , (4.22)

Note that the two fermions are selected to be of different kinds. This leads to an equation for an
eigenstate ofHR, which can be written as:

|Pσ〉=
∫

[p1p2]P+(2π)3δ3(P− p1− p2)φσ(p1, p2)b
(1)†
p1 b(2)†

p2 |0〉 . (4.23)

3In this thesis I include a regulating factor for each created particle. This introduces regularization in terms with
different number of particles in a unified way. For example, in each Yukawa vertex there is a factor exp(−2κ2/∆2).
However, in the original paper [2] on which this chapter is based, corresponding regularization factors were chosen
to be exp(−κ2/∆2). Therefore, for example, the quadratically divergent part of (4.21) differs by a factor 2 from
the one shown in [2].
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a b c

5

3

1 2

4

2
5

1

3 4

a b c

(b)(a)

Figure 4.1: Two kinds of terms in one-boson exchange potentials. Following [74], the initial
(rightmost), intermediate, and final (leftmost), states are denoted byc, b, anda, respectively.
For example, in diagram(a), p+

ba = p+
1 , p+

bc = p+
4 , ba = M2

2+5−m2, bc = M2
3+5−m2, and

q+ = p+
5 .

The eigenvalue equation can be then written in terms of the two-body wave functionφσ(p1, p2)≡
φσ(~k) (whereσ denotes spin quantum numbers of both fermionsσ = {σ1,σ2}; for a definition
of k3 that forms~k together withk⊥, see AppendixB.2.1):

~k2

mf
φσ(~k)+∑

σ′

mf

(2π)3

∫
d3k′√
EkEk′

vOBE(σ,σ′,~k,~k′)φσ′(~k′) =
M2

f ull −4m2
f

4mf
φσ(~k) , (4.24)

whereEk = (~k2+m2)1/2 and the potential kernelvOBE corresponds to the terms shown in Figure
4.1(discussed below).4

Note the massmf in Eq. (4.24) is the physical fermion mass obtained from the earlier
reduction to one-bare-fermion space, Eq. (4.20). Expanding the bare massm in the integration
measure factor(E1E2)−1/2 and potentialvOBE in a series of powers ofg aroundmf , leads to
an equation featuring only the physical massmf . In this way the bound-state dynamics for
two bare fermions is related to a physical fermion mass parameter. This step connects the bare
fermions in the two-body problem with the physical fermion obtained in the one-body reduction
discussed in Section4.5.1.

In the discussion of the two-fermion eigenvalue equation below, I denote the single-fermion
mass eigenvaluemf by m (i.e. I drop the subscriptf ) for the purpose of simplification. The
two-fermion bound-state massM f ull can be rewritten asM f ull = 2m−EB. WhenEB�m, the
eigenvalue takes the form(M2

f ull −4m2)/4m=−EB+E2
B/4m≈−EB. Thus, the eigenvalue on

the right-hand side of Eq.(4.24) can be thought of as the binding energyEB.
Since the regulator functionr∆ respects the kinematical boost invariance of the light-front

scheme, this equation is independent of the total momentum of the two fermions. There is also
no explicit∆-dependence in the matrix elements of the potentialvOBE in the limit ∆→ ∞:

lim
∆→∞

vOBE(σ1σ2σ3σ4~k~k
′) = − πα

2m2

u1u2u3u4

q+

(
p+

ba

ba
+

p+
bc

bc

)
Fig.4.1a

+

+the same|Fig.4.1b , (4.25)

whereα = g2/4π (see caption to Fig.4.1and AppendixA.3). The spinor matrix elements are:

4 Choosing two different fermions eliminatess-channel terms, that could occur in the bound state equation for

a fermion and an anti-fermion of the same kind. However, even here, the term would be less important,
because of a denominator of order of fermion masses.
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u1u2 =
1

√
x1x2

χ†
1[m(x1 +x2)−σ3σ⊥(x1k⊥2 −x2k⊥1 )]χ2, (4.26)

whereχ† = [1,0] or [0,1], depending on the fermion-spin projection on thezaxis (see Appendix
B.4).

The potential (4.25) is a complicated, nonlocal function of fermion momenta. However, in
the region with both momentak,k′�m, it simplifies to the well-known Coulomb potential (see
AppendixJ.1),

vCoulomb=−4πα
1

(~k−~k′)2
. (4.27)

Unfortunately, this heuristic result is not meaningful as the region of the large relative mo-
menta of the fermions introduces important corrections. In Eq. (4.25) one can see that, when
one of the relative momenta (k or k′) is much bigger than the other, and much bigger than the
fermion mass, the spinor factors become proportional to the larger of the two momenta. For
example, ifk′� k,m, one obtainsuu∼ k′, and two such factors compensate the denominator
that grows ask′2 [87]. The potential becomes a function ofx1 andx2, being a constant in the
transverse momentum directions. A constant potential in the transverse momentum space is a
two-dimensionalδ-function potential in configuration space. Such potentials with a negative
coefficient lead to bound states of infinite negative energies in the nonrelativistic Schrödinger
equation; the light-front transverse dynamics is of this type. One could try to rely on the reg-
ulatorsr∆ with a finite ∆ to resolve the problem: this would correspond to smearing of theδ
potential in position space. The eigenvalues of the equation would then depend on∆. One could
naturally try to make the coupling constantg depend on∆. However, the interaction is specific
to the Fock sector under consideration, and is much more complicated than aδ-function itself,
due to the presence of the additionalx-dependent factors. It is unlikely that a change ofg to
a function of∆ can remove the cutoff dependence from all eigenvalues. Seeking subtractions
cannot be based on exact solutions, because we do not know them.

The two-body equation as it stands is not convergent in the large-relative-momentum do-
main, and the cutoff dependence invalidates the nonrelativistic approximation as a means for
seeking a conceptually satisfying solution of the divergence problem, especially for sizable
coupling constants.

The calculation described below illustrates how the overlapping divergence problem arises
in approach 1 in a quantitative way. The potential in the nonrelativistic region ofk andk′ small
in comparison tom has the Coulombic form. One can ask therefore with what accuracy Eq.
(4.24) can be approximated by a Schrödinger equation with the Coulomb potential (given in
AppendixJ.1). The potential can be rewritten in the form:

vOBE = vCoulomb+∆v (4.28)

and corrections induced by∆v estimated in perturbation theory. The Coulomb potential does not
depend on spins of the interacting fermions. Thus, in zeroth order of the bound-state perturba-
tion theory, there are four degenerate states with the lowest massM and identical momentum-
space wave functions: a triplet of spin-1 states, and a singlet of spin 0. For details of the
degenerate perturbation theory for this case see AppendixD.

To estimate the first-order energy correction, one has to find eigenvalues of the 4×4 matrix
of matrix elements〈ψ0i |∆V

∣∣ψ0 j
〉
, wherei and j refer to the different spin configurations. The

eigenstates of this matrix have the spin structure:(↑↓+ ↓↑), (↑↓ − ↓↑), ↑↑ and↓↓. The lowest
mass eigenstate is(↑↓ − ↓↑). The fist-order correction to the Coulomb energy for this state
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varies between numbers of the order of−6× 10−5E0 for α = 0.01 to−0.1E0 for α = 0.65.
Note thatα is also present in the wave functionφ0 and the results are not connected by a
straightforward multiplication by the ratio of the coupling constants, although both results are,
indeed, small. For anα greater then 0.6, the first-order correction would remain relatively
small, but the second-order corrections would become unacceptably large. Accordingly, anα
significantly larger then 0.6 is not discussed here.

In the second order, a convergence problem in the domain of large relative momenta of
fermions destroys consistency of the naive perturbative procedure around a nonrelativistic ap-
proximation. To make it transparent, one can introduce a number of simplifications and isolate
the origin of corrections that grow with∆ without worrying about details of secondary impor-
tance. Importantly, the Coulomb basis functions have quickly falling-off tails in momentum
space. The tails are still small but greatly enhanced by first-order corrections, and the second-
order correction already involves matrix elements that diverge with the cutoff∆.

To see the origin of the overlapping large-relative-momentum divergence in the second-
order energy correction, one needs to analyze matrix elements of the type:

∆E(2) = 〈φ0|∆v
1

E0−H0−VCoulomb
∆v|φ0〉 . (4.29)

Such elements involve integration over four relative momenta of fermions: the leftmost wave
function argument denoted bykl ; the momentum of states between the left∆v and 1/(E0−H0−
VCoulomb), denoted bypl ; the momentum between the operator 1/(E0−H0−VCoulomb) and right
∆v, denoted bypr ; and the argument of the right wave function, denoted bykr . The matrix
element can be split into a sum of 24 parts, with each part distinguished by indicating whether
each of the four integrated momenta is greater or smaller than the fermion mass,m.

Since the Coulomb wave functions strongly limit their arguments, a part withkl andkr large
makes a very small contribution compared to the part withkl andkr small. Therefore, one looks
for important contributions, assuming thatkl andkr lie within several widths of the Coulomb
wave functions. Anad hocnumber used in Ref. [2] was 4αm.

Moreover, there is no bound-state wave function limiting the intermediate momentapl and
pr , and integrals over them extend up to the cutoff∆→ ∞. Eq. (4.26) shows that, for large
momenta, the spin-flip part of the potential dominates other parts. This dominating part is
selected here and denoted by∆v↓↑; the fermions have opposite spin orientations and both have
their spins flipped in the interaction. For the purpose of estimating the order of magnitude of
the large-momentum spin-flip contribution,pl and pr are considered larger thanm, and(E0−
H0−VCoulomb)−1 is replaced by−1/H0, neglecting terms that would vanish whenα→ 0. The
resolvent then becomes diagonal in momentum space, andpl = pr are commonly denoted by
k2. Details of how the cutoff∆ was initially introduced are not important for the estimate of
the order of magnitude. Accordingly, the cutoff function was slightly changed to simplify the
integration: the initialr∆ limits changes of invariant masses in each of the vertices (Fig.4.1),
producing a complex shape of thek2-integration boundary with details that depend on the small
momentakl andkr , irrelevant to the divergence issue at hand. The main role of the cutoff in
∆E(2) is to provide an upper limit on the range of integration overk2. One can estimate the
size of the large-momentum range contribution by introducing a new cutoffkmax, equal to the
maximum value thatk2 can take, and letkmax→ ∞ when∆→ ∞. Dependence onkmax will
indicate dependence on∆.

5The numbers given here are slightly larger then given in Ref. [2] because in the meantime we have improved
accuracy of our numerics.
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Figure 4.2: The shaded area represents the range of integration over|~k1| and|~k2| in Eq.(4.30)
with the potential matrix∆v↓↑(~k1,~k2). In the lower right-hand corner, both momenta are equal
to zero.

To summarize, the large relative-momentum part of the second-order energy correction can
be estimated using the following expression (the tilde indicates the simplifications made in
∆E(2)):

−∆Ẽ(2) = m2
∫ 4αm

0

d3k1√
E1

∫ kmax

m

d3k2

E2

∫ 4αm

0

d3k3√
E3

φ0(k1)∆v↑↓(~k1,~k2)
1

H0
∆v↑↓(~k2,~k3)φ0(k3)

(4.30)
The range of integration overk2 in this expression is shown in Fig.4.2. Since the potential∆v↑↓
approaches a constant fork2�m, one can expect a logarithmic dependence of∆Ẽ(2) onkmax,∫ kmax

m

d3k2

E2
∆v↑↓(~k1,~k2)

1
H0

∆v↑↓(~k2,~k3)∼ log
kmax

m
. (4.31)

A numerical evaluation of the 12-dimensional integral produces an estimate of the actual size
of the logarithmically diverging correction. The results for different values of the coupling
constant are given in Figure4.3; the error bars indicate the standard deviation of a Monte Carlo
routine used in the computation. No other parts of the second-order two-fermion bound-state
mass correction (parts with external momenta bigger than 4αm, internal momenta smaller than
m, or parts without change of the fermion spins) can compensate this divergence. Note that the
corrections can quickly reach the order of 10% for coupling constants of the size expected in
quark physics when the cutoffs are made larger than 100 quark masses and they continue to
grow.

4.6 Effective particle approach – bound states of two effec-
tive fermions

This section briefly reviews the RGPEP for deriving HamiltoniansHλ for effective particles of
sizeλ−1. It then appliesHλ in the Yukawa theory to a bound state of two effective fermions. In
the presentation I refer to certain steps described in the previous section, and apply them now
to the bound-state problem. I point out the key differences between the bare particles and the
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Figure 4.3: Dependence of the most singular part of the second-order correction (Eq. (4.30)) on
the cutoffkmax. This correction diverges logarithmically for largekmax even for small coupling
constantsα, though the matrix elements of the two-body Hamiltonian do not depend onkmax

for momenta smaller thankmax.
In the bare Tamm-Dancoff approach, physical results should be obtained usingkmax∼ ∆, in the
limit ∆→ ∞.

effective particles, that lead to the two-effective fermion dynamics that converges in the region
of large relative momenta.

4.6.1 Renormalization group for effective particles

The RGPEP is defined by means of a unitary rotation for creation and annihilation operators
[45,46]

b†
λ = Uλb†U†

λ . (4.32)

The Hamiltonian can be expressed in terms of both sets of operators,b+ or b†
λ, and each has

different matrix elements in the Fock space basis built using the operators of each kind. There
is no change in the physical content of the theory. The idea of the rotation (4.32) is that the
Hamiltonian expressed in terms ofbλ (i.e., the effective Hamiltonian of widthλ, Hλ ) contains
vertex form factorsfλ of width λ in all interaction terms. The choice made here for estimating
the large-momentum contributions to bound-state dynamics of effective fermions, is:

fba = exp

(
−

(M2
created−M2

annihilated)
2

λ4

)
, (4.33)

whereMcreatedis the total free mass of all particles created by a given term inHλ andMannihilated

is the total free mass of particles annihilated by the term. This choice is based on the results
obtained so far for asymptotic freedom inHλ QCD [15] and Poincaré algebra in scalar theory
[39].

If the unitary transformationUλ were known exactly, there would be noλ dependence in the
spectrum ofHλ . But whenUλ (andHλ ) are calculated in perturbation theory, the approximation
leads to some residualλ dependence of theoretical predictions for observables.The sensitivity
of the results to variation of λ is a simple test of how large the errors are in the perturbative
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expansion forHλ , on top of the error margin resulting from the approximations used to solve
the Schrödinger equation with H . On the one hand, one tries toget down to as smallλ as
possible, so that the nonperturbative diagonalization will require the smallest possible range of
energy scales to handle explicitly, using a computer. On the other hand, one expects that the
errors arising from the use of perturbation theory in evaluatingHλ will grow asλ is reduced,
and soλ should not be too small. The reason for this is that, ifλ→ 0, the Hamiltonian becomes
almost diagonal, which is equivalent to solving the nonperturbative dynamics of bound states,
and a perturbative calculus forHλ must fail at some point beforeλ becomes equal to the scale
of the nonperturbative phenomena.

4.6.2 Effective Hamiltonian for Yukawa theory

Effective Hamiltonian – Zeroth and First order

When one evaluates the Hamiltonian for effective fermions, the only change in the zeroth-order
Hamiltonian (free part, orderg0) is that the bare operators such asb†b are replaced byb†

λbλ. In
orderg1, the effective Hamiltonian has the form:

H ∆(1)
λ = g

2

∑
i=1

∑
σ1,σ2

∫
[p1p2q] δ̃3(p1− p2−q)exp

(
−κ⊥2

p2,q

∆2

)
rδ(

xq

xp1

)exp

[
−
(
M2

p2q−m2
)2

λ4

]
×

×
[
a†

qλb(i)†
p2σ2λb(i)

p1σ1λup2σ2up1σ1−a†
qλd(i)†

p2σ2λd(i)
p1σ1λvp1σ1vp2σ2 +h.c.

]
. (4.34)

Note that expressingb’s by bλ’s has induced the form factorfλ in Hλ (expression (4.34) comes
both from first-order unitary rotationUλ of H0 and zeroth-order rotation ofHY; this is not a
rotatedHI only). This form factor means that the regularization factorr∆ depending on∆ is
equivalent to 1 when∆/λ→ ∞; it can therefore be omitted from this expression.

Effective Hamiltonian – Second order: Mass term

When one calculates the term inHλ of orderg2 that containsb†
λbλ, one finds that it contains

a mass-squared-like term with a divergent∆-dependence. A counterterm must be added to the
initial Hamiltonian that has exactly the same form (4.21) as in approach 1. The form of the
effective mass term inHλ is then (in the limit∆→ ∞):

Hλ δm =
∫

[p]b†
λbλ

δm2
λ

p+ , (4.35)

where

δm2
λ =

g2

16π2

∫ ∞

m2
dz

1
2

(
1+

6m2

z
+

m4

z2

)
exp

[
−2(z−m2)2

λ4

]
+const. (4.36)

Note that the renormalization is carried out now at the level of full theory in the whole Fock
space, not after reduction to a specific Fock sector (accordingly, there are no sector-dependent
mass counterterms). Since the regulators did not violate any kinematical light-front symmetries,
the calculated mass term does not depend on particle momentum. In other words, the relativistic
form of the dispersion relation does not change, and there is only a change in the value of the
effective fermion mass.
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Effective Hamiltonian – Second order: Potential term

Second-order terms inHλ that contain two creation and two annihilation operators for effective
fermions do not contain any dependence on∆ when∆→ ∞, and no counterterms are needed of
such form. Therefore, the complete answer for these potential terms is:

H ∆(2)
λ b†b†bb

= ∑
σ1σ2σ3σ4

∫
[p1p2p3p4]b

(1)†
p1λ b(2)†

p3λ b(2)
p4λb(1)

p2λ δ̃3(p1 + p3− p2− p4)

×v(2)
λ (p1, p2, p3, p4,σ1,σ2,σ3,σ4) , (4.37)

where

v(2)
λ (p1 . . . p4,σ1 . . .σ4) =

−g2u1u2u3u4

q+ facF2(a,b,c)|Fig.4.1a + the same|Fig.4.1b , (4.38)

andF2(a,b,c) = [(xba+(1−y)bc)/(ba2 +bc2)]( fba fbc−1), with x = p+
1 /(p+

1 + p+
3 ) andy =

p+
2 /(p+

2 + p+
4 ). The notation used is that of Fig.4.1, as for approach 1. However, the potential6

vλ is quite different from the OBE potential of Eq. (4.25): for example, the denominators are
different and there are key form factorsfac. Other term in the effective Hamiltonian do not
matter in further discussion.

4.6.3 Solving the eigenvalue problem withHλ

In the case of bound states of two effective fermions, the reduction procedure is based on the
same rules as in the approach 1, except that the effective particles interact with vertex form
factors of widthλ and the large-relative-momentum convergence is improved. The change of
particle number is also severely limited in strength, since massive particles cease to be pro-
duced whenλ is lowered below their mass. Even the emission of massless scalar particles is
severely limited. As in approach 1, the departure point in solving the bound state dynamics is
the eigenvalue equation for a single fermion.

Reduction to one-effective-fermion subspace

This step produces an equationHR|k〉= P− |k〉, where

P− =
k⊥2 +m2

f

k+ , (4.39)

andm2
f is the physical fermion mass of the same value as in the approach 1, by definition. It

comes out independent of∆ by virtue of adjusting once and for all the mass-squared counterterm
in H∆. The same adjustment involves fixing the free finite constant in Eq. (4.36) so that, for
a certain value ofλ = λ0, the physical fermion mass eigenvaluemf equals the value found
experimentally. Interestingly, the same eigenvalue is subsequently obtained for all values of
λ automatically and the physical dispersion relation satisfies all the requirements of special
relativity. This is the simplest manifestation of the general rule that physical results should be
independent ofλ.

6Note thatv denotes here a potential, not a single spinor of an antiparticle.
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Figure 4.4: The reduction of effective QFT (a) to relativistic quantum mechanics in a model
subspace (b) is possible in approach 2 due to the form factors in the effective interaction vertices.

Reduction to two-effective fermions

Using the transformationR to reduceHλ to the two-effective-particle subspace without restric-
tions on the relative momenta, one obtains a quantum mechanical interaction that can change
the invariant mass of the two particles by a certainΛ if, and only if, the interaction acts more
thanΛ/λ times. Thus, approach 2 produces an effective Hamiltonian that is free from the over-
lapping divergence problem discussed in [88], and in Section4.5 in approach 1. However, in
order to make a connection with the nonrelativistic two-particle Schrödinger quantum mechan-
ics that was not available in approach 1, one now needs to limit the relative momenta in the
effective two-particle Fock sector tok < z (wherez is a new parameter required for defining
the new operationR that enables one to define the procedure of introducing the nonrelativistic
limit).

Accordingly, we define a new transformationR that leads to a model HamiltonianHR. This
HR acts only in the subspace of the two-effective-particles Fock sector with limited invariant
masses (Fig.4.4). Not only the number of effective particles is limited, but also the range
of their relative momenta. It is required thatHR has the same spectrum of low-lying energy
levels asHλ has in the whole space. This step is no longer related in any way with the infinite
renormalization problem as in the approach 1. The existence of such reduction is plausible only
becauseHλ has a small widthλ.

The projection operator used here in constructingR is

P̂ = ∑
σ1σ2

∫
[p1p2]b

(1)†
1λ b(2)†

2λ |0〉〈0|b
(2)
2λ b(1)

1λ θ
(

z−|~k|
)

, (4.40)

where~k is the relative momentum of effective particles of momentap1 and p2. Although
introducingz is useful from a conceptual point of view, the form factorsfλ imply that z is
not important in practice, see Fig.4.4.

The effective Schrödinger equation has the form of Eq. (4.24), with vOBE replaced by a
new potential, denotedvRλ, the sum of two terms (Fig.4.4b). The first term is the projection of

H ∆(2)
λ b†b†bb

, cf. Eq. (4.37), on the two-body space restricted byz. The second term comes from
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Figure 4.5: First-order correction to the ground-state binding energy as a function ofλ for
z= ∞, which shows the magnitude of corrections to the well-known Schrödinger equation with
a Coulomb potential expected in the approach 2 in QFT. Theλ-axis of the plot starts atλ =
0.01mf , and not zero, because the computational method used here is not applicable forλ = 0.

the one-effective boson exchange (OEBE), and has a form similar to (4.25),

vOEBEλ(σ1σ2σ3σ4~k~k
′) =− πα

2m2 fλu1u2 fλu3u4
1

q+

(
p+

ba

ba
+

p+
bc

bc

)
Fig.4.1a

+ the same|Fig.4.1b ,

(4.41)
except for the form factorsfλ in vertices and the overall limitation of the momenta byz [not

indicated explicitly in Eq (4.41)]. Both of these terms (i.e., the projection ofH ∆(2)
λ b†b†bb

and
vOEBE) behave fork,k′�m like the Coulomb potential (4.27), with form factorsfλ that limit
the changes of the fermion kinetic energies.

One can approximate the Schrödinger equation with this QFT potential by the equation with
a Coulomb potential plus a correction, and one may estimate the size of the correction using
bound-state perturbation theory. For this purpose, the difference between potentialsvRλ and

vCoulomb is denoted by∆vλ. The first-order correction,∆E(1)
λ = 〈φ0|∆vλ |φ0〉, is a function of

the parametersλ andz. A numerical calculation confirms that forz> λ there is no noticeable
z-dependence of this matrix element. Figure4.5 shows how the matrix element depends on
λ for z = ∞. As expected in Section4.6.1 for small λ, there is someλ-dependence in the
result. It appears because, when lambdas are too small, the similarity factorsfλ start to limit the
Hamiltonian in the momentum region that is important for the bound-state formation, and the
derivation ofHλ cannot be carried out precisely using the perturbative renormalization group

procedure down to so small lambdas. Whenλ andz are large enough, the correction∆E(1)
λ

tends to a finite value that depends onα. This happens because the wave functionφ0 has a
width a = αµ (see AppendixJ.1) and limits the integration over both momenta in the matrix
element〈φ0|∆vλ |φ0〉. As shown already in Section4.5.2, the first-order correction is small for
small coupling constants due to the fast fall-off of the Coulomb wave function at large momenta,
independently of the details of∆v that one obtains in the approaches 1 or 2. The correction is
small even for a divergent potential such as aδ function.

We now look at the second order of the bound-state perturbation theory to check the self-
consistency of the effective-particle picture and to compare it to approach 1. To demonstrate
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Figure 4.6: Dependence of the large-relative-momentum contribution to the second-order
bound-state mass correction onλ, for the cutoff∆ (or kmax) sent to∞. When one works with
effective fermions, cutoffs can be sent to∞ for any given value ofλ. This feature is not available
in the approach 1 for bare fermions, as shown in Fig.4.3.
In the effective-particle approach, physical results for a two-fermion bound state should be ob-
tained usingλ on the order ofmf , or other momentum scale physically relevant for the binding
mechanism.

that the effective theory does not exhibit the consistency problems faced by approach 1 (see
Fig. 4.3), one can follow closely the derivation of Eq. (4.30), but now with the OBE potential
vOBE replaced byvRλ. Again, one may investigate whether there is a logarithmically divergent
dependence onkmax.

It turns out that, for finite values ofλ, there is no such divergent dependence. One can
safely take the limitkmax→ ∞, sinceλ itself already cuts off sums over intermediate states in
the correction,

−∆Ẽ(2)
λ = m2

∫ 4αm

0

d3k1√
E1

∫ ∞

m

d3k2

E2

∫ 4αm

0

d3k3√
E3

φ0(k1)∆v↑↓λ(~k1,~k2)
1

H0
∆v↑↓λ(~k2,~k3)φ0(k3) .

(4.42)
Here,∆v↑↓λ is defined similarly to∆v↑↓, but with vOBE replaced byvRλ. Numerical results for
this matrix element for different values ofλ (and for the cutoffskmax∼ ∆→ ∞), are shown in
Fig. 4.6.

Two important points should be noted. First, the results in Fig.4.6can be considered a good
approximation to the whole second-order correction only forλ� m (i.e. in the right part of
the figure). Ifλ is comparable tom, the similarity factorsfλ limit the potentialvRλ and the
high-low and low-high corners of the potential matrix (Fig.4.2) are practically eliminated. The
correction coming from the large momentum region selected in the integration in Eq. (4.42) is
therefore also reduced and the other of the 24 parts of the whole correction can contribute more
significantly than they do for large lambdas. Hence, for small lambdas, the results given in
Fig. 4.6are not necessarily a good approximation of the whole second-order energy correction.

Second, in practical work, one needs to lowerλ as far down as possible, possibly belowm.
Thus, Fig.4.6provides only evidence for the consistency of the effective fermion dynamics in
which the convergence in the large-relative momentum region is secured by the presence ofλ,
and the original QFT cutoffs can be safely sent to infinity. Additional analysis can be found
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in Ref. [2].

4.7 Summary of the mechanism of removal of divergences by
RGPEP form factors

Let me summarize the two approaches to bound states of fermions. I used the example of the
bound states of two fermions in the Yukawa theory.

Approach 1 starts from the sector of two bare fermions. This approach leads to overlapping
divergences in the light-front Hamiltonian dynamics and lacks consistency in its handling of the
large-relative-momentum region, when one attempts to send the bare cutoff to infinity without
including infinitely many bare particles. It is possible to remove this defect through sector-
dependent counterterms, but the required construction of the full renormalization group triangle
with growing numbers of bare particles is both highly complex and not fully understood. The
basic ultraviolet problem arises from short distances in the transverse directions, and no prac-
tical tool yet exists for handling huge numbers of bare particles with the precision required by
the rotational, parity, and other symmetries of the initial Lagrangian.

Approach 2 is free of the difficulties connected with the large-relative-momentum conver-
gence. In this approach description of the bound state starts from two effective fermions. The
decisive convergence factor is introduced by solving renormalization-group equations for ef-
fective particles. This solution includes form factors of widthλ in the interaction vertices, and
these form factors suppress the large-momentum domain. This can be verified by numerical
estimates. The well-known one boson exchange (OBE) potentials that are deduced from the
on-shell S-matrix elements are replaced by new one-effective-boson exchange (OEBE) and ad-
ditional interactions that are derived in the Hamiltonian. One can also take advantage of a sub-
sequent S-matrix calculation in choosing free finite parts of the counterterms (this is discussed
in Chapter5).

The accuracy of this approximate treatment can be estimated by inspecting the variation in
results if one changes the renormalization group parameterλ. An exact theory would exhibit
no dependence onλ; in the approximate treatment, the variation depends on the size of the
coupling constants.

For α smaller than about 0.3, there is a wide range of lambdas in the Yukawa theory with
massless bosons, in which the results for the two-fermion bound-state mass are stable and do
not differ significantly from the results of a nonrelativistic Schrödinger equation with Coulomb
potential. These values ofα can be called nonrelativistic. Forα larger than about 0.3, one
has to allowλ to grow to the size of the order ofmf to achieveλ-independence of the cor-
rections to the bound-state mass. This means that relativistic momenta do, in fact, matter, and
the nonrelativistic Schrödinger equation is not a good approximation of the effective dynamics.
Still, the effective theory is well contained in the range determined byλ, and one may look for
solutions of the eigenvalue problem without making a nonrelativistic approximation. For the
first-order bound-state perturbation theory, corrections to the nonrelativistic approximation are
quite considerable, while the large-relative-momentum region in second-order corrections con-
tributes only about 10%. Being limited byλ, it does not introduce any diverging contributions
and one does not – and should not – attempt sendingλ to infinity, in contrast to the cutoff∆→∞
in approach 1.

The light-front form of Hamiltonian dynamics enables us to separate the relativistic motion
of bound states from their internal constituent dynamics. Thanks to this separation, one can
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reduce the description of the binding mechanism to the Schrödinger equation for internal motion
of the constituents without choosing a specific frame of reference. All eigenvalue equations
derived here, in both approaches, are independent of the total momentum of the states they
describe. Thus, the boost symmetry allows us to understand moving bound states in arbitrary
motion as soon as we understand them at rest. This is not possible in the standard form of
Hamiltonian dynamics.
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Chapter 5

Covariance of scattering amplitudes
calculated with an effective Hamiltonian

5.1 Introduction

Scattering experiments play an important role in the development of the theory of particles.
These experiments provide the only way to probe directly the inside of hadrons and perhaps
even leptons and gauge bosons. The main tool for describing scattering processes in pertur-
bation theory is Feynman diagrams, whose invention, renormalization, and application in the
standard model is one of the greatest triumphs of the theory of particles – a quantum approach
that satisfies the principles of special relativity as long as interactions are weak and bound-state
dynamics is of secondary importance. Therefore, any attempt to construct a Hamiltonian ap-
proach that aims to naturally include the bound-state eigenvalue problem must also match the
success of Feynman diagrams in the perturbative domain of scattering phenomena. The analy-
sis of Hamiltonian approach presented here does not fully rise to the challenge of verifying if
the Hamiltonian approach can produce covariant results to all orders, because this analysis is
limited to calculations of order not higher than the third. It is analogous to one-loop level in
Feynman’s approach. I also limit my calculations to the simplest asymptotically free theory that
could be considered. Nevertheless, even the challenge of the third-order calculations – to obtain
the covariant results with non-covariant Hamiltonians for effective particles that have form fac-
tors of small widths in three-dimensional kinematical momentum space in interaction vertices
– turns out to require extensive studies in an entirely new calculational scheme for Hamiltoni-
ans. I should stress that the loops one obtains in the calculation of a Hamiltonian operator itself
are different from the loops that occur in Feynman diagrams for scattering amplitudes. The
difference originates from the choice of light-front kinematical momentum variables and spe-
cial non-covariant regularization factors specific to RGPEP. Moreover, the initial Hamiltonian
is regularized once and for all of its vertices. The effective HamiltoniansHλ have vertex form
factors fλ that cannot be freely changed or adjusted, and the only freedom left is hidden in the
counterterms inH∆ that have to repair the damage to explicit covariance introduced by regular-
ization of the Hamiltonian operator. In fact, it was not clear when I began this research whether
any Hamiltonian approach could actually produce covariant results in a similar procedure as the
one outlined in the simple model of Chapter2. But the principles of RGPEP appeared conser-
vative enough so that one might ask the question: Can one regulate a canonical Hamiltonian of
any theory (even a ridiculously simple one, treated only perturbatively, but preferably asymptot-
ically free), apply the principles of RGPEP, and obtain a covariant answer for an amplitude that
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even remotely resembles standard Feynman results for amplitudes such ase+e−→ hadrons?
The answer to this question turns out to be positive, as described in this chapter. But the

description that follows cannot, unfortunately, be brief, and must start with rather basic de-
tails, since it was necessary to regulate the entire theory in its Hamiltonian formab initio, and
the loop integrals obtained could not be regulated in a way that was as convenient for mak-
ing Wick rotation as dimensional regularization is. I never encounter Wick rotation, because
the unregulated integrals ink− are not the same as integrals ink0.1 It was necessary to step
back to the Lehmann-Symanzik-Zimmermann reduction formalism and carry out all steps of
the LSZ formalism with explicit control over all regularization effects, keeping track of Hamil-
tonian counterterms and tracing how many terms combine and how they combine in the RGPEP
scheme for Hamiltonians to a covariant answer.

I will begin by listing the issues that the calculation presented here involves.

Scattering processes in QFT

The most important complexities relate to the fact that the scattering of strongly interacting
particles in fact involves bound states rather than the free particles. This means that one cannot
limit the calculation to perturbation theory alone. While in the first approximation most prob-
lems with high-energy scattering may be avoided by noting that QCD is an asymptotically free
theory [89,90] (and therefore quark interactions become weak in high-energy scattering), one
expects complications wherever the nonperturbative structure of the bound states is involved.

In all circumstances where the bound-state formation matters, it is crucial to have a formu-
lation that applies both to bound states and scattering in order to obtain a description based on
first principles. It is natural to try to define a Hamiltonian description, since the basic connec-
tion between the Green functions and scattering is based on the LSZ formula that involves an
assumption that a Hamiltonian of the theory exists, while the bound states must be described
by an eigenvalue equation for the same Hamiltonian (see the discussion of divergences in the
bound-state eigenvalue problem in Chapter4).

However, the standard approach to scattering in QFT is based on Feynman diagrams and
covariant regularization such as dimensional regularization. It is thought [9,8], that the Hamil-
tonian approach cannot produce covariant answers because of its intrinsically non-covariant
nature, due to the distinguishing of the time axis and non-covariant regularization.

In other words, the basic issue with Hamiltonians is: can one renormalize the Hamilto-
nian calculation and obtain covariant results? The prospects of applying all known methods of
Hamiltonian quantum mechanics (linear algebra of eigenvalue equations, variational methods,
and explicitly unitary evolution of states) are exciting, but divergent QFTs need regularization,
and there is the question of whether one can define non-covariant regulated Hamiltonians in the
Fock space, renormalize them and obtain covariant results for scattering. It turns out that when
one switches from the standard-time evolution to Dirac’s front form of Hamiltonian dynamics
an important change takes place: kinematical rotational invariance is turned into kinematical
boost invariance and it is much easier to regulate rotations that involve angles between 0 andπ
than boosts that involve imaginary angles between 0 and infinity. In other words, it is hard to
regulate boost operators in the equal-time formulation and control states of moving particles.
Light-front dynamics provides an opportunity to treat boosts like in a free theory, and the cal-

1Perhaps, higher-order analysis of the Hamiltonian approach may take advantage of the connection between
k−, k+, k0 andk3, and employ analytic continuation ink0 in the amplitudes after they are shown to be finite and
independent of regularization.
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culations outlined here suggest that rotational symmetry – even if dynamical – may be brought
under control in perturbation theory.

The standard approach is to derive a formal expression for the S matrix using an unregu-
larized Hamiltonian, and to learn how to regulate the expressions that result from the formal
procedure later, i.e., when calculating physical observables using Feynman diagrams. This ap-
proach proved extremely fruitful. It leads to simple, yet powerful renormalization group equa-
tions which describe the behavior of the Green functions. The most powerful regularization is
the dimensional regularization [91], which leads to covariant and gauge-invariant expressions
at each order of perturbative S-matrix calculations (see also [92,93]).

The main difficulty of a loop-by-loop (i.e., perturbative) regularization procedure for the
Green functions is that it is not clear how to apply it to nonperturbative bound-state problems,
where powers of the coupling constant are mixed up in a way non-expandable into a power se-
ries. In asymptotically free theories, one faces the additional problem that the coupling constant
is large in the domain of momenta where the binding mechanism is most active, and remains
unknown. This problem occurs, for example, in the context of the Bethe-Salpeter equation. To
use such an equation in a controlled fashion, one would have to design a reliable regularization
and renormalization procedures that would apply in the the region of the binding mechanism.

Given the above, asymptotically free QFT can be used to describe high-energy scattering,
but bound states have to be described using more or less phenomenological constituent models.
There remains the problem of how to construct a single formalism that would incorporate both
aspects of the theory [53].

Hamiltonian description of scattering

There are several reasons why the Hamiltonian description may be hard to develop, even for
perturbative scattering processes in the femtouniverse [94], where there are no bound states
involved.

1. Interference with the ground state: The light-front Hamiltonian theory considered here is
designed to avoid the following problems: (1) In equal-time theory old-fashioned pertur-
bation theory is affected by a (complicated) vacuum structure through Z-diagrams (Fig.
3.2b). There are no such diagrams in the formalism considered here, which means that
both the vacuum itself and the old-fashioned perturbation theory are simpler than in the
equal-time approach. (2) In equal-time perturbation theory regularized corrections to
energies of one-physical-particle states do not automatically have the form required by
special relativity (cf. Section3.2.6). In the light-front approach one does not face the
difficulty with different denominators that must be somehow combined in equal-time ap-
proach to produce relativistic expressions, and how they combine should not be destroyed
by regularization. I don’t know how to solve this problem in equal-time approach.

2. Non-covariant regularization: The question here is how to describe scattering processes
involving particles moving with arbitrary velocities, in particular, velocities close to the
speed of light. It must be investigated whether some proper choice of finite parts of
counterterms can lead to a covariant scattering matrix, even when the Hamiltonian is
formulated using non-covariant cutoffs.

3. The need for going beyond cancellations such as those of the Ward identities: Feynman
calculus uses Ward identities, and the scattering amplitudee+e−→ hadronsis finite in
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QCD coupled to QED in one loop: namely, the ultraviolet divergence of wave function
renormalization factorsZ corresponding to the external quark lines cancels the divergence
in theγ→ qq̄ vertex. In the asymptotically free scalar theory considered in this chapter,
such Ward identities are absent. The Hamiltonian approach to scalar theories has to solve
the ultraviolet problems independently of Ward identities.

It should be noted, however, that in Hamiltonian dynamics of gauge theories one has to
choose a gauge (for example, the light-front gaugeA+ = 0 (E.19)). Therefore, there is
no explicit local gauge symmetry in the Hamiltonian, and it is not immediately apparent
how, in such a theory, analogs of Ward identities emerge: in particular, any extra terms
added to the Hamiltonian (e.g., the required counterterms) may depend on the choice of
gauge and regularization. In fact, the structure of the Hamiltonians of gauge theories
is complicated and the ultraviolet renormalization problem is plagued with singularities
related to the choice of gauge. On this point, it is instructive to study some divergent
terms in Hamiltonians in gauge theories and observe the structure of their ultraviolet
divergences. Examples of such divergent terms are given in AppendixF. All these terms,
despite their additional complexities, share some common divergence structure with a
plain φ3 theory when treated perturbatively. The results for counterterms in QED and
QCD shown in AppendixF explain why I had to restrict this initial study to scalar theories
that are less singular than gauge theories (they do not contain small-x divergences). Since
gauge theories are more complicated than scalar theories, one first has to show that a
Hamiltonian formulation can lead to covariant answers in an asymptotically free scalar
theory.

The aim of this chapter is thus to understand the ultraviolet (high-energy) Hamiltonian
renormalization procedure in a theory that describes particles analogous to electrons, photons,
quarks, and gluons, in the presence of interactions that resemble in their ultraviolet structure
the structure of QED and QCD. The idea of simplifying a complex theory in order to address
basic issues goes far back in time, and the key example regarding old-fashioned perturbation
rules in the infinite momentum frame (isomorphic to the light-front scheme) was provided by
Weinberg [95].

One of key features of any theory, determining how complicated the UV problem is, is the
degree of divergence of the loop diagrams appearing in perturbative calculation of the S matrix.
In the case of QED and QCD, these are quadratic and logarithmic divergences. The main part
of this chapter deals with scalar theory in six space-time dimensions (five space dimensions
and one time), where there is the same degree of divergence. This means, for example, that
the wave-function renormalization factorsZ are logarithmically divergent. I trace below which
counterterms remove this and all other divergences from physical results, and how this happens.

The most important feature of the scalarφ3 theory considered here is that it is asymptotically
free. This means that the effective coupling constant gets small when the momentum transfers
in a process grow, and this enables us to believe in a consistent description of the high energy
structure of the theory based on the perturbative approach.2 But every coin has two sides: in
this case, the flip side is that the coupling constant becomes large for small energies, and this

2Note, however, that although the motivation of the renormalization program does not apply strictly to theories
that are not asymptotically free, one usually expects that a similar program of ultraviolet renormalization would
work in this case too, with few modifications. The prime example is QED, which is not asymptotically free, yet
it is analyzed (e.g. when scattering amplitudes are derived by Feynman diagrams) by means of a standard UV
renormalization using smallness of the coupling constant and the fact that it varies only logarithmically.
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includes the critical domain of the formation of bound states. In this domain, it is essential that a
perturbative calculation of a Hamiltonian may still be justified while the perturbative treatment
of scattering is entirely inappropriate.

The plan of this chapter

The main results for scattering are presented in the following order in this chapter.
In Section5.2, I review the derivation of Feynman diagrams in the case of a light-front

Hamiltonian, which from the very beginning is regulated. Thus, all steps of the derivation
are mathematically well-defined. This leads to an analogue of LSZ formula for the scattering
matrix, and its perturbative expansion leads to an analogue of Feynman diagrams, but with
regularization coming directly from the Hamiltonian that includes counterterms. Details are
given in AppendixG.

In Section5.3, I describe a change of basis in the Fock space and in the space of oper-
ators that act in the Fock space, and show that effective particles described by an effective
HamiltonianHλ can be used for obtaining the same scattering amplitude as the bare canoni-
cal particles can. This has two important consequences. First, it means that one and the same
Hamiltonian can be employed in a scattering formalism and for description of bound states:
our regularization and renormalization for the effective Hamiltonian produces an operator that
has all properties that we found necessary for description of bound states in Chapter4 (the
binding is described in terms of low-energy effective particles). The second consequence is
that the physical scattering amplitude is totally independent of the ultraviolet cutoff∆ in the
initial canonical Hamiltonian, and also independent of the effective Hamiltonian widthλ (in
perturbation theory).

All calculations are carried out in a scalar theory similar toφ3 scalar theory in 5+1 di-
mensions. In Section5.6, I present RGPEP for this theory and the resulting counterterms (see
Section3.4 for details of RGPEP). In fact, I consider two ways of constructing the same coun-
terterms. One of them is much simpler than the other, and both are sufficient for the description
of a scalar analogue ofe+e−→ hadronsscattering amplitude up to ordere2g2. In Section5.7,
I show that the RGPEP counterterms remove divergences from the amplitude.

Another issue is the finite dependence of the Hamiltonian on regularization, and the con-
straints on that finite dependence that follow from the Poincaré symmetry of the physical scat-
tering amplitude. In particular, the S matrix is not automatically covariant unless one makes
sure that there exist finite counterterms in the Hamiltonian that remove finite violation of co-
variance due to regularization. I provide explicit expressions for the Hamiltonian terms that
assure covariance of the scattering amplitude. As a result, the scattering amplitude depends on
momenta of scattered particles as in the Feynman diagrams. This is how the rigorous Hamilto-
nian approach justifies the formal procedure that leads to the Feynman diagrams for my model
of the amplitudee+e− → hadrons. Overall, therefore, this section implies that the heuristic
model of Chapter2 is useful in providing patterns that one can attempt to reproduce in QFT.
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5.2 Calculation of S-matrix elements using regularized light-
front Hamiltonians for bare particles

The perturbative formula for the S matrix in terms of covariant Feynman diagrams is derived
in the standard QFT textbooks such as [96-98] and many others. However, the derivation pre-
sented in these works does not take into account the divergences of the QFT from the very
beginning. Instead of introducing regulators explicitly, formal expressions for physical observ-
ables are derived first, and only then useful loop-by-loop regularizations of the final expressions
are introduced (see also [99] in the context of infinite-momentum-frame calculations of an S
matrix).

Such an approach is not directly useful if one wants to use the same Hamiltonian for de-
scribing both bound states and scattering processes. The ultimate goal is to determine the coun-
terterms including their finite parts, using symmetries of the S matrix (this might concern only
bound states in the case of confinement) and fixing values of all free parameters using data for
selected scattering experiments or some selected bound states, and then use the Hamiltonian
without free parameters to describe all other processes and states. The entire procedure of the
S-matrix calculation using regularized Hamiltonians is described in AppendixG.

The key differences between the the standard Lagrangian procedure and the Hamiltonian
procedure are as follows:

• The canonical Hamiltonian is regularized: All terms are regulated, but different regulating
factors appear in differently ordered terms, for example:

and (5.1)

The regularization factors that we introduce do not have to solve problems with the cre-
ation of particles from the vacuum (see Section3.3.3).

• The Hamiltonian is not a local product of pointlike fields: This happens due to the regu-
larization. Instead of local fields we deal with the creation and annihilation parts of the
fields in apparently separate ways. However, I make sure that all vertices are regulated
without reference to variables that depend on spectators, and our regulators depend only
on the kinematical momenta of the particles involved. This is why the demonstration of
the covariance of the resulting amplitude is a challenge – it does not refer to mathematical
operations that are only formally valid, and would be invalidated if a regularization was
taken into account.

• An entire family of different HamiltoniansHλ is calculated: The family of Hamiltonians
is parametrized by a renormalization-group parameterλ and, in the RGPEP approach,
the parameterλ is also a width of the momentum-space form factors that appear in inter-
action vertices. The HamiltonianHλ is expressed in terms of creation and annihilation
operators,a†

λ andaλ, that create or annihilate effective particles whose size in configu-
ration space can be thought equal to 1/λ. When one switches to the effective-particle
picture, one faces the challenge of showing that it is possible to develop scattering theory
using the effective particles and corresponding Hamiltonians and obtain the same results
as in the initial canonical theory, independently of the value ofλ. The most critical test is
whether one obtains Poincaré symmetry for scattering amplitudes.
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• Light-front Hamiltonian dynamics: The evolution operator is chosen to beH = P−, as
was advocated by Dirac in 1940s [16]. Therefore, analysis is carried out in terms of the
evolution parameterx+ instead of the usualx0, and I do not have energy denominators in
my S-matrix calculus, but ratherp− denominators.

The standard derivation of Feynman diagrams consists of three main steps:

1. Matrix elements of interacting fields are assumed to evolve in the far future or far past in
the same way as the matrix elements of properly chosen free fields.

2. S-matrix elements are expressed in terms of vacuum expectation values of the time-
ordered products of fields (the LSZ formula).

3. These vacuum expectation values are expanded in a perturbative series in the interaction
Hamiltonian.

I review these three steps below very briefly for the purpose of our light-front analysis; details
are presented in AppendixG. In Section5.3, I show how different auxiliary fields, all unitarily
equivalent, can be used for the calculation (e.g.φ0 = φ0∞ or φ0 = φ0λ). For a different choice
of φ0, one has a different perturbation theory for the same physical quantity:φ0 may be chosen
differently, but the interaction HamiltonianHI and the wavefunction renormalization factorsZ
will change accordingly, and the result for the S matrix will not change.

5.2.1 In and out fields and states

Section3.3 introduced the construction of free and interacting fields in our approach (see also
AppendixG.1). Let us consider the scattering of two particles in the initial state, well separated
from each other; this is ensured by using proper wave packets. Final particles emerging from
the interaction region are assumed not to interact with each other; this is also ensured by using
proper wave packets.

The group velocity of a packet made of massive particles is smaller than the speed of light,c.
Massive particles propagate within the light cone of past and future and, for them, the conditions
x0→−∞ andx+→−∞, or x0→ +∞ andx+→ +∞ are equivalent (Fig.5.1). For massless
particles – not considered here – these two conditions are not strictly equivalent, as they differ
in the case of propagation along the direction where the light cone touches the front3, (see Fig.
5.2).

It is assumed that matrix elements of packets made of fields4 φ(x) between any normalizable
states|α〉, |β〉 behave for the timex+→−∞ as matrix elements of similar packets of certain
free fieldsφin

lim
x+→−∞

〈β|φ(xµ) |α〉=
√

Z lim
x+→−∞

〈β|φin(xµ) |α〉 . (5.2)

Thus, the creation operatorsa†
in create states that have an interpretation of physical states for the

timex+ approaching−∞. The statement thatφin is a free field means that the creation operators
a†

in evolve only by a change of a phase [see (G.7)].

3One would expect that the quantum effects wash out the line singularity and make it less severe through the
uncertainty principle than in the classical theory of partial differential equations.

4For a definition of the smeared fields see, e.g. [100]. The specific definition does not matter for the following
considerations; to simplify the notation, the smearing is not indicated in the equations.
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x3

x0

x0→−∞

x+x−

x+→−∞

Figure 5.1: A qualitative picture of a wave packet (the stripe) moving with a group velocity
smaller than the speed of light. For massive particles (which cannot move with the speed of
light), the limitsx0→−∞ andx+→−∞ are equivalent. Thus, when defining scattering theory,
x+ ordering may be used (instead of time ordering), andin andout states and fields may be
defined by the limitsx+→∓∞. This figure does not take into account the expected spreading
of the wave packet in time.

p3

p0

p +
=

0

p⊥

p2 = 0 (mass shell)

Figure 5.2: For particles of zero mass, only one direction in the space-time corresponds to the
zero value ofp+ momentum.
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The asymptotic condition (5.2) defines not only the fieldsφin, but also the physical mass:
a wave-packet describing a single, well-separated particle, which evolves withx+ as a packet
of free states, each of its Fourier components evolving with a factor exp(−ik−x+/2). The

physical massm2
physis defined by the conditionk−=

(
k⊥2 +m2

phys

)
/k+. Likewise, the physical

outgoing states and fieldφout are introduced by considering the limitx+→+∞.

5.2.2 One-particle states

Let us consider the equation (5.2) in the case of|α〉= |0〉 and|β〉= |p〉in5:

lim
x+→−∞

in〈p|φ(xµ) |0〉=
√

Z lim
x+→−∞

eipmx , (5.3)

where I usedin〈p|φin(xµ) |0〉= eipmx. Thex+ dependence cancels on both sides because:

in〈p|φ(xµ) |0〉 = in〈p|eiP−mx+/2φ(~x,x+ = 0)e−iP−mx+/2 |0〉= (5.4)

= in〈p|eip−mx+/2φ(~x,x+ = 0) |0〉 , (5.5)

and this leads to:
in〈p|φ(~x,x+ = 0) |0〉=

√
Ze−i~p~x . (5.6)

I use the notation~p~x :=−1
2 p+x−+ p⊥x⊥.

The matrix element on the left-hand side can be looked at in two ways. The equation (5.6)
says that the probability of finding a one physical particle state|p〉in in a state created byφ
(namely,φ(xµ) |0〉) for a large timex+ is Z. This way of looking at the equation will provide a
straightforward connection to the spectral representation [96,101,102], andZ will be equal to
a residue of a pole of a propagator.

However, one can also look at the equation (5.6) from a different angle. The creation opera-
tors in the Fourier transform of the fieldφ(~x,x+ = 0) are the bare creation operators in terms of
which the Hamiltonian is initially expressed. Therefore,φ(~x,x+ = 0) |0〉 is a superposition of
one- and more-bare-particle states. One can look at this expression in terms of the Fock basis
of the bare particles. If the physical state is expressed as a superposition

|p〉in = N

{
|p〉+

∫
[p1, p2]δ̃(p− p1− p2)φp(p1, p2) |p1p2〉+ . . .

}
, (5.7)

where the second term denotes two-bare particles component of|p〉in,
√

Z is equal to the amount
of one-bare particle content of the physical state|p〉in:

√
Z = N . (5.8)

5.2.3 The reduction formula for scalar fields

We can imagine a situation in which in the distant past there were particles forming a setα. Such
a situation is described by a state|α〉in. If, for example, there were two particles of momentap1

andp2, this state would be:
|p1, p2〉in = a†

p1,ina†
p2,in |0〉 . (5.9)

5States|p〉in are considered limits of wave-packets whose momentum widths tend to zero.
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Due to interactions, this state has a complicated structure in the future. The probability that
the state contains asymptotic outgoing particles of a setβ in the distant future is measured by a
square of a matrix elementSβ,α:

Sβ,α = out〈β | α〉in . (5.10)

This defines the scattering matrixSfor this process. In AppendixG.2it is shown that for a set of
q1,q2, . . . incoming particles andp1, p2, . . . outgoing, and for allpi 6= q j , the S matrix element
is:

out〈p1 . . . pm | q1 . . .qn〉in =
(

i√
Z

)m+n m

∏
i=1

∫
d4xi

n

∏
j=1

∫
d4y je

−iqimxi

(−→
�xi +m2

)
×

×〈0|T(+) [φ(y1) . . .φ(yn)φ(x1) . . .φ(xm)] |0〉×

×
(←−

�y j +m2
)

eipm jy j , (5.11)

(cf. (G.38)). In this equation d4x= dx+dx+d2x⊥ = dx+dx−d2x⊥/2. This is a light-front version
of the Lehmann-Symanzik-Zimmermann (LSZ) formula [103,104]. This equation directly cor-
responds to equation (16.81) of the Bjorken and Drell textbook [96], with x+ ordering instead
of x0 ordering and a different Fourier expansion of the fields.

Based on the spectral representation, one expects that the Green function〈0|T(+)[φ . . .φ] |0〉
has poles corresponding to each of the external particles. I will review in Section25 (page92)
how this kind of pole structure emerges in perturbation theory, but the spectral representation
argument (see [96,98]) is more general, and shows this independently of perturbation theory.

For each external particle, there appears a factor

Z

p2−m2
phys+ iε

(5.12)

– the denominator is exactly canceled with the(�+m2
phys) of the LSZ formula, and the wave-

function renormalization factorZ partially cancels with the 1/
√

Z of (5.11).
In fact, this structure is universal, and one can calculate the full propagator (5.12) (two-point

Green function) first, and use it to determine theZ factor and the position of the pole.
Note, also, that the equation (5.11) substitutes for the momenta of particles their physical

values (for example, allp+ > 0).

5.2.4 Perturbative expansion of the tau functions and the S matrix

One can assume that the operatorsa~k(x
+) and some complete set of free operatorsa0~k(x

+) are
(unitarily) equivalent, that is, that there exists an operatorU(x+) such that

a~k(x
+) = U−1(x+)a0~k(x

+)U(x+) (5.13)

and the same fora†. Note that this is consistent with the fact that, for a given timex+, operators
a~k(x

+) anda0~k(x
+) fulfill the same commutation relations. Also, they carry the same quantum

numbers (for the scalar theory the only quantum number of a particle represented bya†
~k

is its
three-momentum).
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In fact, rather than looking for theU transformation it is easier to look for a product:

U(x+,x′+) := U(x+)U−1(x′+) . (5.14)

(cf. G.50). This leads to the following expression for the Green function of the LSZ equation:

τ̃ = 〈0|T(+) [φ(x1) . . .φ(xn)] |0〉=

= 〈0|T(+)

[
φ0(x1) . . .φ0(xn)exp

(
−i

∫ x+

x′+
HI (ξ+) · 1

2
dξ+

)]
|0〉 . (5.15)

(cf. Eq.(G.69)), where

HI (x+) := H0(a0)−H(a0) , (5.16)

andH0 involves physical eigenvaluem:

H0(a0) :=
∫

[k]k−ma†
0~k

a0~k . (5.17)

Equation (5.15) is a light-front analog of the equation (17.22) in the Bjorken and Drell text-
book [96]. It is interesting to notice that its derivation (see AppendixG) remains valid for a
regularized Hamiltonian which is not an integral of a local product of fields.

5.2.5 Feynman diagrams with Hamiltonian regularization

The standard derivation of the Feynman diagrams uses Wick theorem at this point to reduce
the matrix elements (5.15) to products of the two-point Green functions (i.e., the propaga-
tors) and interaction vertices. The Feynman propagators emerging this way have two poles at

k0 =±
(√

~k2 +m2− iε
)

.

In our case, however, the situation is slightly different. In the light-front Hamiltonian all
particles have positivep+ momenta, and for each value ofp+ there is only one pole inp−.
Nevertheless, the structure of the expressions is very similar to the casual Feynman propagator
obtained formally using the equal-time form.

For some quantities, limiting ofp+ to positive values does not matter at all. For example,
when one calculates a propagators for the incoming or outgoing particles as a part of an S-matrix
calculation, the physical values of three-momenta are substituted through the LSZ formula, and
only the physical pole of the propagator contributes (this is true both for the equal-time and
light-front calculations). Thus, theτ-function presented here can agree with one defined by the
standard Feynman diagrams.

The situation is slightly different for internal lines. For example, diagrams (5.1) in the
Hamiltonian formalism presented here are two separate expressions (especially if there is regu-
larization, which does depend on an ordering of the interaction terms). However, the relation of
such diagrams to the corresponding (not regulated) Feynman diagram is simpler in light-front
coordinates, because the form of the Feynman propagator appears for each of these lines sepa-
rately (rather than as a result of summing two diagrams that occur in the equal time case). One
thus obtains Feynman propagators in a standard form, but with momenta limited by Hamiltonian
regularization factors in vertices.

The old-fashioned rules in scalarφ3 theory were considered by Weinberg in 1960s [95].
See also an article by Bardakci and Halpern [18]. An entire study for scalar, Yukawa and
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vector-gluon theories in light-front formalism was considered by Yan and collaborators in 1970s
[20-23]. Yan and his collaborators developed a theory in which the Hamiltonians were not
regularized, but the formal expression for the S matrix could be manipulated and eventually
shown to be the same as in the Feynman approach. The main difficulty Yan and collaborators
were dealing with was that the standard time-ordering of interactions is different than light-
front timex+-ordering, and the Coulomb term in equal-time Hamiltonian is very much different
from an analogous Coulomb-like term in light-front Hamiltonians. But Yan and collaborators
have shown that the different orderings and different interactions combine formally to the same
scattering amplitude. Examples of recent discussions that follow up on these works can be found
in [105,106]. As far as I know, nobody has ever considered a complete calculation with fully
regulated Hamiltonians, and nowhere in the literature I have found evaluation of Hamiltonians
for effective particles, likeHλ , except from references [40,74] which however did not consider
scattering amplitude. Here, I discuss what happens when the Hamiltonian is regularized before
developing perturbation theory for the S matrix. It is necessary to follow this procedure if one
wants the Hamiltonians to produce well-defined eigenvalue equations for bound states. In the
formation of bound states, the perturbative S-matrix calculus of asymptotically free theories is
not directly applicable.

The procedure that I effectively employ in the one-loop calculation described here consists
of the following steps:

1. Renormalized Hamiltonians are used in perturbative expression for the Fourier transform
of theτ-function (5.15).

2. Theta functions ofx+-ordering are replaced by integrals (I.4) with iε in denominators.

3. Integrals overx+ lead toδ(∆k−) in vertices.

4. Every denominator introduced in (2) is multiplied by correspondingk+, and the product
is the same as in a standard Feynman propagator for each ordering.

5. Self-interaction loops on external lines lead to a geometric series, which may be summed
up. This leads to propagators with poles at physical masses, and with modified residuesZ.

6. In the case of external lines, the resulting physical propagator is exactly canceled by the
factors

(
�+m2

)
in the LSZ equation [cf. (5.11)]. What is left is the factor

√
Z.

In the case of scalar theories inn+ 2 dimensions6 (such as (5.77)), these rules obtained
using (5.11) may be summarized as follows:

• For each internal line there is an integral∫
dnk⊥dk+dk−θ(k+)

2(2π)2

i
k2−m2 + iε

, (5.18)

wherem is the physical mass. The factorθ(k+) means, in particular, that I am considering
each of the orderings in (5.1) separately.

• For each external line ending at a pointxµ∫
dnk⊥dk+dk−

2(2π)2

i
k2−m2 + iε

e−ikµxµ
; (5.19)

6n is the number of transverse dimensions.
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• For each interaction vertex

(−ig)2(2π)(n+2)δ(k−cre−k−ann)δ(k+
cre−k+

ann)δ
(n)(k⊥cre−k⊥ann) r∆ , (5.20)

where the regularization factorsr∆ (coming from the regularized Hamiltonian) depend
only on perpendicular and plus momenta. These regularization factors are key to the
following calculation and they distinguish the Hamiltonian diagrams from the Feynman
diagrams. They are the same for all loops, because they originate from one interaction
term in the Hamiltonian operator.

The necessary combinatorial factors can be figured out by inspecting the way creation and
annihilation operators are commuted. Also, depending on the vertex considered, the coupling
constantg in (5.20) is replaced bye, eq or one half of these coupling constants (cf. (5.77)).

In the case of vertices other than the regularized bare vertex coming fromH∆ (such as
in (5.77)), for example for the terms coming from the counterterms or terms in the effective
Hamiltonian,g in (5.20) is replaced by a corresponding factor form the Hamiltonian term with
appropriate(2π)δ(k−cre−k−ani).

In the the regulated Feynman diagrams derived here, the regulators do not depend onk−

momentum. This in turn allows us to reduce them to an old-fashioned perturbation theory for
the S matrix by replacing the integral overk− by the sum over residues at poles ink−.

Finally, one should note that a similar correspondence between the Hamiltonian expressions
and the Feynman diagrams does not seem possible if one uses an equal-time Hamiltonian.
When regularization is needed, one could introduce a cutoff either on each particle momentum
independently (which leads to a theory that cannot be boosted to an arbitrary frame) or on
momentum differences in the vertex (which means different regularization in each of the two
diagrams in Figure3.2b and thus with such regularization these diagrams do not add up to a
Feynman-propagator form). Compared to this, the situation with a light-front Hamiltonian is
much simpler.

5.3 Calculation of S-matrix elements using light-front Hamil-
tonians for effective particles

5.3.1 Smatrix in terms of Hλ

RGPEP equations (3.76) define effective-particle creation operators as operators unitarily equiv-
alent to the bare-particle creation operators:

a∞ = U†
λ aλUλ . (5.21)

The effective Hamiltonians are the same Hamiltonian operator expressed in terms of effective-
particle operators, instead of the bare-particle operators:

Hλ (aλ) = H∞(a∞) = U†
λ H∞(aλ)Uλ. (5.22)

The basis of the scattering theory is another unitary equivalence: namely, the equivalence
of bare creation operatorsa∞ and the physicalain operators (5.13):

a~k,∞(x+) = U−1(x+)a0~k(x
+)U(x+) , (5.23)
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where the indexλ = ∞ was added to indicate the bare-particle annihilation operator. Substituting
into this equation expression (5.21), one has:

a~k,λ(x
+) = W−1

λ (x+)a0~k(x
+)Wλ(x

+) , (5.24)

with7

Wλ(x
+) = U(x+)U†

λ . (5.25)

Equation (5.24) for operatorsaλ means, that the physical external one-particle state (or a
matrix element of a corresponding field) can be represented not only using a one-bare-particle
state (as in AppendixG.3), but also as a one-effective-particle state. However, the proportion-
ality coefficient of the spectral representation changes if one changes the set of representing
operators from the bare ones (a†

∞) to the effective ones (a†
λ). Thus, not only is the perturbative

expansion changed (see below), but also the LSZ formula must be modified accordingly.
It is now possible to repeat the steps shown in AppendixG.3, usingWλ(x+) instead of

U(x+): differentiate Eq. (5.24) overx+; introduceW(x+,x′+) := W(x+)W−1(x′+); and so on.
This leads to exactly the same expression for theSmatrix, but with an interaction Hamiltonian:

Hλ ,I = Hλ (a0)−H0(a0) . (5.26)

The details of this calculation are presented in AppendixH. The results can be summarized as
the following theorem:
Theorem: The same S matrix describing scattering of physical particles can be obtained using:

1. A bare HamiltonianH∆, and representing the incoming/outgoing particles by bare-
particle creation and annihilation operatorsa∞

2. Or using an effective HamiltonianHλ and effective particlesaλ.

In each order of perturbation theory, the result for theSmatrix is the same, provided the con-
nection betweena∞ andaλ (H∆ andHλ ) is fulfilled up to this order.

In both cases, the perturbation is done in powers of a difference between the full Hamiltonian
H∆ = Hλ (with creation operators,a†

∞ or a†
λ respectively, replaced by free operatorsa0) and a

free HamiltonianH0 with physical spectrum.

5.3.2 Example: tree amplitude fore+e−→ hadrons

The bare Hamiltonian presented below in Section5.4.1leads toe+e−→ hadronsS-matrix of
ordereeq:

P+
ab

ab
. (5.27)

7Note that expression (5.21) can be written at anyx+, which means thatU†
λ also depends onx+ (it is a fixed

function of creation and annihilation operators, but these depend on the timex+). The dependence ofU†
λ on x+

is not marked explicitly here to make it easier for the reader to distinguish theU(x+) (scattering theory) from the
Uλ(x+) (RGPEP).

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



5.3 Calculation of S-matrix elements using light-front Hamiltonians for effective particles 85

I review below briefly how the same result emerges when one uses the effective Hamilto-
nianHλ . Hλ has three terms that may contribute: the order-evertices with form factors

Hλ >− = fλ , (5.28)

Hλ−< = fλ , (5.29)

and ane2 term

Hλ >−< = facF
(2)

abc . (5.30)

WhenHλ >−< contributes to the scattering matrix, due to energy conservationfac≡ 1 andF (2)
abc

simplifies to:

F (2)
aba =

P+
ba

ba
( f 2

ba−1) , (5.31)

(cf. (3.118)). There are thus two contributions: one fromHλ Y acting twice:

Hλ ,>−
1

E0−H0 + iε
Hλ ,−< = fλH>−

1
E0−H0 + iε

fλH−< , (5.32)

and the other fromHλ >−<:

Hλ >−<
∣∣
ac=0 = (1− f 2

ab)
1

E0−H0
H>−H−< (5.33)

The f 2
λ term cancels theHλ YHλ Y, and the rest reproduces theSmatrix obtained from the bare

Hamiltonian, (5.27).
The above example also shows that the analytic structure of the amplitude is not changed:

if one goes close to theiε-regularized pole,ab goes to zero (andfab ≈ 1). Thus the whole
contribution to the pole comes from (5.32), and the result for the residue in the pole is the same
as that calculated using the bare Hamiltonian (5.27).

5.3.3 Consequences of the theorem

I now turn to the two questions posed in the introduction to this chapter: (1) do counterterms
found through the RGPEP procedure lead to a divergence-free S matrix; and (2) is the S matrix
calculated using the effective HamiltonianHλ independent ofλ?

RGPEP fixes the counterterms in the initial bare HamiltonianH∆ by requiring that coef-
ficients of Hλ be independent of∆. This is not the same as requiring that the S matrix be
independent of∆, hence the question (1).

The theorem states, that bothHλ andH∆ produce the same S-matrix elements. Because
of form factors in interaction terms ofHλ , when one calculates scattering amplitude using
this Hamiltonian the results do not depend on∆ in corresponding order of perturbation theory
when∆→ ∞. These two statements, taken together, prove that the scattering amplitude can
be obtained using the bare renormalized HamiltonianH∆, and that the RGPEP counterterms
in H∆ lead to result which is not divergent. This is not a trivial result, as the counterterms
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were found based on different conditions, and because the ultraviolet cutoff dependence of the
S matrix comes from different expressions. For example, the factorZ∆, appearing both in the
LSZ formula and in the full propagator can be a divergent function of∆. Based on the theorem,
however, one would expect that∆-dependence will vanish. It is interesting to see how this
happens in practice, at least at low orders – which parts of the counterterms remove which
parts of the divergences. I investigate this in Sections5.6 and5.7 for a scalar theory in 5+1
dimensions in one loop.

The theorem also predicts that, when usingHλ to calculate the S matrix, the result will be
independent ofλ. The argument here is as follows: if one calculates a scattering amplitude
usingH∆, the result does not depend onλ since there is no such parameter inH∆. However,
the same result can be obtained usingHλ . This means that the effective HamiltonianHλ leads
to λ-independent results for the scattering matrix in a given order of perturbation theory in
appropriately defined coupling constantgλ, whose dependence onλ is calculated to the same
order. This, again, is not obvious without the theorem. For example, wave-function renormal-
ization factors for effective particlesZλ depend onλ, and there are many terms in the effective
Hamiltonian that do not appear in the bare Hamiltonian.

The example in Section5.3.2demonstrates in the lowest order that the scattering matrix
calculated usingHλ is indeed independent ofλ. This particular calculation was simple, because
energy conservation meant that, in this order, the factorfac was equal to 1. In higher orders,
however, corresponding form factorfλ is no longer equal to 1. The structure offλ is related
to the renormalization group flow. In particular, the particle mass used to definedac invariant
mass difference has to be the same as that used in the denominators of RGPEP (Eq. (3.81)),
i.e., the free mass fromH0. If it is not the same,fλ would not fulfill one of its main tasks:
to prevent the appearance of small energy denominators in the perturbative calculation of the
renormalization group flow ofHλ (cf. Eq. (3.116)). At the same time, in the denominators
of the S matrix, there are differences of energies that are defined using physical particle mass.
The real, physical energy ofin andout states (defined using physical masses of particles) is
conserved, and so the energy defined using free masses is not conserved:ac of fac is no longer
zero, andfac is not equal to 1. Calculating the S matrix using effective Hamiltonians will thus
not be as simple in higher orders as it is in the low-order case presented in Section5.3.2.

5.4 Simplest canonical example:φ3 in 1+1 dimensions

Perturbativeφ3 theory is the simplest example of QFT that one can usefully analyze. Noφ3

theory exists beyond perturbation theory due to the fact that the ground state collapses. How-
ever, before confronting more difficult theories, such as QCD, it is helpful to examine some
questions usingφ3 theory. Theφ3 theories in 1+1 and 5+1 dimensions presented below can thus
help us understand the perturbative structure of the S matrix, while ignoring the nonperturba-
tive problems of these theories will not lead to inconsistencies within the purely perturbative
analysis.

φ3 theory in 1+1 dimensions does not lead to any ultraviolet divergences in perturbation
theory, so no ultraviolet cutoff is required. The scattering amplitude can be calculated using the
canonical Hamiltonian without any modifications. Thus, in 1+1 dimension the Hamiltonian cal-
culation presented here is exactly the same as standard, finite and covariant Feynman diagrams.
Massive theory considered here is also infrared finite.

1+1 dimensional theory allows me to outline the calculation for the scattering amplitude,
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(a) (b)

Figure 5.3: In the scalar theory (5.34), scalar gluons and scalar photons mix in perturbation
theory through terms such as (a). Moreover, in 3+1 or more dimensions, such terms are diver-
gent and require counterterms such as (b). Such terms are not found in QCD coupled to QED
because of color conservation, and do not need to be discussed in this thesis.

even before the complexities of regularization and renormalization are introduced. This pro-
vides explicit examples of the general properties mentioned in previous sections. An example
is the connection between, on the one hand, the physical mass and normalization of the Hamil-
tonian eigenstate and, on the other hand, the position of the pole and value of the residue of a
full propagator. The 1+1 dimensional model also allows me to show all the steps that will be
later subject to alteration when the regularized and renormalized Hamiltonian vertices enter in
5+1 dimensions. In this way the description of the divergent 5+1 case (Sec.5.6 and5.7) can
focus on how counterterms fit in this general picture.

5.4.1 Hamiltonian

As a starting point I take the Lagrangian density:

L = ∑
j∈{e,q,g}

1
2

(
∂µφ j∂µφ j −m2φ2

j

)
+

1
2

(
∂µφγ∂µφγ−m2

γφ2
γ

)
− e

2
φ2

eφγ−
eq

2
φ2

qφγ−
g
2

φ2
qφg (5.34)

Theory defined this way describes four types of real scalar fields, mimicking an interaction of
electrons, quarks, photons and gluons. I will refer to these scalar fields by the names of the
particles they mimic (i.e.“scalar electrons”, “scalar quarks” etc.); the subscripts in Eq. (5.34)
correspond to these names. In 1+1 dimensional theory,g has dimension ofmass2 (this changes
in higher dimensions – see AppendixA.5).

In the Lagrangian above, the massm (common to scalar electrons, quarks and gluons), and
the scalar photon massmγ are different from zero. Having three particles of the same massm
simplifies the calculation considerably, without affecting issues of finiteness and covariance of
the S matrix. Note, also, that even though the same mass is chosen for scalar electrons, quarks
and gluons, their physical masses will differ because of the different interactions they are subject
to. The photon mass is chosen so that it is different from the gluon mass, in order to avoid
irrelevant complication of degenerate perturbation theory for physical masses (cf. Fig.5.3).

The Lagrangian contains three interaction terms:

• Electronsφe interact with photonsφγ; the coupling constant of this interaction ise,

• Quarksφq interact with photonsφγ with coupling constanteq,

• Quarksφq interact with gluonsφg with coupling constantg.

In each interaction there is one boson-like field (photon or gluon) and two fermion-like fields
(electrons or quarks). In the real world, for low-energy processes, the QED coupling constant
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analogous toe is much smaller than the QCD coupling constant analogous tog, while electrons
and quarks have electric charges of similar value. Therefore I choose for this model

e' eq� g . (5.35)

A canonical Hamiltonian derived from the Lagrangian (5.34), according to the rules described
in Section3.3.3, is:

H = H0 +He+Heq ++Hg . (5.36)

Here,H0 denotes the free Hamiltonian (kinetic energy):

H0 =
∫

[k]
m2

k+ b†
~k,e

b~k,e+
∫

[k]
m2

k+ q†
~k,q

q~k,q +
∫

[k]
m2

γ

k+ c†
~k,e

c~k,e+
∫

[k]
m2

k+ a†
~k,e

a~k,e , (5.37)

where[k] = dk+θ(k+)/(4πk+). Despite the different notation, all the creation operators (a† for
gluons,b† for electrons,c† for photons, andq† for photons) are bosonic operators in this model.
In 1+1 dimensions there are no perpendicular directions and the free energies [e.g. Eq. (3.48)]
simplify to mass squared overk+. Note thatk+ ranges from 0 to+∞ only.

All the interaction parts have two creation operators and one annihilation operator, or their
hermitian conjugation. They can thus be split into two types: those mimicking interactions that
involve creation or annihilation of a fermion-anti-fermion pair:

HYs=
∫

[123]δ̃(1+2−3)
[e

2

(
b†

1b†
2c3 +c†

3b1b2

)
+

eq

2

(
q†

1q†
2c3 +c†

3q1q2

)
+

+
g
2

(
q†

1q†
2a3 +a†

3q1q2

)]
, (5.38)

and those mimicking an emission or absorption of bosons by a fermion:

HYt =
∫

[123]δ̃(1+2−3)
[
e
(

b†
1c†

2b3 +b†
3b1c2

)
+eq

(
q†

1c†
2q3 +q†

3q1c2

)
+

+g
(

q†
1a†

2q3 +q†
3q1a2

)]
. (5.39)

The factor of one-half by which the termsHYs andHYt differ is a standard difference.

5.4.2 Properties of the state of one physical particle

Using the above Hamiltonian in perturbation theory, one can calculate the energy and structure
(i.e., Fock-space components) of a state of one physical particle. Although the eigenvalues of
H0 for scalar quarks, gluons and electrons are the same, one can use non-degenerate perturba-
tion theory, as the interactions do not mix corresponding one-particle degenerate states. For
example, a matrix of any powern of the interaction Hamiltonian vanishes between one-quark
and one-electron states:

〈e|(HI )
n |q〉 = 0 . (5.40)

Since we are dealing with perturbation theory only, we can consider quarks as physical
particles in the femto-universe [94], and look for the energy of one physical quark of momentum
k+ and the Fock-space structure of this state. A similar calculation can also be done for other
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particles. The general structure of the physical state of one quark expanded in perturbation
theory, beginning the perturbative expansion with the stateq† |0〉, is as follows:∣∣q,k+〉

phys = Nk

(∣∣q,k+〉(0)
phys+

∣∣q,k+〉(g)
phys+

∣∣q,k+〉(e)
phys+

+
∣∣q,k+〉(g2)

phys+
∣∣q,k+〉(ge)

phys+
∣∣q,k+〉(e2)

phys+ . . .

)
(5.41)

where superscripts indicate the order of the calculation andNk is the normalization factor. The
results for successive orders are:∣∣q,k+〉(0)

phys = q†
k+ |0〉 (5.42)∣∣q,k+〉(1)

phys =
1

E(0)−H0
H>−q†

k+ |0〉= {H>−}0 q†
k+ |0〉 (5.43)∣∣q,k+〉(2)

phys = Nk

({
H>− {H>−}0

}
0
q†

k+ |0〉
)

, (5.44)

where superscript(1) refers toeor g, and(2) to e2, egor g2. The normalization condition:

phys
〈
q,k+ | q, p+〉

phys=
(0)〈q,k+ | q, p+〉(0)

(5.45)

reduces to:

|Nk|2
(

1+δN(k+)
)

= 1 (5.46)

δN(k+) :=
1

〈k | p〉
〈k|H(g)

−<

(
1

E(0)−H0

)2

H(g)
>− |p〉 . (5.47)

Here, on the assumption thateq� g, I have kept only the most important terms – those of order
g2.

δN(k+) =
g2

4πm4

∫ 1

0

dx
x(1−x)

1[
1− 1

x(1−x)

]2 =
g2

18
√

3πm4

(
3
√

3−π
)

(5.48)

N =
1√

1+δN
≈ 1− 1

2
δN . (5.49)

The physical energy (i.e., the eigenvalue of the full Hamiltonian) is also expanded in a power
series:

Eq,k+ = E(0)
q,k+ +E(g)

q,k+ +E(e)
q,k+ +E(g2)

q,k+ +E(ge)
q,k+ +(e2)

q,k+ + . . . (5.50)

Up to orderg2 this reads:

m2
phys

k+ := E(0)
q,k+ +E(1)

q,k+ +E(2)
q,k+ =

m2

k+ +0+
1
〈k | k〉

〈k|Hg
−<

1

E(0)
k −H0

Hg
>− |k〉 (5.51)

E(2)
q,k+ =

1
k+

[
−g2

4πm2

∫ 1

0
dx

1
x2−x+1

]
=

1
k+

[
−g2

6
√

3m2

]
(5.52)

m2
phys = m2− g2

6
√

3m2
. (5.53)

Note that this equation applies only for smallg, and one thus avoids the problem thatm2
phys is

less than zero for a sufficiently largeg.
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5.5 Scalar model of the processe+e−→ hadrons

I now proceed to the calculation of a scattering amplitude that is analogous toe+e−→ hadrons.
I use the equation (5.11) and the perturbative expansion of theτ function appearing in this
expression.

Up to the ordere2g2, the scattering amplitude has the following terms:

Sβα =
1

(
√

Zq)2

[
+ + + +

]
.

(5.54)

The last of these terms comes from:

Hδm =
∫

[k]q†
kqk

m2
0−m2

phys

k+ (5.55)

which is an interaction term due to the fact thatHI in (5.16) is a difference ofH∆ and anH0 with
the physical mass (rather than the initial mass parameterm0). To simplify notation, henceforth
in this chapter I denote the physical mass asm, and use a symbolm0 to refer to the initial mass
parameter in (5.37).

In this model amplitude for the processe+e−→ hadronsI do not include the diagram:

(5.56)

because there are no similar terms in the case of QCD coupled to QED. This term is connected
to mixing of the scalar gluons and scalar photons in this model. Because of the structure of the
color SU(3) factors there are no terms of this type in QCD coupled to QED.

Tree diagram of order e2

The tree diagram
p1 k1

k2p2

in momentum space is:

τ̃(eqe)
ee→qq(p1, p2,k1,k2) = 4·

(
−i
2

)2

eqe2(2π)2δ2(pµ
1+ pµ

2−kµ
1−kµ

2)
i

p2
1−m2 + iε

i

p2
2−m2 + iε

×

× i

k2
1−m2 + iε

i

k2
2−m2 + iε

i
(k1 +k2)2−m2

γ + iε
θ(p+

1 )θ(p+
2 )θ(k+

1 )θ(k+
2 ) . (5.57)

Using equation (5.11), one obtains the matrix element:

out〈p1, p2 | k1,k2〉
(eqe)
in = −ieqe · 2(2π)2δ2(pµ

1 + pµ
2 − kµ

1 − kµ
2)

1
(k1 +k2)2−m2

γ + iε
(5.58)

Theθ factors automatically equal 1 when the physical momenta of the initial and final particles
are substituted forp1, p2, k1 andk2, (5.11). Theµ superscripts are+ or− in this expression.
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Tree diagram of odere2g

p2

k1

k2

p1

p3

The S-matrix element obtained in an analogous way in ordere2g is:

out〈p1, p2, p3 | k1,k2〉
(eqeg)
in = 4· (−i)3eq

2
e
2

g 2(2π)2δ2(pµ
1 + pµ

2 + pµ
3−kµ

1−kµ
2)×

×
(

i
(P− p1)2−m2 + iε

+
i

(P− p2)2−m2 + iε

)
×

× i
P2−m2

γ + iε
(5.59)

For the calculation of the total cross-section, it is convenient to introduce Feynmanx parameters,
defined as

xF
i :=

2Pµpiµ

s
. (5.60)

In this way:

out〈p1, p2, p3 | k1,k2〉
(eqeg)
in =

eqeg

s
2(2π)2δ2(pµ

1 + pµ
2 + pµ

3−kµ
1−kµ

2)×

×
(

1
(1−x1)+ iε

+
1

(1−x2)+ iε

)
1

s−m2
γ + iε

(5.61)

The same expression emerges from the old-fashioned light-front Hamiltonian perturbation the-
ory (i.e., with thek− integrated over residues).

Triangle e2g2 diagrams

p2
k2

k1

p1

The part of the scattering amplitude corresponding to this diagram is8:

out〈p1, p2, p3 | k1,k2〉
(eqeg2)

in,
= 4·(−i)4 e

2
eq

2
g2 2(2π)2δ2(kµ

1+kµ
2−pµ

1−pµ
2)

i
(k1 +k2)2−m2

γ + iε
×

×
∫

dk+dk−

2(2π)2

i
k2−m2 + iε

[
θ(k+) +θ(k+)

] i
(k+ p2)2−m2 + iε

i
(p1−k)2−m2 + iε

=

= eeqg2 2(2π)2δ2(k1 +k2− p1− p2)
1

s−m2
γ + iε

(−i)A(s). (5.62)

A(s) = i ·
∫

dk+dk−

2(2π)2

1
k2−m2 + iε

1
(p1−k)2−m2 + iε

1
(k− p2)2−m2 + iε

(5.63)

8 In this expression,θ(k+) andθ(k+) denote allθ-factors corresponding to a given ordering.
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The functionA(s) can be calculated by introducing Feynman parameters or by first replacing
integral overk− by a sum of residues. The result is:

Im(A(s)) = − 1
4m4

δ√
1−4δ

1−2δ
1−3δ

(5.64)

Re(A(s)) =
1

4πm4

δ
1−3δ

[
2π

3
√

3
+

1−2δ√
1−4δ

log

((
1+
√

1−4δ
)2

4δ

)]
, (5.65)

whereδ := m2/s< 1/4.

Diagrams with loops on external lines

p2

k1

k2

p1

+

When one adds these diagrams to the tree diagram, the latter can be factorized:

+ + =

=

[
1+ ·

(
+

)]
. (5.66)

The sum in the square brackets can be treated as the two first terms of a geometric series.
Summing such a series and multiplying the result by the propagator of the external line gives:[

1+ ·

(
+

)]
=

1

1−

(
+

)
i

p2−m2+iε

i
p2−m2 + iε

=

=
i

p2−m2 + iε+(−i)

(
+

) (5.67)

f := (−i)

(
+

)
. (5.68)

Note that, again, the functionsθ(k+) for each of the momenta do not prevent factorization. This
is because only one physical value ofk+ > 0 appears in this expression when it is inserted into
the LSZ formula (5.11).

The result is a scattering amplitude with a modified (“physical”) propagator (5.67) on the ex-
ternal lines. Loops on other external lines can be summed out in the same way. The propagator
(5.67) is analyzed in Section5.5.1.
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5.5.1 Relationship between quark eigenstates and properties of the prop-
agator

The loops on external lines (5.67) sum up to exactly what one would get if one simply con-
sidered a two-point Green’s function〈0|T(+)φ(x)φ(x′) |0〉, independently of the full S-matrix
calculation. The detailed calculation of this two-point Green’s function for a light-frontφ3

Hamiltonian is presented in AppendixI.1. Below, I analyze the result of this calculation.

Position of the pole

The full propagator is:

τ(0+g2)(x1,x2) =
∫

d2p
(2π)2e−ip(x1−x2) i

p2−m2 + iε+ f (p2)
(5.69)

f (p2) :=
g2

4πm2

δ√
δ−1

arctan
1√

δ−1
+
(
m2−m2

0

)
(5.70)

whereδ := 4m2/p2 is assumed to be in the regionδ ∈ (1,∞). The value of functionf at m2 is
zero. Therefore the pole of this propagator remains unchanged, namely the pole is inp2 equal
to the physical scalar quark mass,m2.

There is another way of writing the perturbation series. Namely, one could useH0 with
the initial massm2

0 for denoting the leading term in the evolution of asymptotic fields, and the
physical mass emerges when corrections are included. The only difference will be, that the
mass in denominator of Eq. (5.69) will be the initial massm0, and there would be no terms such
as:

(5.71)

in Eq. (5.54). Accordingly, f (p2) would not have the term
(
m2−m2

0

)
. Still the pole of the

propagator will be at:

p2
pole = m2

0− f (m2
0) = m2

0−
g2

m2
0

1

6
√

3
= m2 , (5.72)

which is exactly equal to the physical mass calculated from the Hamiltonian eigenvalue equa-
tion (5.53). Since this second way of writing the perturbation series is shorter (due to absence
of terms like (5.71)), this is the way how the expressions will be written in the 5+1 dimensional
case in Section5.7.

Residue

In the vicinity of the pole, functionf can be expanded into the Taylor series:

f (s) = f (m2)+
(

d f
ds

(m2)
)

(s−m2)+ . . . (5.73)

From this, the denominator of the full propagator (5.69) can be approximated near its zero by

p2−m2 + iε+ f (p2)
p2→m2

≈
(
p2−m2)[1+

d f
ds

∣∣∣∣
m2

]
. (5.74)

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .
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The derivative can be calculated using the explicit form of the functionf (p2), Eq. (5.70). Thus,
in the vicinity of the polep2→m2,

τ̃(0+g2)(p) =
Z

p2−m2 , (5.75)

with
√

Z = 1− g2

36
√

3πm4

(
3
√

3−π
)

, (5.76)

which agrees with the normalization factor of the physical state (5.49), as expected in (5.8).

5.6 One-loop calculation of a renormalized Hamiltonian for
effective particles in asymptotically free theory:φ3 in 5+1
dimensions

5.6.1 Canonical Hamiltonian

I consider here aφ3 QFT in 5+1 space-time dimensions defined by a Hamiltonian:

H = H0 +H∆
e +H∆

eq
+H∆

g +X∆ (5.77)

H0 =
∫

[k]
k⊥2 +m2

k+ b†
~k,e

b~k,e+
∫

[k]
k⊥2 +m2

k+ q†
~k,q

q~k,q + (5.78)

+
∫

[k]
k⊥2 +m2

γ

k+ c†
~k,e

c~k,e+
∫

[k]
k⊥2 +m2

k+ a†
~k,e

a~k,e , (5.79)

H∆
e =

e
2

∫
[123]δ̃(1+2−3) r∆

(
b†

1b†
2c3 +c†

3b1b2 +2b†
1c†

2b3 +2b†
3b1c2

)
(5.80)

H∆
eq

=
eq

2

∫
[123]δ̃(1+2−3) r∆

(
q†

1q†
2c3 +c†

3q1q2 +2q†
1c†

2q3 +2q†
3q1c2

)
(5.81)

H∆
g =

g
2

∫
[123]δ̃(1+2−3) r∆

(
q†

1q†
2a3 +a†

3q1q2 +2q†
1a†

2q3 +2q†
3q1a2

)
, (5.82)

where[k] = d4k⊥dk+/2(2π)5k+. As in the 1+1 dimensional model,He couples scalar analogs of
electrons to scalar photons,Heq couples scalar quarks to scalar photons, andHg couples scalar
quarks to scalar gluons. This is the simplest theory with asymptotic freedom and the structure
of diagrams that resembles realistic cases of QCD coupled to QED.

In comparison to the 1+1-dimensional case [cf. (5.36)], we have here integrations over four
additional perpendicular directionsk⊥. This leads to ultraviolet-divergent integrals and requires
regularization. The form of the regularization factorsr∆ is quite arbitrary. I choose a simple
regularization, depending on perpendicular momenta only, namely a factor:

r∆(x,κ) = exp(−2κ2/∆2) (5.83)

in each vertex (5.80)-(5.82), creating or annihilating a pair of particles of relative perpendicular
momentumκ⊥. The same regularization was used earlier for the bound-state problem discussed
in Chapter4.

I present here two different definitions of the effective Hamiltonians, and thus two ways
to perform the renormalization.The first approach, described in Section5.6.2, is based on
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a simplified RGPEP transformation. I construct the effective scalar-quark basis based on the
strong-interaction HamiltonianHg only, and express the full HamiltonianH∆ in terms of this
basis. This approach defines the effective scalar quarks on the basis of their strong interactions
alone, neglecting dressing due to electromagnetic interactions; it does not introduce effective
scalar photons or scalar electrons. This is a very natural approach, especially for the description
of the scattering of bound states: to describe the bound states of quarks itself one naturally looks
first at their strong interactions. These interactions define the degrees of freedom natural for a
strong bound-states description; the electromagnetic interactions are less important.

Thee+e−→ hadronsscattering amplitude up to ordere2g2 is unusual, in that all the diver-
gences that appear in it are due to strong corrections to electromagnetic interactions. The coun-
terterms from the simplified RGPEP, based on the strong interactions only, are thus sufficient
to make the amplitude finite up to the ordere2g2. This would not be true if the electromagnetic
interactions of quarks (e.g., in the ordere4) were included. Furthermore, the calculation is con-
siderably simpler, for example, it is enough to calculate theUλ transformation of RGPEP in the
second order (i.e.,g2). The drawback of this simplified approach is that the resulting Hamilto-
nian is applicable to only a limited set of processes. Details of the formulae for this approach
are given in AppendixC.3.

In the second approach, described in section5.6.3, the RGPEP is based on the entire
Hamiltonian . It defines counterterms and the effective Hamiltonian applicable to all processes
at a given order of perturbation theory. To calculate all the counterterms needed for a description
of thee+e−→ hadronsscattering amplitude to ordere2g2, it is now necessary to apply RGPEP
to the third order, rather than just the second. Although this approach is more complicated,
it turns out that it leads to exactly the same counterterms contributing to thee+e−→ hadrons
amplitude in the ordere2g2. Other counterterms would only be needed if one wanted to perform
higher-order calculations (e.g., thee4 correction to this amplitude) or to describe processes other
thane+e−→ hadrons; such counterterms could only be found using the full RGPEP.

Both approaches are presented below up to orders that allow one to calculate counterterms
of the orderg2 andeg2, since this is sufficient for calculating thee+e−→ hadronsamplitude
up to the ordere2g2. It should be stressed that I calculate here counterterm operators in a
Hamiltonian, which in general are not the same as counterterms for a specific term in an S
matrix (cf. Sec.5.3.2showing a simple example of the difference between an S-matrix element
and a full off-shell operator).

5.6.2 RGPEP based on strong interactions only, up to orderg2

Interactions of scalar quarks and scalar gluons

In the simplified approach, RGPEP is based on the strong-interaction Hamiltonian. Thus, the
resulting strong part of the effective Hamiltonian (i.e., ordergn) is similar in its structure to the
effective Hamiltonian for Yukawa theory, as described in Chapter4. Below, I list the corre-
sponding terms (see Sections4.6and3.4for details).

The zeroth order Hamiltonian for quarks and gluons does not change:

Hλ 0,q,g = H0,q,g . (5.84)

In the first order, (g), the effective HamiltonianH (g)
λ is simply the sum of all strong vertices

(Eq. (5.82)) with similarity form factorsfλ.
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96 Covariance of scattering amplitudes calculated with an effective Hamiltonian

In the second order, (g2), there are two kinds of terms that contribute to the scattering am-
plitude in question: The first kind is an effective “potential” term, that is, the term with two

creation operators and two annihilation operators, (not divergent and not requiring any

counterterms). The second kind is an effective scalar-quark mass term . This term is
quadratically divergent in∆:

Hλ ,δm =
∫

[1]b†
1b1

δm2
λ

p+
1

=

= f 2
ab

a b

J
−

J
+X∆

δm (5.85)

δm2
λ =

g2

2(2π)5P+

∫
dxd4κ

x(1−x)
P+

ab

ba
( f 2

ba−1) r2
∆ +δm2

∆ +δm2
phys, (5.86)

where the last two terms come from the counterterm. The rule for constructing counterterms is
that they should remove regularization dependence from the effective Hamiltonian. The part of
the integral (5.86) with the form factorfλ is not sensitive to the cutoffr∆, but the part without
fλ is quadratically divergent. The counterterm required in the canonical HamiltonianH∆ is
therefore:

X∆
δm =

∫
[1]b†

1b1
δm2

∆ +δm2
phys

p+
1

= =

=

a b

J
+ (5.87)

δm2
∆ =

g2

2(2π)5P+

∫ 1

0

dx
x(1−x)

∫ ∞

a
d4κ

P+
ab

ba
(+1) r2

∆ = (5.88)

=
g2

(4π)3

[
∆2

4
− 5

6
m2 ln

∆2

m2 +finite terms

]
. (5.89)

The finite part of the counterterm,δm2
phys, has the following physical interpretation: the energy

of one physical scalar quark in perturbation theory usingH∆ is:

E(2) =
p⊥2 +m2

p+ +
1

〈p | p〉
〈p| +

I
|p〉= (5.90)

=
p⊥2 +m2 +δm2

phys

p+ =
p⊥2 +m2

phys

p+ . (5.91)

Hence, the finite part of the countertermδm2
phys shifts the scalar-quark mass from the initial

valuem2 to the physical value:

δm2
phys= m2

phys−m2 . (5.92)

The same value of the physical mass is obtained if one calculates it using the effective Hamilto-
nianHλ : the lambda dependent part of the effective mass term (the part of Eq.(5.85) with f 2

ab)
cancels with the effective verticesfλHY, and the result for the physical one-particle Hamiltonian
eigenvalue is again (5.91).
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Interactions of scalar electrons and scalar photons

The effective HamiltonianHλ is calculated by expressing bare-particle creation and annihila-
tion operators in terms of effective-particle creation and annihilation operators. However, in the
simplified RGPEP considered here, only the scalar-quark and scalar-gluon degrees of freedom
change. Thus, the interaction of the scalar photons that do not involve scalar quarks, and the
interactions of the scalar electrons in the canonical Hamiltonian, are the same in the simplified
effective Hamiltonian.

As a consequence, theH∆
e interactions of scalar electrons are not renormalized. The theory

defined in this simplified way is thus sufficient to describe quantities such as the scattering
amplitude similar toe+e−→ hadronsup to the ordere2g2, but not sufficient for other purposes.

Interactions of scalar quarks with scalar photons

effectiveHλ
Hcan no change u1Hcan uHHHcan

The above terms9 emerge in the effective Hamiltonian in the following way: the effective
Hamiltonian expressed in terms of the effective particles is simply equal to the canonical Hamil-
tonian expressed in terms of the bare particles. The forms of both Hamiltonians differ, because
the same operator expressed in terms of two different operator bases has two different forms.

Having derived the bare creation operators expressed in terms of the effective ones (see
AppendixC.3), one can simply insert this expression into all terms of the canonical Hamiltonian
to get the effective Hamiltonian. The table above shows all the terms that appear in the effective
Hamiltonian when the bare scalar quarks are re-expressed in terms of the effective scalar quarks
and gluons.

One might also expect terms corresponding to the following diagram: (coming from

the mass counterterm contribution tou(g2)
H2 He), because they would be of the orderg2e, which is

included inHλ . However, because of the structure of the RGPEP transformationUλ, there are
no such terms inHλ . Both terms markeduHHHcan in the above table are divergent, and they
require counterterms.

H eg2

λ
= F̃abad = g2eq

2

∫
[123]a†

1a†
2a3δ̃(1+2−3) r∆ ×

× 1

p+
1

∫
[45]δ̃(4+5−1)

(
−1

2

)
(p+

1 )2(
M2

45−m2
)2(1− fba)2 r2

∆ . (5.93)

There is also another term, with(1↔ 2), leading to exactly the same contribution. The tilde
over F̃ indicates that it refers to the simplified RGPEP transformation (F without a tilde will

be used to refer to the full RGPEP in Sec.5.6.3). In this term, r2
∆ = e−dηκ2/∆2

(dη = 4 for
regulators (5.83), but this is arbitrary; finitedη-dependence should also in principle be removed

9 A similar table of terms for QCD coupled to QED is given in the AppendixF.1.2.
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from the result). The regularization-dependent part of this expression has the following form:

H eg2

λ + ,∆
=

∫
[123]a†

1a†
2a3 r∆ δ̃(1+2−3)

(
γ

,∆
+ γ

,∆

)
(5.94)

γ
,∆

+ γ
,∆

= −
eqg2

2(4π)3

1
6

[
ln

∆2

m2 −6
∫ 1

0
dx x(1−x) lndη +const.

]
(5.95)

This requires a countertermX , of exactly the same form and opposite sign. This is an

example of a term inHλ , which in the simplified RGPEP does not feature the overall formfactor
fλ in electromagnetic vertices. This term contains a regularization factorr∆ that cannot be
replaced by 1 (i.e., by its limit for∆→ ∞ whenλ is finite).

The second divergent part is the triangle term:

H eg2

λ
= F̃abcd (5.96)

TheF̃ function is given explicitly in Eq. (C.72). Its divergent part is:

H eg2

λ ,∆
=

∫
[123]q†

1q+
2 q3δ̃(1+2−3)γ

,∆
(5.97)

γ
,∆

=
eqg2

(4π)3x2

∫ 1

x1

dx(1−x)
∫ ∞

0
dz

z
(z+m2)2 r∆ (5.98)

r∆ denotes here the product of three regulators corresponding to the three Hamiltonian vertices
of the triangle term (5.96), in the effective Hamiltonian. For the choice of regulators (5.83) r∆
in this expression is:

r∆ = exp
(
−cη

z
∆2

)
, (5.99)

with

cη =
(

2+
x2

1

x2

)
. (5.100)

Although the specific value ofcη changes the result only in a finite way,cη is arbitrary and all
cη-dependent parts ofHλ should be removed by counterterms. After adding contributions of
both orderings of the scalar-gluon emission and absorption vertices,and , one obtains:

γ(
+

)
,∆

=
g2eq

2(4π)3

{
ln

∆2

m2 −2

[
1
x2

∫ 1

x1

dx(1−x) lncη(x1)+

+
1
x1

∫ 1

x2

dx(1−x) lncη(x2)
]
+const.

}
. (5.101)

A countertermX of opposite sign is required inH∆.

5.6.3 RGPEP based on entire Hamiltonian, up to ordersg2eand ge2

Section5.6.2described the construction of the effective Hamiltonian based on the introduction
of effective scalar quarks as required by the strong coupling Hamiltonian.
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In a fully renormalized theory, however, it is necessary to define the effective interactions
in such a way that they all contain form factors (cf. Sec.3.4). This requires the introduction
of effective particles of each type – not only quarks and gluons, but also effective photons
and electrons. Moreover, when constructing effective quarks one has to take into account both
their strong and their electromagnetic interactions. Below, I show only the terms needed for the
comparison it with the simplified approach above, and in order to calculate thee+e−→ hadrons
scattering amplitude up to the ordere2g2.

In this full approach, bothH∆ andUλ now involve all the interactions, and thus the effective

Hamiltonian has more terms coming from more sources. For example, a term10 comes
from: (1) H∆ of orderg, andu(eg); (2) H∆ of orderg, u(g) andu†(e); (3) H∆ of order 0 (the free

part) andu(g2e); and so on. This can be compared to the previous case, wherecame from
only one source:H(e) andu(g2).

All the terms of the effective Hamiltonian given below are derived from the general formulae
of the AppendixC.2.

In the zeroth order one gets the sum of free Hamiltonians.
In the first order one gets all theHY vertices with form factorsfλ.
In the second order there are three terms which are not divergent:

H (e2)
λ = facF

(2)
abc ·H

(e)H(e) = facF
(2)

abc · (5.102)

H (eg)
λ = facF

(2)
abc ·H

(g)H(e) = facF
(2)

abc · (5.103)

H (g2)
λ ,V = facF

(2)
abc ·H

(g)H(g)∣∣
V = facF

(2)
abc · (5.104)

and one term that is divergent, namely the term which shifts the effective mass of the scalar-
quark:

H g2
λ ,δm = F (2)

aba · . (5.105)

(I do not list here divergent terms which do not contribute to theg2e2 S matrix, for example
terms changing effective mass of scalar electrons). The scalar-quark mass shiftH g2

λ ,δm is exactly
the same as the term described in the previous section (cf. Eq. (5.85)). This means that a
counterterm is needed, which has the form:

X∆
δm =

a b

J
+ . (5.106)

10“A term ” means a term inHλ ∼ q†q†a, coming from two interactions of orderg and one of ordere, and
with momentum configuration corresponding to this form of the diagram, enforced by correspondingδ-functions.
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In the third order (i.e., terms withF (3)), there is one term that does not diverge. It is of
ordere2g:

H e2g

λ
= fadF (3)

abcd . (5.107)

There are also two divergent terms of orderg2e– the triangle term:

H eg2

λ
= fadF (3)

abcd , (5.108)

and the scalar-quark self-interaction term:

H eg2

λ
= fadF (3)

abad . (5.109)

In the first of these,H eg2

λ
, the divergence comes from the parts ofF (3)

abcd (C.59)-(C.60) that

do not have anyfλ factors. These are:

F (3)

+ ,∆
= Πbcd

{
πabd

[
−1

ab2 +bc2 +cd2 +bd2 +
1

ab2 +bd2

]
+

+ζdb
(
bc2 +cd2)[ −1

ab2 +bc2 +cd2 +
1

ab2 +bc2 +cd2 +bd2

]}
+

+Πabc
{

πacd

[
−1

ab2 +bc2 +cd2 +ac2 +
1

ac2 +cd2

]
+

+ζac
(
ba2 +bc2)[ −1

ab2 +bc2 +cd2 +
1

ab2 +bc2 +cd2 +ca2

]}
,(5.110)

where the subscript∆ in F (3)

+ ,∆
indicates that only the divergent part is listed. Definitions

of the momenta combinations:Π, π and ζ, are given in Eqs. (C.49)-(C.51). I denote the
momenta in the triangle term as shown in the figures:

x2P−κ⊥

12

P
xP+κ⊥

(1− x)P−κ⊥

x1P+κ⊥

12

(x− x1)P+(κ⊥
−κ⊥

12)

a b c d

(5.111)
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5.6 One-loop calculation of a renormalized Hamiltonian for effective particles in 5+1 . . . 101

In Eq. (5.110), the following combinations of momenta appear:

M 2 :=
κ2 +m2

x(1−x)
= M 2

c (5.112)

ba = x2
2

(
κ− 1−x

x2
κ12

)2
+m2

(x−x1)(1−x)
−m2→

x2
2x

x−x1
M 2 (5.113)

cd = M 2−m2
γ →M 2 (5.114)

ca = M 2−M 2
12→M 2 (5.115)

bc → x(1−x)x1

(x−x1)
M 2 (5.116)

bd → xx2

x−x1
M 2 (5.117)

ad = M 2
12−m2

γ (fixed), (5.118)

where the limits in each case mean the ultraviolet limit of the intermediate momenta,M 2�
m2,s,M 2

12. Substituting these limiting values toF (3)

+
, Eq. (5.110), leads to:

F (3)

,∆,M 2�m2,s
=

x−x1

xx2

(P+)2

M 4 . (5.119)

Using this limit, the divergent part ofG (3) corresponding to the triangle diagrams can be written
as:

G (3)

,∆
=

∫
[123]δ̃(1+2−x)q†

1q†
2a3γ

,∆
(5.120)

γ
,∆

= g2eq
1

2(2π)5P+

∫
dxd4κ

x(1−x)(x−x1)P+ r∆ F (3)

,∆
=

=
g2eq

2(2π)5

Ω4

2
1
x2

∫ 1

x1

dx(1−x)
∫ ∞

a

dz
z

exp
(
−cη

z
∆2

)
. (5.121)

Above expressions, and in particular definitions of momenta (5.111), referred to only one term,

. In fact, there is another term with different ordering of the interaction vertices, .
Adding the effective Hamiltonian terms coming from both orderings leads to:

γ(
+

)
,∆

=
g2eq

2(4π)3

{
ln

∆2

m2 −2

[
1
x2

∫ 1

x1

dx(1−x) lncη(x1)+

+
1
x1

∫ 1

x2

dx(1−x) lncη(x2)
]
+const.

}
(5.122)

whereconst. denotes a constant independent of regularization. The choice of regularization
(5.83) means that

cη(x1) =
(

2+
x2

1

x2

)
(5.123)

but this choice is arbitrary, and properly chosen counterterms should also remove the finite
dependence on regularization (see also [40]).
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102 Covariance of scattering amplitudes calculated with an effective Hamiltonian

The second divergent third-order contribution corresponds to the following diagram:

x1 � κ �
12x � κ

�

�
1 � x � � � κ

�

a b a d
(note the repeated indexa). The divergent part of the correspondingF (3)

abad is:

F (3)
abad,∆ = Πbad

{
πabd

[
−1

2ab2 +ad2 +bd2 +
1

ab2 +bd2

]
+

ζdb
(
ba2 +ad2)[ −1

2ab2 +ad2 +
1

2ab2 +ad2 +bd2

]}
+

+ζbaP
+
dada

−1
da2 +ζbaP

+
dada

1
2ab2 +ad2 (5.124)

The underlined term could lead to quadratic divergence, but there is another contribution toGλ
coming from the mass counterterm,

G (3) = P+
dada

fda−1
da2 (−1) =

= P+
da

fda−1
da

(−1)
P+

ba

ba
+P+

da
fda−1

da
(−1) (5.125)

The first part of this expression cancels exactly the underlined part in Eq. (5.124). The second
part does not depend on∆. Substituting the ultraviolet limits:

M 2 :=
κ2 +m2

x(1−x)
= M 2

b,loop (5.126)

ba =
κ2 +m2

x(1−x)
−m2→M 2 (5.127)

ad =
κ2

12+m2

x1x2
−m2

γ (fixed) (5.128)

bd =
ba
x1

+ad→ M 2

x1
(5.129)

to all the remaining parts of Eq. (5.124) leads to the following form of the part ofF (3) which

leads to the divergence:

F (3)

,∆
= −

x2
1(P

+)2

2M 4 , (5.130)
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5.6 One-loop calculation of a renormalized Hamiltonian for effective particles in 5+1 . . . 103

which in turn leads to a logarithmic divergence in the effective Hamiltonian term. As a result,
the divergent part of this term inHλ takes the following form:

G (3)

+ ,∆
=

∫
[123]δ̃(1+2−x)q†

1q†
2a3 r∆ γ

,∆
+ γ

,∆
(5.131)

γ
,∆

+ γ
,∆

= −
g2eq

2(2π)5

Ω4

2
· 1
2

∫ 1

0
dx x(1−x)

∫ ∞

a

dz
z

exp
(
−dη

z
∆2

)
= (5.132)

= −
g2eq

2(4π)3

[
1
6

ln
∆2

m2 −
∫ 1

0
dx x(1−x) lndη +const.

]
(5.133)

Again, const. denotes the parts that do not depend on the regularization. In the case of the
regulators considered here,dη ≡ 4, but since regularization is arbitrary,dη could be different –
it introduces a finite dependence on regularization and must thus be removed by counterterms.

5.6.4 Summary of counterterms

The complete renormalized canonical Hamiltonian is given in Eq. (5.77) with a mass countert-
erm of orderg2 and vertex counterterms of orderg2eq. The mass counterterm is:

Xδm =
∫

[p]b†
pbp

δm2
∆

p+ , (5.134)

whereδm2
∆ is given in Eq. (5.89). The vertex counterterms are:

X(g2e)
>− = X(g2e) +X(g2e) (5.135)

X(g2e) =
∫

[123]δ̃(1+2−3)q†
1q†

2a3 r∆

(
−γ

,∆
+(1↔ 2)+finite parts

)
(5.136)

X(g2e) =
∫

[123]δ̃(1+2−3)q†
1q†

2a3 r∆

(
−γ

,∆
+(1↔ 2)+finite parts

)
, (5.137)

whereγ
,∆

is given in Eq. (5.133) andγ is given in Eq. (5.122).11

11In orderg2e there are also logarithmic counterterms corresponding to a term:

Hλ >−O− = F (3) .

This is not given here, as the corresponding terms in the S matrix are not analyzed in Section5.7.
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104 Covariance of scattering amplitudes calculated with an effective Hamiltonian

5.7 Scalar model of the processe+e−→ hadrons

I calculate below a scattering matrix for a scalar analogue of a processe+e− → hadronsus-
ing Hamiltonian (5.77) in 5+1 dimensions. This model amplitude looks similar to the 1+1
dimensional case, i.e. Eq. (5.54). However, there are some important differences related to
the fact that in 5+1 dimensions regulators (5.83) were introduced into the Hamiltonian together
with counterterm operators (5.134)-(5.137) constructed in the canonical Hamiltonian based on
RGPEP. The questions I address in this section are: (1) do the counterterms found using RGPEP
without referring to the S matrix lead to a finite S matrix? And (2) can finite parts of these coun-
terterms be chosen in such a way that the resulting S matrix is covariant? The answer to both
questions is found to be positive.

Up to ordere2g2, the scattering amplitude has the following terms:

Sβα =
1

(
√

Zq)2

[
+ + +

X
+

+ + +
X

]
, (5.138)

where terms like those in Eq. (5.71) were excluded, and external-line propagators have poles
in initial massesm0.12 All terms with loops are divergent. They are defined using a regularized
Hamiltonian, and depend on the regularization in both a divergent and a finite way.

In the above model amplitude for the processe+e−→ hadronsI do not include the following
diagrams:

+ (5.139)

because there are no similar terms in the case of QCD coupled to QED (cf. (5.56)).

5.7.1 Triangle S-matrix terms and triangle Hamiltonian counterterms

I start with analyzing the triangle term and triangle Hamiltonian counterterm contribution to the
S matrix:

+
X

. (5.140)

In this section I show, that this sum is finite, and that a proper choice of finite parts of the triangle

countertermX(g2e) (Eq. (5.137)) in the HamiltonianH∆ makes the part of S matrix shown in

(5.140) covariant.

12Alternatively, one may use the physical mass in all propagators, and include terms like those in Eq. (5.71).
This leads to exactly the same result as presented in this section, when the result is expressed in the same set of
parameters in ordere2g2.
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5.7 Scalar model of the processe+e−→ hadrons 105

The first part of (5.140) is:

= out〈p1, p2, p3 | k1,k2〉
(eqeg2)

in,
=

= eeqg2 2(2π)2δ2(k1 +k2− p1− p2)
1

s−m2
γ + iε

(−i)A(p+,⊥
2 , p+,⊥

1 , r∆ ) , (5.141)

where the functionA(p+,⊥
2 , p+,⊥

1 , r∆ ) is:

A(p+,⊥
2 , p+,⊥

1 , r∆ ) = i
∫

d6k
(2π)6

{[
∏

vertexa
r∆,a(k+,⊥, p+,⊥

2 , p+,⊥
1 ) ∏

internal lineb

θ(k+
b )

]
×

× 1
k2−m2 + iε

1
(p1 +k)2−m2 + iε

1
(p2−k)2−m2 + iε

+

. +

[
∏

vertexa
r∆,a(k+,⊥, p+,⊥

2 , p+,⊥
1 ) ∏

internal lineb

θ(k+
b )

]
×

× 1
k2−m2 + iε

1
(p1−k)2−m2 + iε

1
(p2 +k)2−m2 + iε

}
, (5.142)

d6k = dk+dk+d4k⊥ = dk+dk−d4k⊥/2, and sums go over three verticesa connected by three
linesb in the loop.

I shall review briefly how this expression is derived using regularized Hamiltonians. The
S-matrix triangle diagrams come from a term with the fourth power ofHI in the expansion of

the exponent in Eq. (5.15). The twoH(g)
I which lead to the two leftmost vertices can be ordered

in two ways, corresponding to the two terms (5.144). For each of these terms separately, light-
front denominators combine withp+ of a relevant line to a factor like in a Feynman propagator
(see also Fig.3.4). The regulators act differently for the two orderings. The orderings are distin-
guished even in the 6-dimensional form (5.142) by the value of the three-momenta, namely by
whether thep+ momentum of the quark in the loop is smaller or larger than thep+ momentum
of the outgoing quark (p+

1 −k+ or p+
1 +k+, respectively).

In the first part of (5.142), one can change the signs of all components ofk, and the combined
expression reads:

A(p+,⊥
2 , p+,⊥

1 , r∆ )= i
∫

d6k
(2π)6

{[
∏

vertexa
r∆,a(−k+,⊥, p+,⊥

2 , p+,⊥
1 ) ∏

internal lineb

θ(−k+
b )

]
+

. +

[
∏

vertexa
r∆,a(k+,⊥, p+,⊥

2 , p+,⊥
1 ) ∏

internal lineb

θ(k+
b )

] }
×

× 1
k2−m2 + iε

1
(p1−k)2−m2 + iε

1
(p2 +k)2−m2 + iε

. (5.143)

The expression (5.143), derivable from a regularized Hamiltonian, can be analyzed in the
following way. There are three poles when integrating overk−. Depending on the value ofk+

compared toP+ and p+
1 , these poles can all be on the same side of theRe k− axis (and the

result of the integration will be zero) or one of the poles can be on a different side than the other
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106 Covariance of scattering amplitudes calculated with an effective Hamiltonian

two. The contour of integration can be closed in the half-plane with one pole. The non-zero
contributions correspond to theθ-functions in (5.143). Replacing each integral overk− with
(2πi) times the residue with appropriate signs leads to a sum of two diagrams:

[
1

ab
x2

+ iε
1

ac+ iε
(P+)2

]a b c

+

[
1

ab
x1

+ iε
1

ac+ iε
(P+)2

]a b c

,

(5.144)

where in both terms there are only five-dimensional (one+ and four⊥ dimensions) integrals,
and the diagrams include regularization corresponding to theθ-functions. The value ofk+

determines which of the S-matrix diagrams of (5.144) is obtained.
Note that integration overk− from −∞ to +∞ is carried out in the presence of regulators

r∆ , and the result is well defined only because the regulators are there. The six-dimensional
Feynman structure is in one-to-one correspondence with the Hamiltonian perturbation theory
because the regulators do not depend onk− (cf. [107]).

Attempting a similar construction of regularized Hamiltonians and a corresponding S matrix
using equal-time Hamiltonians would lead to the following problem. The contributing Hamilto-
nian regularization depends on whether there are terms corresponding to the first or the second
diagram (5.144). But these diagrams in the equal-time formalism are not distinguished by the
three-momentum only. When using equal-time momenta, both orderings have to be summed up
to arrive at the standard form of the Feynman propagatorsi/(k2−m2+ iε), and this would not be
possible for ordering-dependent regularization (such as introduced by a regulated Hamiltonian).
In fact, in an equal-time calculation there would be many more orderings, arising from terms
that create or annihilate three particles. However, it is not clear how to keep track of different
orderings using three-momenta, although one can easily keep track of different orderings using
k+ in the light-front approach.

One can use the kinematics, Eqs. (5.112)-(5.118), to obtain the leading ultraviolet (diver-
gent) part of (5.144). For example, the first term in (5.144) simplifies to:[

1
ab
x2

+ iε
1

ac+ iε
(P+)2

]
≈ x−x1

x2x
(P+)2

M 4 . (5.145)

This is exactly equal to the divergent part ofF (3) (cf. Eq. (5.119)). Thus, when calculating the

S matrix, the RGPEP countertermX(g2e) gives a diverging contribution with exactly the same

value and the opposite sign, and it removes the divergence from the triangle diagram of theS
matrix.

To summarize: When calculating the S matrix using the regularized Hamiltonian, one de-
rives the expression for the functionA(p+,⊥

2 , p+,⊥
1 , r∆ ). This function has imaginary and real

parts. The imaginary part comes from the poleac= 0 in (5.144). This means that the invariant
mass of the intermediate state,c, is not large, and this part is not sensitive to the value and
form of the regulatorr∆. However, the real part is divergent for∆→ ∞. The logarithmic di-
vergence (5.145) comes from the same expression as in the corresponding term in the effective
Hamiltonian (5.119).
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5.7 Scalar model of the processe+e−→ hadrons 107

Note that the scattering amplitude (5.144) and the effective Hamiltonian term (5.108) con-
tain different functions of external momenta. For example, the scattering amplitude is a complex
function, with imaginary part coming from the pole inac= 0, avoided by an introduction ofiε.
In the effective Hamiltonian, the corresponding term is real: the regionac≈ 0 does not con-
tribute because each such small denominator is accompanied by a factor of the type 1− fac,
which vanishes in the limitac→ 0 faster than the denominator. Also, for momenta other than
near the pole the Hamiltonian and S-matrix expressions are different. Nevertheless (5.145) and
(5.119) show that the ultraviolet parts of both the S matrix and in a coefficient inHλ are the
same. Because of this feature, the Hamiltonian counterterm which removes∆-dependence from
Hλ , also removes such dependence from the S matrix.

I now turn to the question of choosing the finite part of the countertermX(g2e) .

Using Feynman parametersy1 andy2, the triangle contribution to the S matrix can be writ-
ten as:

A(p+,⊥
2 , p+,⊥

1 , r∆ ) = i
∫ 1

0
dy1

∫ 1−y1

0
dy2

∫
d6l

(2π)6×

×

{[
∏

vertexa
r∆,a(l+,⊥, p+,⊥

2 , p+,⊥
1 ) ∏

internal lineb

θ[−(l+b −y1p+
1 +y2p+

2 )]

]
+

+

[
∏

vertexa
r∆,a(l+,⊥, p+,⊥

2 , p+,⊥
1 ) ∏

internal lineb

θ(l+b −y1p+
1 +y2p+

2 )

] }
×

× 2

(l2 +sy1y2−m2 [(y1 +y2)2− (y1 +y2)+1]+ iε)3 (5.146)

where
lµ = kµ+y1pµ

1−y2pµ
2 , (5.147)

andl+b = k+
b +y1p+

1 −y2p+
2 for internal lineb. Note that this is not a covariant 6-dimensional

expression: it depends on the external momenta not only through the invariant masss= (p1 +
p2)2 in the denominator andθ-functions, but also through the regulating factorsr∆ , which
depend on the perpendicular and plus momenta of the outgoing scalar quarks.

The regulators in (5.143) depend onk+,⊥, p+,⊥
2 , p+,⊥

1 only, and not on the minus compo-
nents. Since the variable change (5.147) does not mix+ and⊥ components of momenta with
k−, the regulators in the form (5.146) depend onl+ andl⊥ only, and not onl−. Note, however,
that one cannot integrate this expression overl− over residues: this would suggest, that the re-
sult is zero, because there is only one triple pole inl− with residue equal to zero. But one cannot
integrate overl− whenl+ = 0. This feature of expressions of the type (5.146) was analyzed by
Yan [23]. Yan and his collaborators obtained similar integrals, in the sense that they combined
the denominators in a similar way. However, their integrals did not involve regulator factors
such as these used here. Yan considered a formal expression for the S matrix, and discussed
loop-by-loop regularization and renormalization of the S-matrix diagrams only.

The triangle S-matrix diagram (5.141) is combined with the contribution to the S matrix
from the triangle counterterm in the Hamiltonian. The question is whether this counterterm can
produce a covariant answer with some choice of its finite part. The answer, as shown below, is
that indeed it can. The requirement is thatX contribution to the S matrix be equal to the

negative of (5.146) for some fixed value ofs. Accordingly, I choose the counterterm operator

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



108 Covariance of scattering amplitudes calculated with an effective Hamiltonian

in H∆ in the following form:

X =
∫

[123]δ̃(1+2−3)q†
1q†

2a3(−1)γ∆(p+,⊥
1 , p+,⊥

2 ,∆) . (5.148)

γ∆(p+,⊥
1 , p+,⊥

2 , r∆ ) = g2eq i
∫ 1

0
dy1

∫ 1−y1

0
dy2

∫
d6l

(2π)6×

×

{[
∏

vertexa
r∆,a(l+,⊥, p+,⊥

2 , p+,⊥
1 ) ∏

internal lineb

θ[−(l+b −x1p+
1 +x2p+

2 )]

]
+

+

[
∏

vertexa
r∆,a(l+,⊥, p+,⊥

2 , p+,⊥
1 ) ∏

internal lineb

θ(l+b −x1p+
1 +x2p+

2 )

] }
×

× 2(
l2 +s2

0x1x2−m2 [(x1 +x2)2− (x1 +x2)+1]+ iε
)3 , (5.149)

wheres0 < 4m2. For these values ofs0, γ∆(p+,⊥
1 , p+,⊥

2 , r∆ ) is real. s0 is a fixed parameter,

but γ∆(p+,⊥
1 , p+,⊥

2 , r∆ ) continues to depend on momenta because of the regulating factorsr∆ .
I will show that the the above choice ofγ is in agreement with RGPEP.

When one calculates scattering amplitude using the counterterm, one gets an expression
similar to (5.141), but withg2eqA replaced by the sum:

g2eqA(p+,⊥
2 , p+,⊥

1 , r∆ )+ γ∆(p+,⊥
1 , p+,⊥

2 , r∆ ) = g2eq i
∫ 1

0
dy1

∫ 1−y1

0
dy2

∫
d6l

(2π)6×

×

{[
∏

vertexa
r∆,a(l+,⊥, p+,⊥

2 , p+,⊥
1 ) ∏

internal lineb

θ(−(l+b −y1p+
1 +y2p+

2 ))

]
+

+

[
∏

vertexa
r∆,a(l+,⊥, p+,⊥

2 , p+,⊥
1 ) ∏

internal lineb

θ(l+b −y1p+
1 +y2p+

2 )

] }
×

×
[ 2

(l2 +sy1y2−m2 [(y1 +y2)2− (y1 +y2)+1]+ iε)3−

− 2

(l2 +s0y1y2−m2 [(y1 +y2)2− (y1 +y2)+1]+ iε)3

]
. (5.150)

The two terms in the square brackets correspond to the two terms in (5.140). Both terms lead
to exactly the same logarithmic divergence and their difference is finite. One can take the
limit ∆→ ∞, that is,r∆ ≡ 1. Then the result is finite and becomes covariant: the dependence
on the external momenta comes only throughs = PµPµ in the denominator of the first term
in Eq. (5.150):

(g2eq)A(p+,⊥
2 , p+,⊥

1 , r∆ )+ γ∆(p+,⊥
1 , p+,⊥

2 , r∆ ) = (g2eq)A(s) , (5.151)

A(s) = i
∫ 1

0
dy1

∫ 1−y1

0
dy2

∫
d6l

(2π)6 ×

×
[ 2

(l2 +sy1y2−m2 [(y1 +y2)2− (y1 +y2)+1]+ iε)3 −

− 2

(l2 +s0y1y2−m2 [(y1 +y2)2− (y1 +y2)+1]+ iε)3

]
. (5.152)
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As I have shown before, the first term of (5.150) has both a real and an imaginary part. The
imaginary part is finite and independent of regularization. The real part ofA(p+,⊥

2 , p+,⊥
1 , r∆ )

is divergent. However, the factA(s) is finite, means that the counterterm contribution in (5.150)
removed this divergence. The diverging part of the counterterm (5.148) is exactly as predicted
by RGPEP.

To summarize: the choice of the Hamiltonian counterterm (5.148) is in full agreement with
the RGPEP requirements, and its finite part is such that the contribution of Eq. (5.140) to the
scattering amplitude is fully covariant.

It is also interesting that Bardakci and Thorn [108] have provided a new formula for planar
diagrams in scalar theories, and recently Thorn argued [109] that a small set of counterterms
(including ghosts) is sufficient to obtain covariant results. Here I show that light-front Hamilto-
nians provide covariance at one-loop level with explicitly constructed non-trivial finite parts of
the counterterms.

5.7.2 Contributions of loops on external lines

The remaining four contributions to the scattering matrix are:

+ + +
X

(5.153)

Below, I give the expressions corresponding to loops and counterterms on one line only (the
second scalar-quark line contributes the same amount). I examine first three terms, as the fourth
has a different structure. These three terms can be summed up in a way analogous to the sum in
1+1 dimensional case. The second and the third term can be written as the tree diagram times a
propagator and a factor in square parenthesis:

·

[
+(−i)X

]
· (5.154)

(in this expression,X denotes a
(

δm2
∆ +δm2

phys

)
factor in the mass-counterterm operator (5.89)).

Together with the first term, this can be written as the tree amplitude with a full propagator on
one of the scalar-quark lines (marked with a bold line):

+ + =: . (5.155)

The full propagator is a result of summing a geometric series:

= [1+( +(−i)X) ] = (5.156)

=
i

p2−m2 + iε+ f (p2)
(5.157)

f (p2) := (−i)[ +(−i)X], . (5.158)

This result has a similar form to (5.69) in the non-divergent 1+1 dimensional case.
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A similar summation would not be possible in the case of a regularized equal-time Hamil-
tonian. Here, the regulating factors which depend on time orderings would lead to terms such
as:

+ + + + . . .

(5.159)
(where regularization is marked by half-circles). These terms do not reduce to a simple factor
in front of the tree amplitude – one needs all the orderings summed up to reproduce Feynman
propagators on each line – and, because of the regularization, summation is not possible.

To return to the light-front approach, functionf (p2), Eq.(5.158), needs to be evaluated be-
cause it contributes to the scalar quark mass and normalization of external quark states. The
second term in (5.158) does not depend on external momenta, but does depend on∆, cf. (5.89),
and the regularization is present. I illustrate below the type of integrals that appear inf (p2).
This shows, thatf (p2) is indeed a function of scalar-quarkp2 = pµpµ only, even where regular-
ization is present. The first term in Eq. (5.158) for f (p2) – the scalar quark-gluon loop without
external propagators – is:

(−i) = (−i)(−i)2g2(i)2
∫

dk+dk−d4k⊥

2(2π)6 ×

×
r∆(k+,⊥, p+,⊥,∆)

(k+k−−k⊥2−m2 + iε)
[
(p+−k+)(p−−k−)− (p−k)⊥2−m2 + iε

] = (5.160)

= (−i)g2
∫

dk+d4k⊥

2(2π)5

θ(k+)θ(p+−k+)
k+(p+−k+)

r∆(k+,⊥, p+,⊥,∆) ×

×
∫ ∞

−∞

dk−

2π
1(

k−− k⊥2+m2

k+ + iε
)(

p−−k−− (p−k)⊥2+m2

p+−k+ + iε
) = (5.161)

(1)

(2)

=
−i
2π

(−2πi)g2
∫

[k]
θ(p+−k+)

p+−k+ r∆
1

p−−k−m− (p−k)−m + iε
= (5.162)

= (−1)g2
∫

[k1k2]δ̃(p−k1−k2) r∆
1

p−−k−1m−k−2m+ iε
=
∣∣z := κ⊥2

∣∣
=

g2

2(2π)5

∫ 1

0
dx

Ω4

2

∫ ∞

0
zdz

1
z+m2− p2x(1−x)− iε

exp
[
−dη

z
∆2

]
(5.163)

For regularization (5.83), dη = 4 and this function depends on the external momentumpµ only
throughp2 (note that, here,p2 is the square root of one-particle momentum, and not the square
of the sum of the momenta of both scattered particles). The factor corresponding to the external
line can thus be written as:

1
p2−m2 + iε+ f (p2,∆)

. (5.164)

This is similar to (5.69), but this timef depends on the regularization.
I now proceed as for the 1+1 dimensional case:
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1) The physical mass is obtained by investigating position of the pole of (5.164):

m2
phys= m2− f (m2) = m2 +(p+)

a b

I
+
(

δm2
∆ +δm2

phys

)
, (5.165)

where, in the loop term, there is only a 5-dimensional integration and the terms in paren-
theses are defined in Eq. (5.89). This is exactly the same result for the physical mass
as was obtained from the Hamiltonian perturbation theory (5.91) in agreement with the
spectral-representation argument. This expression is finite (∆-independent) and constant
(momentum-independent).

2) The residue at the pole of (5.164):

Z =
1

1+ d f
d(p2)(m

2)
= 1− d f

d(p2)
(m2) (5.166)

The mass counterterm does not contribute to this expression.

d f
d(p2)

(m2) =
g2

2(2π)5

∫ 1

0
dx

(
Ω4

2

)∫ ∞

0
zdz

x(1−x)

[z+m2(1−x+x2)]2
exp
(
−dη

z
∆2

)
(5.167)

This expression is a momentum-independent constant, but it does have logarithmic de-
pendence on∆.

Putting them together, the first three terms of Eq. (5.153) can be written as the tree term (the
first term of Eq. (5.153)) whose one external propagator is replaced with a propagator whose
pole lies in the physical scalar-quark mass squared, and the residue at the pole isZ:

Z

p2−m2
phys+ iε

. (5.168)

5.7.3 Interplay betweenZ and part of the vertex counterterm

Taken together with the factor 1/
√

Z of the LSZ formula (5.11), the terms analyzed in Section
5.7.2in the vicinity of the polep2 = m2

phys lead to the following term in the S matrix:

√
Z ·

p1 k1

k2p2

, (5.169)

where,13 in the tree diagram, there are physical masses in the external propagators, and the
wave-function renormalization factor is:

√
Z = 1− 1

2
g2

2(2π)5

(
Ω4

2

)∫ 1

0
dx x(1− x)

∫ ∞

0
zdz

1

[z+m2(1−x+x2)]2
exp
(
−dη

z
∆2

)
.

(5.170)

13As explained above, I analyze here separately loops coming from corrections to one external scalar-quark line.
The full amplitude has a factor

√
Zq

2√
Ze

2.
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The logarithmic divergence of this expression is canceled by the∆-dependence of the only term
that was yet not analyzed in the previous section, namely the last term in Eq. (5.153):

X
, (5.171)

coming from the countertermX given in Eq. (5.132).

Thus, all the terms (5.153) give a finite contribution to the S matrix. The simplest choice
of the finite part of the counterterm (markedconst. in (5.132)), which makes this contribution
covariant is a constant independent of momenta.

5.7.4 Summary of theSmatrix calculations

The result of the scalar model for the scattering amplitude ofe+e−→ hadronshas the following
structure, up to ordere2g2:

• A triangle part (analyzed in Section5.7.1), is divergent and depends on the invariant
masss of the scattered particles. This part also depends on the momenta of the produced
particles in a non-covariant way, through the regulator factorsr∆. However, there is a
contribution to the S matrix of the Hamiltonian counterterm operatorX calculated

using RGPEP. This counterterm removes the infinite∆-dependence of the triangle term
in the S matrix. Moreover, the choice of the finite parts of the triangle counterterm, Eq.
(5.148), leads to a fully covariant result. Within this form of the counterterm, one is free
to choose one parameter, the renormalization points= s0. A different choice ofs0 +δs0

will lead to a change in the S matrix, which has the form of the tree amplitude multiplied
by a constant, finite factorδc.:

δc. · . (5.172)

• Terms with self-interaction loops and mass counterterms on external lines (Sec.5.7.2)
sum up to propagators with poles in physical particle masses and with residueZ, which is
a logarithmically divergent constant. The divergence is canceled by a contribution from
theX counterterm given in Eq. (5.132). A different choice of the finite constant part

of the counterterm will shift the scattering amplitude by a finite constant factorδc :

δc · . (5.173)

Taken together, the result for the S matrix is:

Sβα =
p1 k1

k2p2

· [1+h(s)+cx] (5.174)
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whereh(s) represents thes-dependence from the triangle term (5.140) and cx is a constant
depending on the finite parts of both logarithmic counterterms.

I now turn to the question of whether the covariant and finite result for the scattering ampli-
tude calculated in the model using the regularized and renormalized Hamiltonian is the same as
that predicted using Feynman diagrams. The tree amplitudes of ordere2 ande2g are the same
in both approaches. To discuss higher orders, I briefly review how the theoretical predictions
compare with the experiment. When one compares the result for the S matrix with experimen-
tal findings one cannot fit all the parameters of the theory independently. This is because they
appear in fixed combinations. For example, performing a scattering experiment for a givens0

gives the value of
eq [1+h(s0)+cx] (5.175)

rather than the value of the electric charge parametereq for quarks in the canonical Hamiltonian.
Theoretical predictions for a differents are changed by: (1) a change ofs in the tree amplitude
(which is the same in both approaches); (2) and by a change of the functionh(s) in the factor
multiplying the tree amplitude.

Thus, to compare the Hamiltonian approach and Feynman diagrams it is enough to calcu-
late the derivative of the functionh(s) over s (which means df (s)/ds in (5.150)). The result,
when expressed in terms of results of the experiment fors= s0 (Eq.(5.175)), is the same in both
approaches. Note, however, that this can be done in the Hamiltonian approach discussed here
only because I have previously shown that the result is independent of regularization and co-
variant. If f depended in a non-covariant way on+ and⊥momenta components, the derivative
d f (s)/ds would not make sense.

To summarize: the result for theSmatrix obtained using a canonical Hamiltonian with non-
covariant cutoffs and counterterms found using RGPEP is finite. For a proper choice of the
finite parts of the counterterms, it is also covariant, and the same as that obtained using the
Feynman diagrams. Thus, as I have shown above, the program outlined in Chapter2 in a very
simple Hamiltonian model can be extended toφ3 quantum field theory in 5+1 dimensions as far
as the scattering amplitude analogous toe+e−→ hadronsis concerned, in ordere2g2.
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Chapter 6

Summary of key findings

One of the most important questions in the theory of hadrons is how to employ QCD to describe
the strong binding of quarks and gluons together with the weak-coupling phenomena of high-
energy scattering processes in one formalism. The key feature of QCD is asymptotic freedom.
At high energies, the effective charge of quarks and gluons is small, and decreases towards
higher energies. The difficulty with bound states is that, when the energy scale is lowered to-
wards the region where binding mechanism works, the coupling constant grows and becomes so
large that experience from QED does not directly apply. The weak-coupling part is analogous
to QED, but the strong binding with coupling constant on the order of 1 appears to be quite
different from the binding in QED that is characterized byα ∼ 1/137. Lattice gauge theory
is the most advanced candidate for dealing with the issues of binding. On the other hand, the
phenomenology of hadrons, which speaks of quarks and gluons as almost pointlike partons in
high-energy processes and as complex constituent particles in low-energy processes, suggests
that there is a hope for a systematic approach based on the concept of effective particles. A nat-
ural candidate for connecting binding and scattering in one systematic description in terms of
particles is the Hamiltonian formulation of QFT. This expectation stems from the fact that the
theory of scattering is based on the time-evolution described by the operatore−iHt , whereH is
the Hamiltonian, and the eigenvalue problem for the same HamiltonianH defines bound states
as its eigenstates. However, in the Hamiltonian formulation of QFT, renormalization is more
complicated than in calculations based on Feynman diagrams, there is a question of covariance
when one uses non-covariantly regulated Hamiltonians, and there is a need for a renormalization
prescription which applies also to the bound-state problem, where the perturbative renormaliz-
ability of scattering matrix is not enough because one needs to control the off-shell behavior of
the interaction.

In this thesis, I have attempted to find out how it is possible to describe bound states and
scattering of particles in QFT using a Hamiltonian approach. I have given examples of a per-
turbative construction of the effective HamiltoniansHλ in QFT which (1) can describe bound
states of relativistic effective fermions in a meaningful way, and (2), in a theory with asymp-
totic freedom, can be used to describe scattering and lead to the same results as the Feynman
diagrams. In order to obtain this result, it has been necessary to resolve a number of issues
mentioned in the Introduction (see page1). The results are summarized below.

In all the models considered here, I have introduced a universal regularization of all terms
in the entire Hamiltonian operator (issue (1) in the Introduction). This means that the same
regularized operator produces all the perturbative scattering diagrams, and it is also used for
the nonperturbative description of bound states, although using different basis states than those
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of bare particles. This also means that one set of counterterms removes ultraviolet divergences
from all physical quantities derived using the Hamiltonian. The counterterms are constructed
using a renormalization group procedure for effective particles (issue (2) from the Introduction).
This procedure determines in a systematic way the ultraviolet structure of required counterterm
operators in the Hamiltonian (which are not the same as counterterms in a Lagrangian approach,
determined by divergences in the scattering amplitude calculations).

A heuristic outline of the problem considered in my thesis, of finding out if a Hamiltonian
formulation of QFT can be used for relativistic description of bound states and scattering pro-
cesses, is presented in Chapter2 using an example of a Yukawa theory truncated to two sectors
of the Fock space [1]. The general form of counterterms in the cutoff Hamiltonian can be found
in a systematic way using a similarity transformation for Hamiltonian matrices. It follows that
the proper choice of finite constant parts of the required counterterms leads to a relativistic
S matrix. Further, for the same choice of counterterms, the bound-state equation reduces to
a relativistic Dirac equation for a physical fermion. With the proper choice of counterterm
parameters, the analytic structure of the scattering amplitude, including threshold behavior, is
in agreement with the Dirac eigenvalue equation for a physical fermion. Thus, this heuristic
model example suggests that it is possible to describe bound states and scattering processes
with a single relativistic Hamiltonian within a well-defined renormalization group procedure.

One of the key problems with defining a bound-state equation for fermions in QFT on the
light front – and we are bound to use light-front dynamics for a number of reasons, explained
earlier in Section3.3 – is that spin factors generate overlapping divergences. In particular,
spinors introduce powers of perpendicular momenta that lead to potentials similar to a two-
dimensionalδ-function. This problem is common to all theories involving fermions, and the
simplest example of such a theory is the Yukawa theory of fermions interacting with scalar
particles. This theory is considered in Chapter4. It is shown that, when one assumes that there
is a bound state dominated by a two-bare-fermions Fock sector, the eigenvalue is unacceptably
sensitive to the ultraviolet cutoff∆ due to the overlapping divergences. In the Tamm-Dancoff
approach there is no systematic procedure leading to counterterms in the Hamiltonian which
might remove this dependence, except perhaps for sector-dependent mass counterterms in a
low-energy theory based on coupling coherence [4]. However, one cannot easily extend the
coupling-coherence approach to high orders, and it is thus useful to study straightforwardly
perturbative renormalization-group approach for effective particles.

Perturbative renormalization group procedure for effective particles (RGPEP) is useful not
only because it can, in principle, be extended to high orders, but also because it naturally de-
fines an alternative picture of bound states as being made of effective particles, and these are
unitarily equivalent to the bare particles. As a result, the bound state of two effective relativistic
fermions is well-defined and free from the overlapping divergences, since effective fermions
have form factors in interaction vertices. These form factors provide convergence in the eigen-
value equation for the effective HamiltonianHλ ; they are also responsible for the dominance
of Fock sectors with a low number of effective constituents in the lowest-mass bound states.

The RGPEP procedure allows one to accomplish a number of things. One can use it to
define counterterms in the HamiltonianH∆ from canonical theory with an ultraviolet cutoff∆.
One can calculate the effective HamiltonianHλ , which is equal toH∆, but expressed in terms
of creation and annihilation operators for effective particles instead of the bare ones. Building
on this, I have shown that a bound state of two fermions, defined by the eigenvalue equation
for the Hamiltonian calculated to the orderg2, is well approximated by a Schrödinger equation
for a two-body wave function, and it is not sensitive to the value of the artificial ultraviolet
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cutoff ∆. Moreover, for reasonable values of the parameterλ of the renormalization group, the
energies of the bound states in question depend onλ weakly, even if the interaction is only of
the second order ing. Of course, the second order is a very low one as far as scattering matrices
are concerned. However, when working with Hamiltonians, it must be remembered that the
Coulomb potential that describes the entire chemistry of atomic bonds is only of the second
order in electric chargee.

Thus, RGPEP appears to provide a method for evaluating interaction terms in Hamiltonians
for bound states (issue (3) in the Introduction). The eigenvalue equations for the resulting
effective Hamiltonians in QFT determine the wave functions of constituents. Because of the
RGPEP form factorsfλ, there are no overlapping divergences in the derived equation (issue
(5) in the Introduction). Also, the Fock sectors of different numbers of effective particles are
coupled only weakly by the effective Hamiltonian. This happens even for sizable coupling
constants, because the form factors limit the range of exchanged momenta to less than about
λ, andλ can be small. This leads, in turn, to the approximation of the eigenstates by sectors
with only a small number of constituents (issue (4)). These constituents have a complicated,
but calculable structure when expressed in terms of bare particles. In this way, RGPEP allows
us to derive well-defined equations for bound states of fermions from a local QFT.

For a detailed investigation of scattering processes using a Hamiltonian approach it was
necessary to review the derivation of LSZ formula for S-matrix elements. An initial analysis
in scalar theory shows that light-front Hamiltonians with non-covariant cutoffs can produce
covariant answers. It is shown that the same amplitude for scattering of physical particles
can be calculated either in terms of bare particles using the HamiltonianH∆, or in terms of
effective particles using the effective HamiltonianHλ . Since the bound states are also described
naturally in terms of the effective particles usingHλ , this last result for scattering amplitude
provides a stepping-stone towards a systematic relativistic Hamiltonian description of scattering
processes in which there are bound states in the initial or final states.

The scalar theory under consideration here is an asymptotically free massiveφ3 theory in
5+1 dimensions, whose perturbative structure resembles in the lowest order QCD coupled to
QED. Because two couplings of different strengths are introduced –e analogous to electric
charge, andg, analogous to the color coupling constant – one could define two procedures
based on the principles of RGPEP for evaluating the effective theory. These are (1) a simplified
procedure, in which the definition of effective particles is based on their strong interactions only,
and (2) a full procedure, in which RGPEP takes all the interactions into account on an equal
footing.

In the case of Hamiltonian terms that contribute to the scattering amplitude analogous to
e+e−→ hadronsup to the ordere2g2, both procedures lead to the same form of the counterterms
in H∆. However, I do not employ the S-matrix calculation in order to determine the divergent
parts of the counterterms. Only the finite parts are determined on the basis of the S-matrix
calculation. In the case of confinement, it is expected that similar conditions can be found
by considering scattering of bound states. Thus, this Hamiltonian approach seems not to be
limited to perturbation theory in the description of physical scattering processes in theories
with asymptotic freedom.

Nevertheless, in purely perturbative calculations up to one loop, one can also find finite
parts of counterterms that render fully covariant scattering amplitude, and both triangle terms
and wave-function renormalization terms have to be considered. The covariance is obtained
despite the non-covariant regularization of the Hamiltonian (issue (6) in the Introduction) and
intrinsically non-covariant nature of the Hamiltonian formulation. This non-covariant nature
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is exhibited in the regularization factorsr∆ which depend only on kinematical momenta and
do not involve the dynamical variables such as energy (I usep+ and p⊥ for momenta, and
p− for energy). It seems that the success of our procedure relies so heavily on the expression
p− = (p⊥2+m2)/p+ and the simplicity of the perturbative vacuum (|Ω〉= |0〉), combined with
a straightforward connection between energy denominators and Feynman denominators, that
it is highly questionable if any similar result can be achieved using dynamical schemes other
than the light-front scheme. It is also unclear how the unitary RGPEP procedure, which in the
light-front formulation is independent of the vacuum structure, can be applied in the standard
time-evolution theory, where the vacuum structure heavily mixes with the dynamics of particles.

Several problems that must be solved in gauge theories (especially QCD as a part of the
standard model, or other theories that go beyond the standard model) could not be even formu-
lated with the examples considered in this work. Two problems are particularly significant. The
first concerns the divergences at smallx-variable (analogous to Feynman and Bjorkenx in the
parton model). The second problem is that of spontaneous symmetry breaking. Both problems
go far beyond the perturbative analysis of RGPEP discussed here, and may be related to basic
problems with the concept of empty space. Spontaneous symmetry breaking can in principle be
described using light-front Hamiltonians with additional terms corresponding tox= 0 [15]. For
example, such terms in Hamiltonian formalism can reproduce standard results in sigma models.
But the issue appears to be much more complicated in gauge theories in the presence of small-x
singularities.

One immediate limitation of this work is that is does not describe fourth- and higher-order
Hamiltonians. These may contain surprises, as the operators one calculates are explicitly known
in their off-shell behavior and this implies that they can describe binding effects that are not ac-
cessible in perturbation theory. Until fourth and higher order calculations are completed, it will
remain unclear how far the Hamiltonian approach can be relied on in physical studies. However,
it is also possible that Hamiltonian calculations will offer new insights into the description of
bound states and scattering processes in particle physics.
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Appendix A

The notation used in this thesis

In the equations := means “is defined as”. As in the Pascal programming language, the
quantity on the side of the colon sign is the one that is defined. Thus,a := b is read as "a is
defined as a quantity equal tob", while a =: b is read as “b is defined as a quantity equal toa.

A.1 ET vs LF

When referring to the equal-time (ET) formulation of QFT, a Hamiltonian (H) means energy
(zero component of four momentum)P0. When referring to the light-front (LF) formulation of
QFT, a Hamiltonian (H) means minus component of four momentumP−.

Standard invariant integration measures and momentum-conservation delta functions have
different meaning in ET and LF expressions. These are summarized in the following table.

Notation Explicit meaning
in ET in LF

Hamiltonian :H P0 P−

Integration measures :[k] [k] :=
d3k

(2π)32k0 [k] :=
d2k⊥dk+

(2π)32k+

3-momentum :~k ~k = (k1,k2,k3) ~k = (k+,k1,k2)
Space 3-vector :~x ~x = (x1,x2,x3) ~x = (x−,x1,x2)
Scalar product :~x~k ~x~k = ∑3

i=1xiki = ~x~k =−1
2x−k+ +x1k1 +x2k2 =

=−xµkµ
∣∣
x0=0 =−xµkµ

∣∣
x+=0

3-momentum conservationδ-s : δ̃(k) δ̃(k) := (2π)3δ3(~k) δ̃(k) := 2(2π)3δ2(k⊥)δ(k+) =
=: 2(2π)3δ3(~k)

In dimensions other than 3+1, corresponding powers of(2π) and dimensions ofδ(k⊥) are
modified accordingly.

A.2 Special notation used for RGPEP

The curly brackets
{ }

0 denote the additional free energy denominator. For any operatorA

A =
∫

[kcre1 . . .kani1 . . . ]A(kcre1 . . .kani1 . . .)a†
cre1 . . .aani1 . . . (A.1)
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{
A
}

0 is{
A
}

0
=

∫
[kcre1 . . .kani1 . . . ]

1(
∑i∈anik

−
0,i

)
−
(

∑ j∈crek
−
j

)A(kcre1 . . .kani1 . . .)a†
cre1 . . .aani1 . . .

(A.2)
The same denominator with a difference ofk− is indicated in Hamiltonian diagrams by

dashed underlining, and a black arrow which indicates whichk− is subtracted from which one.
For example,

{
A
}

0
= A

J
= (−1)∗ A

I
(A.3)

Similar figures without the dashed underlining and without the black arrow (such as in Eq.
(5.111) on the page100) are used to label intermediate states, and do not indicate energy de-
nominators.

For the operatorA of Eq. (A.1) and function of momentafλ, the symbolfλA means

fλA =
∫

[kcre1 . . .kani1 . . . ] fλ (kcre1 . . .kani1 . . .)A(kcre1 . . .kani1 . . .)a†
cre1 . . .aani1 . . . . (A.4)

Likewise, all momentum dependent factors written in front of an operator should be understood
as part of the integration kernel. For example, if the set of particles annihilated byA is denoted
b, and the set of created particlesa, then (A.2) could also be written as{

A
}

0
=

P+
ba

ba
Aba = ζbaAba . (A.5)

When talking about canonical and effective theories, a plain letterH denotes the canonical
Hamiltonian, and a calligraphicHλ the effective Hamiltonian (usually followed by a letterλ
denoting the width of the effective Hamiltonian). All terms of the effective HamiltonianHλ
have a limiting form factorfλ. Elements ofHλ without the common factor fλ are denotedG :

Hλ =: fλG . (A.6)

A shorthand notation for momentum combinations appearing in the expressions forHλ are
defined as follows:

πabc := P+
baba+P+

bcbc (A.7)

Πabc :=
πabc

ba2 +bc2 (A.8)

ζab :=
P+

ab

ab
. (A.9)

A.3 Shorthand notation of momentum differences

For the introduction of similarity form factorsfλ, a notation of two letters (e.g.ab) mark-
ing invariant mass differences is used in the following way [74] (see also Fig.4.1). For each
interaction term with intermediate statesa andb:
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1. P+
ab is the sum ofp+ momenta of all the particles of statea that were involved in any

interaction (due to three-momentum conservation, this is the same as a similar sum ofp+

for the stateb)

2. ab is defined as
ab=

(
p−0,a− p−0,b

)
P+

ab . (A.10)

abdefined this way does not depend on spectator particles (because their energiesp− cancel
out in the difference ofp− in (A.10) and do not contribute toP+

ab). Also, when one introduces
child-parent relative momenta as in AppendixB.2.1, abdepends on these relative momenta only
and not on the total momentum.

For each interaction term built of connected Hamiltonian expressions, the intermediate
“states” are ordered: it is thus clear which is the leftmost, which is the next, and so on. These
states are labeled “a,b,c. . . ” from left to right. See for example Fig.4.1.

A.4 Other conventions

In AppendicesE andF, color matricesT are used. They fulfill:

(Ta)i j (T
a)kl =

1
2

(
δil δ jk−

1
3

δi j δkl

)
(A.11)

(Ta)ik (Ta)kl =
4
3

δil (A.12)

A.5 Dimensions of fields and couplings in various theories

The dimensions of quantities involved a Lagrangian density:

L =
1
2

∂µφ∂µφ− 1
2

m2φ2− g
3!

φ3 (A.13)

depend on number of space-time dimensions in the following way:

1+1 3+1 5+1

L m2 m4 m6

∂2, m2 m2 m2 m2

φ 1 m m2

g m2 m 1
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Appendix B

Light-front coordinates

B.1 Coordinates; momenta; scalar product

I use the so-called Brodsky-Lepage convention for defining light-front coordinates. (This differs
from the Kogut-Soper convention in its numerical factors only; see [25].) The light-front time
is defined as

x+ = x0 +x3 (B.1)

and the spatial coordinate is
x− = x0−x3 (B.2)

Note, that the Jacobian of change of variables is:∣∣∣∣∂(x+,x−,x1,x2)
∂(x0,x1,x2,x3)

∣∣∣∣= 2 (B.3)

Momentap−, p+, p⊥ and the scalar product is given in Section3.3.2.

B.2 Light-front momenta

B.2.1 Relative momenta

For two particles of momentap1 andp2, the total momentumP and the relative momentax, κ⊥
are defined as follows.

p+
1 = xP+ , (B.4)

p+
2 = (1−x)P+ , (B.5)

p⊥1 = xP⊥+κ⊥ , (B.6)

p⊥2 = (1−x)P⊥−κ⊥ . (B.7)

When there are more than two particles, for any particle of momentum(p+, p⊥) involved in
an interaction, one can define its momentum(x,κ⊥) relative to the total momentum(P+,P⊥):

p+ =: xP+ (B.8)

p⊥ =: xP⊥+κ⊥ (B.9)
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(in a shorthand notation~p = x~P+ κ⊥, where the vector sign denotes(+,1,2) components and
κ+ := 0). Alternatively, one can look at the interaction vertex and define relative child-parent
momentum(xc/p,κc/p):

p+
c =: xc/pP+

p (B.10)

p⊥c =: xc/pP⊥p +κ⊥c/p . (B.11)

(in shorthand notation~pc =: xc/p
~Pp +κ⊥c/p).

For example, in a term

4 3

2 1
5 (B.12)

momentax1,κ13,x2,κ24 relative to the total momentum are defined by:

~p1 = x1~P+κ⊥13 (B.13)

~p3 = (1−x1)~P−κ⊥13 i.e. x3 = 1−x2, κ⊥31 =−κ⊥13 (B.14)

~p2 = x2~P+κ⊥24 (B.15)

~p4 = (1−x2)~P−κ⊥24 (B.16)

~p5 = (x1−x2)~P+
(

κ⊥13−κ⊥24

)
. (B.17)

Note, that in each state with particles{i}:

∑
i

xi = 1 (B.18)

∑
i

κ⊥i = 0 . (B.19)

The positiveness of allp+ momenta means that allx-es are positive.
For regularization, the child-parent relative momenta are used. For the diagram (B.12) they

are defined by:

~p2 = x2/1~p1 +κ⊥2/1 ⇒ x2/1 =
x2

x1
, κ⊥2/1 = κ⊥24−

x2

x1
κ⊥13

~p5 = x5/1~p1 +κ⊥5/1 ⇒ x5/1 =
x1−x2

x1
, κ⊥5/1 =

x2

x1
κ⊥13−κ⊥24 ,

(B.20)

and in analogous way forx5/4, κ⊥5/4, x2/4 andκ2/4. Note that for child particles{di} in each
vertex:

∑
ci

xci/p = 1 (B.21)

∑
ci

κ⊥ci/p = 0 . (B.22)

An integration
∫
[p1p2]δ̃(p1+ p2− p3) can be re-expressed in terms of the momenta relative

to the total momentum:∫
[p1p2]δ̃(p1 + p2− p3) · · ·=

1
2(2π)3P+

∫
d2κ⊥dxθ(x)θ(x3−x)

x(x3−x)
. . . (B.23)
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or by the relative child-parent momenta:

∫
[p1p2]δ̃(p1 + p2− p3) · · ·=

1

2(2π)3p+
3

∫
d2κ⊥dxθ(x)θ(1−x)

x(1−x)
. . . (B.24)

Note different integration ranges (θ-functions), different denominators in front of, and under
the integrals.

B.2.2 Relative pseudo-equal-time momenta

When describing relative motion of two particles of the same massm, one can introduce a dif-
ferent set of relative momenta [114], especially convenient when one looks at the nonrelativistic
region:

k⊥ := κ⊥ (B.25)

k3 :=

√
κ⊥2 +m2

x(1−x)

(
x− 1

2

)
, (B.26)

or, equivalently:

x =
1
2

(
1+

k3√
~k2 +m2

)
. (B.27)

The definition of momentumk3 is chosen in such a way that the free invariant mass of the
pair can be written as:

M2 =
κ⊥2 +m2

x(1−x)
= 4

(
k⊥2 +(k3)2 +m2

)
, (B.28)

and is equal to the equal-time expression for the invariant mass in CMS:

M2 = P02−~P2 = |CMS|= (2E)2 = 4
(
~k2 +m2

)
. (B.29)

When changing integration variables, the Jacobian is:

∂(κ1κ2κ3)
∂(k1k2k3)

=
1
2

k⊥2 +m2√
~k2 +m2

3 (B.30)

and the common denominator in the integration measure,x(1−x), is:

x(1−x) =
1
4

k⊥2 +m2

~k2 +m2
. (B.31)

Hence,

dxd2κ⊥

x(1−x)
= 2

d3k√
~k2 +m2

. (B.32)
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B.3 Free scalar fields

The Fourier expansion of a free scalar fieldφ(x) at the light-front timex+ = 0 is:

φ(x) =
∫

[k](a†
keikµxµ

+ake
−ikµxµ

)x+=0 (B.33)

kµxµ
∣∣
x+=0 =

1
2

k+x−−k⊥x⊥ . (B.34)

Creation and annihilation operators fulfill the commutation relation:[
ap,a

†
k

]
= 2(2π)3k+δ3(k− p) . (B.35)

whereδ3(p) = δ2(p⊥)δ(p+).
A state created bya†

p is denoted|p〉:

|p〉 = a†
p |0〉 . (B.36)

B.4 Free fermion fields; notation of spinors

The fermion field operator fulfilling the free Euler-Lagrange equations (the Dirac equation),
ψm(x), is expanded for light-front “time”x+ = 0 in terms of creation and annihilation operators
as:

ψm(x)|x+=0 = ∑
σ

∫
[p]
[
bpσumpσe−ipµxµ

+d†
pσvmpσeipµxµ

]
x+=0

. (B.37)

Creation and annihilation operators fulfill:

{bpσ,b†
kλ} = 2(2π)3k+δ3(k− p)δσλ (B.38)

{dpσ,d†
kλ} = 2(2π)3k+δ3(k− p)δσλ (B.39)

The spinors of particles of zero velocity are equal:

u↑ =
√

2m

(
χ1

0

)
, u↓ =

√
2m

(
χ−1

0

)
,

v↑ =
√

2m

(
0

χ−1

)
, v↓ =

√
2m

(
0
−χ1

)
,

(B.40)

where the two-component spinorsχ are:

χ1 =
(

1
0

)
, χ−1 =

(
0
1

)
. (B.41)

Spinors of particles at motion are obtained by acting on above particle-rest-frame spinors
with matrix representation of Lorentz transformations belonging to the small group (transfor-
mations which do not change thex+ = 0 hyperplane). The result for fermions is:

umpσ =
1√
mp+

[
p+Λ+ +Λ−(m+α⊥p⊥)

]
uσ , (B.42)
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and for anti-fermions:

vmpσ =
1√
mp+

[
p+Λ+ +Λ−(m+α⊥p⊥)

]
vσ . (B.43)

Note that
√

m in the denominators of (B.40) and in (B.42)-(B.43) cancels, and there is a well-
defined, finite limit limm→0umpσ.

Equation (B.42)-(B.43) use projection operatorsΛ±. These are defined as follows:

Λ± =
1
2

γ0(γ0± γ3)=
1
2

γ0γ± =
1
2
(1±α3) . (B.44)

They are indeed projection operators:

Λ+Λ+ = Λ+ (B.45)

Λ+Λ− = 0 . (B.46)

Using:

γ+γ+ = 0 (B.47)

γ+γ− = 4Λ− (B.48)

γ+γ⊥ = −γ⊥γ+ (B.49)

one sees that products ofΛ± and Dirac matrices are:

Λ+γ+ = 0 (B.50)

Λ+γ− = γ− = γ−Λ− (B.51)

Λ+γ⊥ = γ⊥Λ+ . (B.52)

In Dirac representationΛ± fulfill:

Λ+ =
1+α3

2
=

1
2

[
1 σ3

σ3 1

]
(B.53)

Λ−α⊥ =
1
2

[
−σ3σ⊥ σ⊥

σ⊥ −σ3σ⊥

]
. (B.54)

Products of spinorsu or v for equal momenta~p are:

ūpσγ+upσ′ = 2p+δσσ′ (B.55)

v̄pσγ+vpσ′ = 2p+δσσ′ (B.56)

A sum over polarizations of intermediate fermion in a self-interaction loop

a b c

gives:

∑
b

ūP,aubūbuP,c = δac
m2(1+x)2 +κ2

x
, (B.57)

wherex is a relative child-parent momentum of the intermediate fermion.
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In practice, it is convenient to express standard matrix elements of spinorsu in terms of
relative momenta and two-component spinorsχ. For two fermions of momentap1, p2:

~p1 = x1~P+κ⊥1 (B.58)

~p2 = x2~P+κ⊥2 , (B.59)

involved in a Yukawa vertex, the corresponding product of spinors can be written as:

ū1u2 =
1

√
x1x2

χ†
1

[
m(x1 +x2)−σ3σ⊥

(
x1κ⊥2 −κ⊥1 x2

)]
χ2 . (B.60)

AppendixE presents similar products for QED and QCD vertices.

B.5 Free vector fields; polarization vectors

In the light-front gaugeA+ = 0, the vector potential is:

Aµ =
(

A+ = 0,A−,A⊥
)

. (B.61)

The independent variables areA⊥, while A− in free theory is constrained to be:

A− =
2i∂⊥A⊥

i∂+ . (B.62)

The Fourier transform atx+ = 0 is:

Aµ(x) = ∑
σ

∫
[k]
(

akσεµ
kσe−ikx +a†

kσε∗µkσeikx
)

x+=0
. (B.63)

The creation operators fulfill:[
akσ′,a

†
pσ

]
= 2(2π)3k+δ3(k− p)δσ′σ (B.64)

(σ denotes polarization) and polarization vectors have to be:

ε− =
2k⊥ε⊥

k+ (B.65)

ε+ = 0 (B.66)

with ε⊥ being two independent parameters characterizing the polarization of the field. They can
be chosen as follows:

ε⊥1 =
(

1
0

)
(B.67)

ε⊥−1 =
(

0
1

)
. (B.68)

They are normalized as follows:

εi
σε∗iσ′ = δσσ′ , (B.69)

(with summation over repeated superscripti), and sum over polarizations gives:

εi
σε∗ j

σ = εi
1ε∗ j

1 + εi
−1ε∗ j
−1 = δi j . (B.70)
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Appendix C

Details of RGPEP

C.1 Effective particles

C.1.1 Definition of the effective particles creation operators

Effective particles creation and annihilation operatorsqλ are defined as operators unitarily
equivalent to the initial, bare operatorsq∞:

q∞ = U†
λ qλUλ (C.1)

Uλ is an operator acting in the Fock space. It can be expressed by any complete set of creation
and annihilation operatorsqβ. Functional dependence ofUλ on q∞ andqλ could theoretically
have been different. It is interesting to notice that this is not, in fact, the case: the rotation
operator expressed in both bases has exactly the same form. LetUλ and Vλ be functional
dependencies of the same unitary-rotation operator expressed in a different operator basis:

Uλ(qλ) = Vλ(q∞) = Âλ . (C.2)

But,
Vλ(q∞) = Uλ(qλ) = Â·Uλ(q∞) · Â† . (C.3)

Â can be, for example, written asVλ(q∞), and canceled with the underlinedV . This leads to:

Uλ(q∞) ·V †
λ (q∞) = 1 (C.4)

Uλ(q∞) = Vλ(q∞) (C.5)

which means that the form of dependence of this operator onqλ (denotedUλ) is exactly the
same as dependence onq∞ (denotedVλ):

Uλ(qλ) = Uλ(q∞) (C.6)

Therefore, one does not have to indicate in terms of which of these operators (qλ or q∞) Uλ
is expressed. Note, however, that this is true only forqλ andq∞: in terms of operatorsqλ2

corresponding to a different widthλ2, Uλ would have a different formUλ2
λ :

Uλ(qλ) = Uλ(q∞) = Uλ2
λ (qλ2

) , (C.7)

whereUλ2
λ is a function different thanUλ.
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C.1.2 Consequences of unitarity ofUλ

Uλ has to be unitary:

U†
λUλ = 1 . (C.8)

Using perturbative expansion:

Uλ =
(

1+u(1) +u(2) + . . .
)

(C.9)

one gets: (
u(1)† +u(1)

)
+
(

u(2)† +u(2) +u(1)†u(1)
)

+ . . . = 0 . (C.10)

Therefore, the first order has to be anti-hermitian (u(1)† =−u(1)).
The second orderu(2) is slightly more complicated. One can splitu(2) into a hermitian (h(2))

and anti-hermitian (a(2)) parts:

u(2) = a(2) +h(2) (C.11)

where

a(2)† = −a(2) (C.12)

h(2)† = h(2) . (C.13)

The second-order unitarity (C.10) leads to:

h(2) =
1
2

u(1)u(1) , (C.14)

while the anti-hermitian part,a(2) is arbitrary.
To summarize, ifUλ is expanded into perturbative series in coupling constant,Uλ = 1+

u(1) +u(2) + . . . , then the following apply:

• The first order term has to be anti-hermitianu(1)† =−u(1).

• The hermitian part of the second-order term has to beh(2) = 1
2u(1)u(1).

C.1.3 RGPEP equations

The Hamiltonian operator can be expressed in terms of operators creating bare particles,q†
∞ (the

form of the Hamiltonian in this basis is denoted H), or in terms of operators creating effective
particles,q†

λ (denotedHλ ). Thus, H andHλ denote the same operator in terms of different
creation and annihilation operator basis.

Hλ (qλ) = H(q∞) . (C.15)

In terms of one basis,q†
∞, one can write:

Hλ (q∞) = U†
λ Hλ (qλ)Uλ = U†

λ H(q∞)Uλ . (C.16)

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



C.1 Effective particles 139

Henceforth, all operators are expressed in terms ofq∞, which will not be marked explicitly.
Differentiating (C.16) overλ leads to:

d
dλ

Hλ = [Hλ ,T] , (C.17)

where

T := −
(

d
dλ

U†
λ

)
Uλ = U†

λ
d
dλ

Uλ . (C.18)

Note, thatT(g = 0) = 0, and therefore its expansion in the coupling constant starts atg1.
Let us denote:

Hλ = fλGλ (C.19)

and splitGλ = H0 + GI . Since fλH0 = H0 and(1− fλ)H0 = f ′λH0 = 0, differentiating (C.19)
with respect toλ leads to:

f ′λG + fλG ′ = [H0,T]+ [ fλGI ,T] (C.20)

In RGPEP, this equation is split into two separate conditions, which is an arbitrary step (i.e. the
following equations make stronger requirements than the above):{

fλG ′ = fλ [ fλGI ,T]
[T,H0] = (1− fλ) [ fλGI ,T]− f ′λG (C.21)

If fλ is non-zero for all arguments, the first equation can be written as:

G ′ = [ fλGI ,T] , (C.22)

and using this the second equation can be simplified:{
T =

{
((1− fλ)GI )

′
}

0
d
dλG = [ fλGI ,T]

(C.23)

These are the RGPEP equations from which one can calculate the effective Hamiltonian in
perturbation theory. Both expansions ofT andG start atg1. The first of these equations enables
calculatingT based on a given order of the effective Hamiltonian. The second equation enables

an evaluation of the next order effective HamiltonianH (n)
λ based onT(n−1). H (n)

λ can then be
used to evaluateT(n), and so on.

Once one knowsT, one can also extractUλ:

U†
λ

d
dλ

Uλ = T . (C.24)

By multiplying this equation byUλ on the left, this can be written as:

d
dλ

Uλ = UλT (C.25)

Thus, in subsequent orders, one gets:

Uλ = 1+u(1) +u(2) + . . . (C.26)
d
dλ

u(1) = T(1) (C.27)

d
dλ

u(2) = u(1)T(1) +T(2) , (C.28)

with boundary conditions:
U∞ = 1 . (C.29)
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140 Details of RGPEP

C.2 The effective Hamiltonian

C.2.1 The zeroth and first orders

In the zeroth order:

d
dλ

G (0) = 0 (C.30)

G (0) = H(0) (C.31)

H (0)
λ = H(0) . (C.32)

Since both the expansion ofG and ofT start at the first order, the first oder of the right-
hand-side of the first of Eqs. (C.23) is zero:

d
dλ

G (1) = 0 (C.33)

G (1)
λ = G (1)

∞ = H(1) (C.34)

H 1
λ = fλG (1) = fλH(1) (C.35)

T(1) =
{

(1− fλ)H
(1)
}′

0
=
{
− f ′λH(1)

}
0
= u(1)′ (C.36)

u(1) =
{

(c− fλ)H
(1)
}

0
(C.37)

For λ→ ∞ (i.e. fλ→ 1) Uλ→ 1, sou(1)→ 0, and thereforec = 1.

u(1) =
{
(1− fλ)H

(1)
}

0
, (C.38)

which can also be written asu(1)
ab =

P+
ab

ba
(1− fab)H

(1)
ab .

Note that, as an additional requirement,T cannot have diagonal elements∼ a†
kak. However,

since forab→ 0 the factor(1− fab)∼ ab2 goes to zero faster than the denominators, not only do
the diagonal elements not get rotated, but also terms close to the diagonal change only infinitely.
One may consider the lack of rotation of the diagonal elements as a result of the limit of the
equation (C.38), rather than as an additional requirement.

C.2.2 The second order

Formulae not based on specific form offλ

G (2)′ =
[

fλH(1),T(1)
]

=
[

fλH(1),u(1)′
]

(C.39)

G (2) = GHH +GH2 (C.40)

GHH :=
∫ λ

∞
dz
[

fzH
(1),u(1)

z
′
]

=: FabcH
(1)H(1)∣∣

connected (C.41)

GH2 := H(2), (C.42)
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which defines the second-order effective HamiltonianH (2)
λ = fλG (2).

The second-order rotation operatorU (2) is:

d
dλ

u(2) = T(2) +u(1)u(1)′ =
{

(1− fλ)G (2)
}′

0
+

1
2
(u(1)u(1))′+

+
1
2
(u(1)u(1)′−u(1)′u(1)) (C.43)

u(2) =
{

(1− fλ)G (2)
}

0
+

1
2

u(1)u(1) +
1
2

∫ λ

∞
dz
[
u1z,u

′
1z

]
(C.44)

Thereforeu(2) has a hermitian part,12u(1)u(1), which is in agreement with unitarity condition.
What is more,u(2) has parts (the hermitian parts) that are products, and not commutators, of op-
erators. It thus has disconnected parts. Nevertheless, when calculatingHλ these parts together
with u(1)Hu(1) become a commutator, and the effective Hamiltonian does not have unconnected
parts.

Formulae for fab = exp(−ab2/λ4)

fab = exp(−ab2/λ4) is the similarity form factor used throughout Chapters3,4 and5. The rest
of this Appendix is thus written for this choice of the similarity form factor.

Let:

t :=
1
λ4 (C.45)

fλ,ab = exp

(
−ab2

λ4

)
= exp

(
−ab2 t

)
(C.46)

d
dλ

fλ,ab = −ab2 fλ,ab
dt
dλ

. (C.47)

This leads to:

F (2)
abc =

P+
baba+P+

bcbc

ba2 +bc2

(
fλ,ba fλ,bc−1

)
(C.48)

The characteristic combination of momenta will be also present in the following sections.
To simplify expressions I introduce notation:

πabc := P+
baba+P+

bcbc (C.49)

Πabc :=
πabc

ba2 +bc2 (C.50)

ζab :=
P+

ab

ab
. (C.51)

Using this notationF (2)
abc can be written as:

F (2)
abc = Πabc

(
fλ,ba fλ,bc−1

)
. (C.52)
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C.2.3 The third order

T(2) =
{

(1− fλ)G (2)
}

0

′
noa†a = ζca

(
(1− fca)F

(2)
abc

)′
·H(1)H(1)∣∣

connected,noa†a(C.53)

G (3)′ = [ fλG ,T](3) =
[

fλH(1),T(2)
]
+
[

fλG (2),T(1)
]

(C.54)

There are three kinds of terms.

• Terms coming from threeH(1) without self-interaction loops; these will be denoted:

G (3)
no−O− =: F (3)

abcdH
(1)H(1)H(1)∣∣

no−O− . (C.55)

• Terms coming from threeH(1) with a mass-kind loop on one of the external lines; these
will be denoted:

G (3)
−O−
−−−>−

=: F (3)
abadH(1)H(1)H(1)∣∣−O−

−−−>−
(C.56)

for the loop on the left-hand-side lines and similarly for the right-hand-side loop; note the

repeateda subscript of theF (3)
abad.

• Terms coming from oneH(1) and oneH(2); for the scalar theory the onlyH(2) contributing

would be the mass counterterm, and therefore this term would be combined withG (3)
−O−
−−−>−

;

in other theories there are also seagull terms, for example.

The term without self-interaction loops,F (3)
abcd

It may be helpful to think of these effective Hamiltonian terms as being of a type

a b c d

.

F (3)
abcd

′ = fabζdb

[
(1− fbd)F

(2)
bcd

]′
−ζca

[
(1− fca)F

(2)
dcb

]′
fcd +

+ fcaF (2)
abc (−ζdc fdc)

′+(ζba fba)
′F (2)

bcd fbd . (C.57)

I combine the first and the last term into a new symbol,F(3)
abcd, while the second and the third

will be calledF(3)
dcba:

F(3)
abcd

′
(
−dλ

dt

)
= Πbcd[( fcb fcd−1) fab fbdπabd+

+ζdb(cb2 +cd2)(1− fdb) fab fcb fcd
]

. (C.58)

Thus:

F(3)
abcd = Πbcd

{
πabd

[
fab fbc fcd fbd−1

ab2 +bc2 +cd2 +bd2 −
fab fbd−1
ab2 +bd2

]
+

+ζdb
(
bc2 +cd2)[ fab fbc fcd−1

ab2 +bc2 +cd2 −
fab fbc fcd fbd−1

ab2 +bc2 +cd2 +bd2

]}
. (C.59)

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



C.2 The effective Hamiltonian 143

Likewise, the second contribution is:

F(3)
dcba = Πabc

{
πacd

[
fab fbc fcd fac−1

ab2 +bc2 +cd2 +ac2 −
fac fcd−1
ac2 +cd2

]
+

+ζac
(
ba2 +bc2)[ fab fbc fcd−1

ab2 +bc2 +cd2 −
fab fbc fcd fca−1

ab2 +bc2 +cd2 +ca2

]}
. (C.60)

This agrees with [40].

The term with a self-interaction loop on the left-hand-side,F (3)
abad

It may be helpful to think of these effective Hamiltonian terms of being a type

a b a d

.

There are two differences compared toF (3)
abcd: the c state has exactly the same momenta asa

(therefore, for example,ac= 0) and there is no contribution fromT(2) that would be propor-
tional toa†a. This leads to:

F (3)
abad

′ = fabζdb

[
(1− fbd)F

(2)
bad

]′
+0+F (2)

aba(−ζda fda)
′+(ζba fba)

′F (2)
bad fbd (C.61)

F (3)
abad = Πbad

{
πabd

[
f 2
ab fad fbd−1

2ab2 +ad2 +bd2 −
fab fbd−1
ab2 +bd2

]
+

ζdb
(
ba2 +ad2)[ f 2

ab fad−1

2ab2 +ad2 −
f 2
ab fad fbd−1

2ab2 +ad2 +bd2

]}
+

+ζbaP
+
dada

[
fda−1
da2 −

fda f 2
ab−1

2ab2 +ad2

]
(C.62)

Mass-counterterm contribution to G (3)

It may be helpful to think of these effective Hamiltonian terms of being a type .
Again, the mass counterterm does not contribute directly toT(2). Therefore only the second
term of Eq. (C.54) leads to this kind of terms, namely:

G ′
(

dλ
dt

)
= Xδm

P+
da

da
da2 fdaH>−

∣∣
connected (C.63)

G (3) = (−1)ζda( fda−1) · (C.64)
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C.3 Other operators in terms of effective particles

The equation:

q∞ = U†
λ qλUλ = (C.65)

= qλ−u(1)qλ +qλu(1)−u(1)qλu(1) +u(2)†qλ +qλu(2) (C.66)

expresses creation and annihilation operatorsq∞ in terms ofqλ (or the other way around). This
means, that if one has any operatorA expressed in terms of one type of the creation operators,
it can be re-expressed in terms of the other set.

One may take the example of changing the creation and annihilation operator basis of the
quarks, according to the formulae (i.e.,Uλ) based on strong interaction Hamiltonian. This
Hamiltonian will be denoted:

HQCD = H0q +H0g +H(g) +H(g2) (C.67)

Note that, in this thesis, I analyze scalar and Yukawa interactions only. Yet, the scalar theory of
Chapter5 is designed in such a way as to produce a scattering amplitude analogous to that of
QCD coupled to QED. I thus refer in this Appendix to a strongly coupled part of a Hamiltonian
asHQCD even for the scalar theory. In the case of the scalar Hamiltonian of Chapter5, H(g2)

would just consist of quark and gluon mass counterterms; in the case of real QCD, it would be
more complicated (it would have the seagull terms, for example). Now, let us re-express full
Hamiltonian:

H = HQCD+H0e+H0γ +H(e) +H(e2) (C.68)

in terms of effective quarks and gluons as defined by their strong interactions.

Interactions of effective quarks and gluons

Because the strong interaction Hamiltonian is defined in terms of quark and gluon creation and
annihilation operators only, when re-expressed in terms of the effective particles it is such an
effective Hamiltonian as defined in AppendixC.2.

In other words, if one rotates quark and gluon creation operators as required by the strong
Hamiltonian, its form in the new basis will be exactly as demanded by the RGPEP equations.
Note, that the free quark and gluon parts also contribute to the effective interactionHλ I through
terms ofu(i), i ≥ 1.

Hλ,QCD = fλGλ,QCD (C.69)

The question is, therefore, how changing of basis of quarks and gluons would affect the
electromagnetic part of the Hamiltonian.

Interactions of effective electrons and photons

By contrast, the parts of the Hamiltonian that did not have any quark or gluon creation or annihi-
lation operators will not notice the change of the basis. These parts of the effective Hamiltonian
are exactly equal to the corresponding terms in the bare Hamiltonian:

Hλ,e,γ = H∞,e,γ . (C.70)
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Interactions of effective quarks and gluons with photons

The electromagnetic interactions would thus only notice the change of the basis if they involved
quarks. Note that because the Hamiltonian is expressed in terms of the products of quark and
gluon creation operators, rather than rotating each creation operator separately one can perform
a unitary rotation of the whole term of the Hamiltonian.

Since the rotation is expressed in terms of commutators, only connected parts will appear.
As an example, I will consider hence a rotation of a term which creates two quarks from a
photon. There is a corresponding hermitian conjugated term that annihilates a pair of quarks,
terms with photon emission from a quark, etc., but neither of these contribute to theg2e2 order
scattering amplitude fore+e−→ hadronsanalyzed in Chapter5.(

1−u(1) +u(2)†
)

HE|con. = HE−
{

(1− fλ)H
(1)
QCD

}
0
HE|con.−

−
{

(1− fλ)H
(2)
QCD

}
0
HE|con. +

(
F̃abcH

(1)
QCDH(1)

QCD

)
HE|con. (C.71)

(con. means that there is only the connected part of corresponding expressions). The factorF̃
in the last term is:

F̃abc = −P+
ca

ca

P+
baba+P+

bcbc

ba2 +bc2 fca(1− fba fbc)+

+
P+

baP+
ca

baca
−

P+
bc

bc
P+

ca

ca
fab fbc+

P+
ba

ba

P+
bc

bc
fba (C.72)

A similar term for ac = 0 has to be analyzed separately. The only contributions of this
type may come only from terms that come partially from two separate orderg rotations of each
quark. This leads to

F̃aba = −1
2

(
P+

ba

ba

)2

(1− fba)
2 . (C.73)

This result is analyzed in details in Section5.6.2, and also used inF.

C.4 Notation used for the simple model

Below I give details of the notation and calculations used in Chapter2. This is based directly
on [1].

The simple model considered in Chapter2 uses a slightly different notation from the rest
of the thesis since it is limited to a subspace of two sectors of the Fock space and uses an
algebraic version of the Hamiltonian similarity renormalization procedure with sharp similarity
form factorsfλ (“diagonal proximum” operators) [3].

For any operatorA,

A =
∫
|1〉〈2|A12 , (C.74)

where|i〉 are eigenstates of a free HamiltonianH0,
{

A
}

0 is defined as:{
A
}

0
=

∫
|1〉〈2| 1

E2−E1
A12 , (C.75)
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whereE2 andE1 are eigenvalues ofH0, corresponding to the right and left projection states
respectively. This means that

{
A
}

0 has a form similar toA with a simple addition of an ex-
tra denominator, with difference of energies (P−) of all created and all annihilated particles.{

A
}

0 is the solution of the equation:[{
A
}

0
,H0

]
= A . (C.76)

The action of the diagonal proximum operatorfλ is defined as:

fλA =
∫
|1〉〈2| f̃λ(1,2)A12 . (C.77)

In the algebraic version of the similarity renormalization procedure [3], one has to choose
sharpfλ. For the calculation in Chapter2, the following was chosen:

f̃λ(1,2) = θ(λ2−|M 2
1 −M 2

2 |) , (C.78)

whereMi is the free invariant mass of a statei. This means that, whenfλ acts on any operator,
it chops off all far off-diagonal terms (multiplying them by zeros) and leaves only terms which
do not change the free energy of a state excessively (i.e., by more thanλ). Note that, to simplify
the notation, I omit the tilde symbol in formulae such as (C.77) and (C.78) and use the symbol
fλ for both the operatorfλ and the functionf̃λ, except where this might cause confusion.

The functionsα(s), β(s) andγ(s) are defined as follows:

α(s) := − 1
16π2

∫
dM 2dx θ(∆2−M 2)

x
M 2−s+ iε

, (C.79)

β(s) := − 1
16π2

∫
dM 2dx θ(∆2−M 2)

1
M 2−s+ iε

, (C.80)

γ(s) :=
∫

dM 2dx θ(∆2−M 2)
(1−x)M 2−µ2 +(1−x)m2

M 2−s+ iε
, (C.81)

wherex is integrated over the whole kinematically allowed region, i.e.,x has to be between the
two solutionsxB of the equation:

M 2 =
m2

xB
+

µ2

1−xB
, (C.82)

andM 2∈
(
(m+µ)2;∞

)
. Also, a limitε→ 0 (after performing the integration in (C.79)-(C.81))

is implicit. α, β andγ are divergent functions of the cutoff∆. Their finite parts are defined as
follows:

α f (s) = lim
∆→∞

[
α(s)+

1
2·16π2 log

∆2

m2

]
, (C.83)

β f (s) = lim
∆→∞

[
β(s)+

1
16π2 log

∆2

m2

]
, (C.84)

γ f (s) = lim
∆→∞

[
γ(s)− 1

2
∆2− 1

2
(s−m2−2µ2) log

∆2

m2

]
. (C.85)
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Appendix D

Yukawa theory

D.1 Canonical theory

D.1.1 Hamiltonian in terms of the fields

The starting point for the procedures in Chapter4 is a Lagrangian:

L = ψ̄I (i/∂−m−gφI )ψI +
1
2

(
∂µφI ∂µφI −µ2φ2

I

)
, (D.1)

whereψI denotes a doublet of fields,ψI = (ψ1,ψ2), and the fields with a subscriptI are full
interacting fields fulfilling Euler-Lagrange equations for the above Lagrangian:

(∂µ∂µ+µ2)φI = −gψ̄I ψI (D.2)

(i/∂−m−gφI )ψI = 0 . (D.3)

Fields without subscriptI will denote free fields, fulfilling Euler-Lagrange equations for the
above Lagrangian withg = 0. Using projection operatorsΛ± (B.44), one can define the two
components of the fieldψ as:

ψ+ := Λ+ψI (D.4)

ψ− := Λ−ψI . (D.5)

Multiplication of (D.3) by Λ+ leads to:

ψ− =
1

i∂+

(
i∂⊥α⊥+mβ

)
ψ+ +

1
i∂+ βgφI ψ+ , (D.6)

which is a constraints equation: when one provides initial conditions, this equation has to be
fulfilled explicitly. One introduces fieldsψ fulfilling free Euler-Lagrange equations as follows:

ψ := ψ̃−+ψ+ (D.7)

ψ̃− := ψ−(g = 0) =
1

i∂+

(
i∂⊥α⊥+mβ

)
ψ+ . (D.8)

The full interacting field can be expressed in terms of the free field by:

ψI = ψ+
1

i∂+ βgφI ψ+ . (D.9)
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Likewise, multiplication of (D.3) by Λ− leads to a dynamical equation:

i∂−ψ+ =
1

i∂+

(
−∂⊥2 +m2

)
ψ+ +

+(gφI β) ψ̃−+
(

i∂⊥α⊥+mβ
) 1

i∂+ (βgφI )ψ+ +

g2φI
1

i∂+ φI ψ+ . (D.10)

The canonical Hamiltonian of this theory is:

H =
1
2

∫
d3xψ̄I

(
iγ+)∂−ψI +φI

(
−∂⊥2 +µ2

)
φI , (D.11)

which, when expressed in terms of the free fieldsψ, becomes:

H = H0 +HY +H+ (D.12)

H0 =
1
2

∫
d3x :

[
φ
(
−∂⊥2 +µ2

)
φ+ ψ̄γ+−∂⊥2 +m2

i∂+ ψ
]

: (D.13)

HY = g
∫

d3x : [ψ̄ψφ] : (D.14)

H+ = g2
∫

d3x :

[
ψ̄φ

γ+

2i∂+ φψ
]

: . (D.15)

D.1.2 Hamiltonian in terms of the creation/annihilation operators

Substituting the free fields Fourier expansion (see AppendicesB.3andB.4) and normal-ordering
leads to the Hamiltonian expressed in terms of creation and annihilation operators. In this step,
one drops all terms that appear during normal-ordering due to delta functions.

H∆ = H0 +H∆
Y +H∆

+ +X∆ (D.16)

The free part of the Hamiltonian is:

H0 =
∫

[k]
k⊥2 +µ2

k+ a†
kak +

∫
[p]∑

σi

p⊥2 +m2

p+

(
b(i)†

pσ b(i)
pσ +d(i)†

pσ d(i)
pσ

)
. (D.17)

The part of orderg is:

H∆
Y = g∑

σηi

∫
[pkl]2(2π)3δ3(pcreated− pannihilated)×

×
(
a†

kb(i)†
pσ b(i)

lη ūpσulη +a†
kd(i)

pσb(i)
lη v̄pσulη−a†

kd(i)†
lη d(i)

pσv̄pσvlη +

+b(i)†
pσ b(i)

lη akūpσulη +b(i)†
pσ d(i)†

lη akūpσvlη−d(i)†
lη d(i)

pσakv̄pσvlη
)
r∆δr∆δ . (D.18)

In this term, a regularization has been introduced. I choose a regularization on relative child-
parent momenta: namely, for each particle there is a term:

r∆δ = exp

(
−κ2

c/p

∆2

)
rδ
(
xc/p

)
. (D.19)
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A specific form of the small-x cutoff rδ will be left unspecified here, except from requiring that
it makes integrations like the one in Eq. (D.28) finite. In each term ofr∆δ there are two such
regulating factors, one for each of the child particles. However, the small-x regulatorrδ will be
included only for fermions.

The seagull term is not involved in the calculation of Chapter4.

D.2 Effective theory to the orderg2

In this part the boson massµ is chosen to be zero.

D.2.1 General formulae to orderg2

Hλ 0 = H0 (D.20)

H (1)
λ = fλHY (D.21)

H (2)
λ = fλH+ + fλX(2)

∆ + fλ
(

F (2)
abc

)
HYHY|connected (D.22)

For:

fab = exp

(
−ab2

λ4

)
(D.23)

F (2) is:

F (2)
abc =

P+
bcbc+P+

baba

bc2 +ba2 ( fab fbc−1) . (D.24)

D.2.2 Second order effective fermion mass term

For each family of fermions:

fλF (2)HYHY| = ∑
σ

∫
[p]b†

pσbpσ
1
p+ δm2

∆,λ . (D.25)

Using (B.57), δm2
∆,λ can be written as:

δm2
∆,λ =

1
16π3p+ ∑

σ2

∫
dxd2κ

x(1−x)
1
ba

( f 2
ba−1)(ūpσaup2σ2ūp2σ2upσc) r2

∆δ = (D.26)

=
g2

16π2

∫ 1

0
dx

∫ ∞

0
dz

m2(1+x)2 +z
(1−x)2m2 +z

1
x
( f 2

ba−1)e−4z/∆2
r2

δ(x) , (D.27)

wherex is the relative momentum of the fermion in the fermion-boson pair.
The part withoutfba is divergent, and the specific form of divergence requires the second-

order counterterm to be1 :

X2 = ∑
σ

∫
[p]b†

pσbpσ
1
p+

[
g2

16π2

∫ 1

0
dx

∫ ∞

0
dz

m2(1+x)2 +z
(1−x)2m2 +z

1
x

e−4z/∆2
r2

δ(x)+δm2
X,phys

]
=

= ∑
σ

∫
[p]b†

pσbpσ
1
p+

g2

16π2

[(∫ 1

0
dxr2δ

1
x

)
∆2

4
+4m2 log

∆2

m2 +const.

]
, (D.28)

1Compared to [2] the quadratically∆-dependent part of (D.28) has an additional factor 1/2, because of different
choice of regularization. The choice of regularization made in this appendix is consistent with the rest of the thesis.
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whereδm2
X,phys andconst. are constants (independent of∆ and momentump) of dimension

mass2.
Similarly, the effective boson mass and the boson mass counterterm can be calculated.

D.2.3 Second order effective fermion-fermion potential

In second order there are a number of terms inH(λ). Of these, only the effective vertex (D.21)
and mass correction presented above, and the fermion-fermion – fermion-fermion potential
shown below (denotedHλ ,V) are important for further calculation.

Hλ ,V = facF
(2)

abc HYHY|−−−−/−−−− = facF
(2)

abc

(
+

)
(D.29)

These two orderings are referred to as a “slash” (/) and a “backslash” (\) orderings.

D.3 Model subspace

The eigenvalue equation for a Hamiltonian in the full Fock-space can be reduced to an equation
in a smaller subspace by using theR operation presented in AppendixJ.2. In Chapter4 reduc-
tions to one-particle and two-particles of limited energies spaces is described. The details of
this procedure are presented below.

Derivation of the Schrödinger equation in the case of reduction to bare-particles subspaces
and effective-particles subspaces follows the same path. However, the calculation for the effec-
tive particles is slightly more complicated, because of additional terms inHλ (for example, in
H∆ there are no terms like in Eq. (D.29) for a term inHλ ). Thus I give explicit expressions
for effective particles. The corresponding expressions for bare particles can be calculated by
following analogous steps, or by putting allfλ equal to 1 (i.e.λ→∞) in the expressions for the
effective particles.

D.3.1 Projection operators

The operator projecting on one fermion space is:

P̂1 = ∑
σ

∫
[k]b†

kσ |0〉〈0|bkσ . (D.30)

The projection on a subspace with two fermions of different kinds and of limited relative mo-
menta is:

P̂2 = ∑
ση

∫
[kp]θ(Ω2−M2)b(1)†

kσ b(2)†
pη |0〉〈0|b

(2)
pηb(1)

kσ . (D.31)

Note, that forP̂2 to be a projection operator it is essential thatθ would not be replaced by any
smooth function. If one defined a projection on a space with two fermions of the same kind,
there would be additional factor 1/2.
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D.3.2 One-fermion subspace

Reductions to one-effective-fermion subspace and one-bare-fermion subspace lead to subspace
Hamiltonians:

HP1 =
∫

[p]∑
η

p⊥2 +m2
phys

p+ b†
pη |0〉〈0|bpη , (D.32)

with the physical fermion mass in the eigenvalue:

m2
phys= m2 +m2

X,phys, (D.33)

wherem2
X,phys is a finite part of the mass counterterm (cf. Eq. (D.28)). m2

phys is equal to the

value corresponding to the eigenvalue of the full HamiltonianH∆ calculated in perturbation
theory.

For one-bare-particle subspace the divergent∆-dependence of the counterterm cancels with
∆-dependentH−<H>− loop. The result is finite, but depends on the finite part of the counterterm
m2

X,phys.
For one-effective-particle subspace,∆-dependence already canceled out when one calcu-

lated the effective Hamiltonian. When projecting one one-effective-particle subspace, theλ-
dependence of the effective mass (a term∼ f 2

λ in (D.27)) cancels withf 2
λ in the fλH−< fλH>−

loop, and the resulting physical mass does not depend onλ. This is related to the fact thatHλ
was obtained by a unitary rotation and therefore the eigenvalues ofHλ are the same asH∆ (in
particular, they do not depend onλ).

D.3.3 Two-effective-fermions subspace

Free part

H0
model= P̂2H(0)λP̂2 =

= ∑
ση

∫
[kp]θ(Ω2−M2)b(1)†

kσ b(2)†
pη |0〉〈0|b

(2)
pηb(1)

kσ

(
p⊥2 +m2

p+ +
k⊥2 +m2

k+

)
(D.34)

Together with a projection ofX(2) and a mass (i.e., loop) part ofPHQHP in R, it gives:

H0+δm2

model = ∑
ση

∫
[kp]θ(Ω2−M2)b(1)†

kσ b(2)†
pη |0〉〈0|b

(2)
pηb(1)

kσ×

×

(
p⊥2 +m2

phys

p+ +
k⊥2 +m2

phys

k+

)
, (D.35)

wherem2
phys is the eigenvalue of the one-particle equation (D.32).

Projection of potential term

HV = P̂2Hλ ,VP̂2 (D.36)
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whereHλ ,V is defined in Eq. (D.29). Two kinds of terms in this expression are distinguish-
able (i.e., do not mix), since the pair of fermions of different kinds is considered; for identical
fermions for each momentum, both diagrams would contribute for each value of external mo-
menta. Thus kinematics determines the kind of diagram (for example, ifk+ of first fermion is

bigger in the right than in the left state, one has the diagram .

Taken together, the potential term is:

HV = ∑
1234

∫
[1234]δ̃(1+3−2−4) v(1234)θΩ24θΩ13|13〉〈24| (D.37)

v(1234) = g2
∫

[q]δ̃ facF
(2)

abcū1u2ū3u4r∆δr∆δ|−−−−/−−−− + (D.38)

+g2
∫

[q]δ̃ facF
(2)

abcū1u2ū3u4r∆δr∆δ|−−−−\−−−− (D.39)

One Effective Boson Exchange (OEBE) term

HOEBE =
1
2

P̂2HQ̂
{

H
}

0
P̂2−

1
2

P̂2

{
H
}

0
Q̂HP̂2 (D.40)

where, to getHOEBE in the lowest order (i.e.,g2), one hasH = Hλ ,Y and:

Q̂ = ∑
12

∫
[12q]b(1)†

1 b(2)†
2 a†

q |0〉〈0|aqb(2)
2 b(1)

1 (D.41)

(superscripts(1) and(2) denote kind of fermion and are fixed; subscripts 1 and 2 denote mo-
menta and polarizations and one sums and integrates over them). Each of these terms can be of

the kind
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����� and one has each of these diagrams with energy denominators for the

left or right vertex.
The part ofHOEBE corresponding to the first diagram, with denominator in the right part is:
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b c

J

= ∑
1234

∫
[1234]δ̃(1+2−3−4)θΩ12θΩ34|12〉〈34|

1
2

g2
∫

[q]δ̃(1−2−q) fabū1u3
P+

bc

(cb)
fbcū2u4 (D.42)

Because of a minus sign before the term with the other denominator, it will be−ba= ab. All
terms ofHOEBE are thus:

HOEBE = ∑
1234

∫
[1234]δ̃(1+2−3−4)θΩ12θΩ34|12〉〈34| vOEBE(1234) (D.43)

vOEBE(1234) =
1
2

g2ū1u3ū2u4

[∫
[q]δ̃ fab fbc

(
P+

bc

cb
+

P+
ab

ab

)
−−
−−/
−−
−−

+

+
∫

[q]δ̃ fab fbc

(
P+

bc

cb
+

P+
ab

ab

)
−−
−−\−−−−

]
(D.44)
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D.4 Eigenvalue equation in two-effective-fermions subspace

D.4.1 The equation

The model Hamiltonian resulting from operations presented above is:

Hmodel= ∑
12

∫
[12]θΩ12|12〉〈12|

(
k⊥2

1 +m2
phys

k+
1

+
k⊥2

2 +m2
phys

k+
2

)
+

+ ∑
1234

∫
[1234]4m2

phys̃δ(1+2−3−4)θΩ12θΩ34|12〉〈34| vmodel(1234) (D.45)

where, for momenta labeled according to the figure:
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �1 2

3 4
(2)

(1)

, vmodel(1234) is:

vmodel(1234) = g2 ū1u2ū3u4

4m2
phys

([
1

q+ facF (2)r∆δr∆δ +
1
2

1
q+ fab fbc

(
P+

bc

cb
+

P+
ab

ab

)
r∆δr∆δ

]
−−
−−/
−−
−−

+

+
[

1
q+ facF (2)r∆δr∆δ +

1
2

1
q+ fab fbc

(
P+

bc

cb
+

P+
ab

ab

)
r∆δr∆δ

]
−−
−−\−−−−

)
(D.46)

A factor 4m2
physhas been introduced intovmodel for convenience later in the calculation.

This Hamiltonian commutes with total momentumP⊥, P+ and withJz defined as for a free
theory.

One can search for an eigenstate of this Hamiltonian:

Hmodel|ΨP〉= P− |ΨP〉 (D.47)

in the form:

|ΨP〉 = ∑
σ,σ′

∫
[p, p′]θΩδ̃(P− p− p′)ψσσ′(x,κ)b(1)†

pσ b(2)†
p′σ′ |0〉 . (D.48)

After projecting on bra〈k1,k2| and introducing relative momentax,κ⊥ (andy,η⊥ for the inte-
grated momenta), equation (D.47) takes the following form:

κ2 +m2
phys

x(1−x)
θκψσσ′(x,κ)+ ∑

σ,σ′

1
16π3

∫
d2ηdy

y(1−y)
θκθη 4m2

physvmodelψζζ′(y,η) =

= M2θκψσσ′(x,κ) (D.49)

D.4.2 Elements ofvmodel

Spinors products

Relative momenta are introduced as follows:

~p1 = x~P+κ⊥ (D.50)

~p3 = (1−x)~P−κ⊥ (D.51)

~p2 = y~P+η⊥ (D.52)

~p4 = (1−y)~P−η⊥, (D.53)
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for the external momenta and for the one integrates over. In terms of these, the spinor products
appearing invmodelcan be written as:

ū1u2 =
1
√

xy
χ†

1

[
m(x+y)−σ3σ⊥(xη⊥−yκ⊥)

]
χ2 (D.54)

ū3u4 =
1√

(1−x)(1−y)
χ†

3

[
m(2−x−y)+

+σ3σ⊥
(
(1−x)η⊥− (1−y)κ⊥

)]
χ4 . (D.55)

Momentum factors for the slash-type potential

[]−−
−−/
−−
−−

=
[

1
q+ facF (2)r∆δr∆δ +

1
2

1
q+ fab fbc

(
P+

bc

cb
+

P+
ab

ab

)
r∆δr∆δ

]
−−
−−/
−−
−−

= (D.56)

=
1

y−x
θ(y−x)r∆δr∆δ×

×
[

fac
(1−x)ba+ybc

ba2 +bc2 ( fab fbc−1)− 1
2

fab fbc

(
y
bc

+
1−x
ba

)]
(D.57)

ba =
(

η2 +m2

1−y
+

(η−κ)2

y−x

)
(1−x)−κ2−m2 (D.58)

bc =
(

κ2 +m2

x
+

(η−κ)2

y−x

)
y−η2−m2 (D.59)

ac =
κ2 +m2

x(1−x)
− η2 +m2

y(1−y)
(D.60)

Momentum factors for the backslash-type potential

[]−−
−−\−−−− =

1
x−y

θ(x−y)r∆δr∆δ×

×
[

fac
xba+(1−y)bc

ba2 +bc2 ( fab fbc−1)− 1
2

fab fbc

(
1−y
bc

+
x
ba

)]
(D.61)

ba =
(

η2 +m2

y
+

(κ−η)2

x−y

)
x−κ2−m2 (D.62)

bc =
(

κ2 +m3

1−x
+

(κ−η)2

x−y

)
(1−y)−η2−m2 (D.63)

ac = as in(D.60) (D.64)

D.4.3 The equation in terms of pseudo-equal-time momenta

Instead of the relative momentax,κ⊥ one can use the pseudo-equal-time momenta introduced
in AppendixB.2.2. However, the equation obtained is not symmetric and to symmetrize it one
introduces new, rescaled wave functionφ:

φ(~p) :=
1

(p2 +m2
phys)

1/4
ψσσ′(~p) . (D.65)
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This way Eq. (D.49) takes the form:

~k2

mphys
θkφσσ′(~k)+ ∑

σ,σ′

1
8π3

∫
d3p(

(k2 +m2
phys)(p2 +m2

phys)
)1/4

/mphys

θkθpvmodelφζζ′(~p) =

=
M2−4m2

phys

4mphys
θkφσσ′(~k) . (D.66)

Note that, when using momenta~k, the nonrelativistic kinetic energy appears even without any
nonrelativistic approximation. Also, if one introduces a binding energyB by subtracting two
rest-frame masses of fermions from an equal-time center of mass bound state energyEcms:

B := Ecms−2mphys, (D.67)

then, for weak binding (|B| �mphys), one can approximate:

M2 = E2
cms= (B+2mphys)2≈ 4Bmphys+4m2

phys, (D.68)

and the eigenvalue expression on the right-hand-side becomes:

M2−4m2
phys

4mphys
≈ B . (D.69)

For B�m (or M2 ≈ 4m2
phys), the eigenvalue on the right-hand side of Eq. (D.66) can thus be

interpreted as a binding energy. When this condition is not fulfilled (i.e., for strong binding)
this eigenvalue has to be interpreted in terms ofM2, without the approximations above.

D.4.4 The leading nonrelativistic approximation

If one assumes that only nonrelativistic momenta are important (which can be forced by intro-
ducing a smallΩ parameter for the reduction procedure), the potential is greatly simplified. If
one keeps only leading parts ink/m series expansion, the equation (D.66) takes the following
form:

~k2

mphys
θkφσσ′(~k)+ ∑

σ,σ′

1
8π3

∫
d3pθkθp

(
−g2

(~k−~p)2

)
×

× r∆δr∆δ [ fac+ fab fbc(1− fac)]δσζδσ′ζ′φζζ′(~p) = Bθkφσσ′(~k) , (D.70)

where the factor in the parenthesis is the Coulomb potential in the momentum space:

vCoulomb(~k−~p) := −4πα
1

(~k−~p)2
=−g2 1

(~k−~p)2
. (D.71)

This eigenvalue equation is diagonal in spin indexes: one can takeφσσ′(~k) as a product of
momentum independent spin factor, and a spin-independent momentum factor:

φσσ′(~k) =: fσσ′φ(~k) . (D.72)
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Then fσσ′ is arbitrary, andφ(~k) fulfills:

~k2

mphys
θkφ(~k)+

∫
d3p

(2π)3θkθpvCoulomb(~k−~p)r∆δr∆δ [ fac+ fab fbc(1− fac)]φ(~p) = Bθkφ(~k) .

(D.73)
Thus, in the leading nonrelativistic approximation one gets a Schrödinger equation with a stan-
dard Coulomb potential multiplied by the combination of the similarity factorsfλ, and by factors
θ limiting the range of integration.

Whether the similarity form factors matter depends on the width of the form factors com-
pared to the physical massmphys. For wide form factors (big lambdas), allfλ are approximately
equal to 1 for any fixed value of momenta, and there should be no difference between the above
nonrelativistic equation and the equation with the standard Coulomb potential, without the sim-
ilarity factors.

Three related questions present themselves: is the nonrelativistic approximation justified?
are relativistic momenta important in Eq. (D.66) (i.e., before the nonrelativistic approximation)?
And what is the role of the similarity form factors in (D.66)? These questions can, in fact, be
reduced to one question: can Eq. (D.66) be approximated by a nonrelativistic equation with a
Coulomb potential?

Since in the final equation only the physical mass enters, to simplify the notation I will
henceforth drop the subscriptphys, i.e.:

m := mphys (D.74)

and not the bare mass.

D.5 Numerical comparison 1: Tamm-Dancoff vs. Coulomb

D.5.1 Tamm-Dancoff two particles bound-state equation

Trying to solve initial (“bare”) QFT by searching for an eigenstate dominated by two bare
fermion states leads to an eigenvalue equation:

~k2

m
θkφσσ′(~k)+ ∑

σ,σ′

∫
d3p

(2π)3θkθpvTDφζζ′(~p) = Bθkφσσ′(~k) , (D.75)

or, if one does not impose any momentum limitations:

~k2

m
φσσ′(~k)+ ∑

σ,σ′

∫
d3p

(2π)3vTDφζζ′(~p) = Bφσσ′(~k) . (D.76)

Instead of keeping complicated regulators (each vertex is regulated separately), I dropr∆δ
and introduce again a momentum cutoffk < kmax, this time in potential part only. Therefore:

vTD =
g2ū1u2ū3u4

4m((k2 +m2)(p2 +m2))1/4

(
[]−−
−−/
−−
−−

+[]−−
−−\−−−−

)
θ(k−kmax)θ(p−kmax) , (D.77)

with:

[]−−
−−/
−−
−−

=
1

y−x
θ(y−x)(−1

2
)
(

y
bc

+
1−x
ba

)
(D.78)

[]−−
−−\−−−− =

1
x−y

θ(x−y)(−1
2
)
(

1−y
bc

+
x
ba

)
. (D.79)

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



D.5 Numerical comparison 1: Tamm-Dancoff vs. Coulomb 157

The spinor factors andba, bcare given in AppendixD.4.2.
This equation can be compared with the Schrödinger equation with Coulomb potential in

perturbation theory. The unperturbed Hamiltonian with the Coulomb potential is:

H0 = ∑
σk1σk2

∫
d3k|k〉 k2

m
〈k|+

+ ∑
σk1σp1σk2σp2

∫
d3kd3p|k〉δσk1σp1δσk2σp2

(−g2)
(2π)3

1

(~k−~p)2
〈p| , (D.80)

where|k〉 denotes a state of two particles of relative momenta~k, with implicit spin labels (i.e.,
|k〉 := |kσk1σk2〉), and normalized as follows:

〈k | p〉 = δ3(k− p)δσk1σp1δσk2σp2 . (D.81)

The lowest-energy eigenvalue ofH0 is:

B0 = −g4m/64π2 (D.82)

and the corresponding ground-state is (cf. AppendixJ.1):

ψ(0)
σσ′ = N

∫
d3k

1

(k2 +a2)2 fσσ′
∣∣kσσ′

〉
. (D.83)

The potential in which bound-state perturbation theory is performed is:

VTD−C = ∑
σk1σp1σk2σp2

∫
d3kd3p|k〉 g2

(2π)3

[
δσk1σp1δσk2σp2

1

(~k−~p)2
−

−θkθp
ūσk1uσp1ūσk2uσp2

4m((k2 +m2)(p2 +m2))1/4

(
[]−−
−−/
−−
−−

+[]−−
−−\−−−−

)]
〈p| (D.84)

To simplify the notation, I denote spin subscripts of the four degenerateψ(0) as follows: 1=↑↓,
2 =↓↑, 3=↑↑, 4=↓↓.

D.5.2 First order correction

The general structure

Since the above potential preservesJ3 component of angular momentum, the only non-vanishing
first-order corrections to the Coulomb ground bound state energy fromVTD−C are:

∆E(1)
i j =


〈1|V |1〉 〈1|V |2〉 0 0
〈2|V |1〉 〈2|V |2〉 0 0

0 0 〈3|V |3〉 0
0 0 0 〈4|V |4〉

 . (D.85)

The upper-left corner of this matrix is diagonalized by the symmetric/antisymmetric basis
choice:ψ = |↑↓〉± |↓↑〉.
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Below, I calculate the correction to energy relative to the zeroth-order eigenvalue:∆E/E0.
Note that hereE0 = |B0|> 0.

The diagonal matrix elements〈i|V |i〉/E0 (equal for eachi ∈ {1. . .4}) are real and denoted
d(1), the off-diagonal〈1|V |2〉/E0 are also real and denotedb(1). The correction to the energy
is a sum or a difference of the two. The stateψ+ := ψ0(k) 1√

2
(|↑↓〉+ |↓↑〉) has energyE0(−1+

d(1) +b(1)), the stateψ− := ψ0(k) 1√
2
(|↑↓〉− |↓↑〉) has energyE0(−1+d(1)−b(1)). Depending

on the sign ofb(1), either one can have the lower energy. The energies of statesψ↑↑ andψ↓↓ are
equalE0(−1+d(1)).

Results

α ∆E+/E0 ∆E−/E0 error b(1)

0.01 8.7 E-6 -5.8 E-5 1.2 E-6 3.3 E-5
0.1 1.3 E-3 -5.2 E-3 2.6 E-4 3.3 E-3
0.3 2.0 E-2 -3.5 E-2 1.1 E-3 2.7 E-2
0.6 8.0 E-2 -0.11 3.2 E-3 9.7 E-2

Summary

For all α examined above, the first-order corrections to the energies are small. However but for
α = 0.6 they are considerable (of the order of 10%). In all cases, the bulk of the correction comes
from off-diagonal (spin-changing) matrix elementsb(1). This is because the spin-diagonal part
of the potential resembles Coulomb very closely.

In all casesb(1) > 0 and therefore the stateψ0(k) 1√
2
(|↑↓〉− |↓↑〉) has lower energy. For this

state I calculated the second order correction.

D.5.3 Second order correction

Since degeneration was removed in first order, in the second order one gets the following cor-
rection to 1√

2
(|1〉− |2〉) state:

∆E(2) =
1
2 ∑

i such thatEi 6=E0

(〈1|− 〈2|)V |i〉〈i|V (|1〉− |2〉) 1
E0−Ei

(D.86)

I calculated only part of this correction, which is sensitive tokmax (essentially, I dropped
terms with lower powers of momenta, e.g., terms without double-spin-flips; see the description
in Chapter4)

∆E(2) =
1
2 ∑

i such thatEi 6=E0

(〈1|V |i,2〉〈i,2|V |1〉+ 〈2|V |i,1〉〈i,1|V |2〉) 1
E0−Ei

=(D.87)

=
1
2

2 ∑
i such thatEi 6=E0

〈1|V |i,2〉〈i,2|V |1〉 1
E0−Ei

(D.88)

∆Ẽ(2) :=
∫ 4αm

0
d3p

∫ kmax

m
d3k

∫ 4αm

0
d3p′ 〈~p,1|V

∣∣∣~k,2〉〈~k,2∣∣∣V ∣∣~p′,1〉 (+1)
k2/m

ψ(p)ψ(p′) (D.89)
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The limits of the integrals and simplifications to the denominators are described in Chapter4.

Note that|1〉 in Eqs. (D.86)-(D.88) has a Coulomb wave function, while
∣∣∣~k,1〉 is a free

momentum eigenstate. For visualization purposes, I also changed the sign of this expression to
positive.

The result for the second-order correction is presented in Figure4.3 on page63 and de-
scribed in Section4.5.2.

D.6 Numerical comparison 2: two-effective-particles bound-
state equation versus Coulomb

One can analyze the equation (D.66), which describes a bound state of two effective fermions,
following steps described above for two bare fermions bound-state equation (D.75) (Appendix
D.5). The results of this are analyzed in Section4.6.
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Appendix E

Canonical Hamiltonian of QED and QCD

E.1 Lagrangian

For description of light-front quantization in the light-front gauge, see e.g. [115] (see also
[116-118]).

The starting point is the Lagrangian:

L = −1
2

Tr
(

Fµν
gl. Fgl.µν

)
− 1

4
Fµν

ph.Fph.µν + ∑
f l .e

ψ̄e
(
i
/
DQED−me

)
ψe+ (E.1)

+ ∑
f l .q

ψ̄q
(
i
/
DQED+QCD−mq

)
ψq , (E.2)

where:

Fµν
gl. := ∂µAν−∂νAµ+ ig [Aµ,Aν] (E.3)

Fµν
ph. := ∂µAν

E−∂νAµ
E (E.4)

Dµ
QED := ∂µ+ ieAµ

E (E.5)

Dµ
QED+QCD := ∂µ+ ieAµ

E + igAµ (E.6)

Aµ := AµaTa (E.7)[
Ta,Tb

]
= i f abcTc (E.8)

Tr
(

TaTb
)

=
1
2

δab (E.9)

Note thatf abc is antisymmetric under exchange of any of the indexes. Writing the summations
explicitly:

L = −1
4

Fµνa
gl. Fa

gl.µν−
1
4

Fµν
ph.Fph.µν + ψ̄e(i/∂−e/AE−me)ψe+ (E.10)

ψ̄q
(
i/∂−eq/AE−g/AaTa−mq

)
ψq (E.11)

Fµνa = ∂µAνa−∂νAµa−g fabcAµbAνc (E.12)
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E.2 Equations of motion

∂L
∂φ

= ∂µ ∂L
∂(∂µφ)

(E.13)

For fieldsψ̄e andψ̄q:

(i/∂−e/AE−me)ψe = 0 (E.14)(
i/∂−eq/AE−g/A−mq

)
ψq = 0 (E.15)

(For fieldsψe andψq, after hermitian conjugation, one gets the same equations.
For Aµ:

DνFνµ = gψ̄qγµTaψqTa (E.16)

Dν = ∂+ ig [Aν, . ] (E.17)

For Aµ
E:

∂νFph.νµ = eψ̄eγµψe+eqψ̄qγµψq (E.18)

E.3 Physical degrees of freedom

E.3.1 Fermions

Projecting Eqs. (E.14) and (E.15) onΛ− leads to a constraint equation. In the light-front gauge:

A+ = A+
E = 0 (E.19)

this leads to the following expressions for the constraint components of fermion fields:

ψq− =
1

i∂+

(
iα⊥∂⊥−eqα⊥A⊥E −gα⊥A⊥+mqβ

)
ψq+ (E.20)

ψe− =
1

i∂+

(
iα⊥∂⊥−eα⊥A⊥E +meβ

)
ψe+ . (E.21)

One can introduce free fields:

ψqm := ψq+ +ψqm− (E.22)

ψqm− :=
1

i∂+

(
iα⊥∂⊥+mqβ

)
ψq+ (E.23)

ψem := ψe+ +ψem− (E.24)

ψem− :=
1

i∂+

(
iα⊥∂⊥+meβ

)
ψe+ . (E.25)
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E.3.2 Bosons

There is a similar situation for gluon fields. In the light-front gauge

Aµ =
(

A+ = 0,A−,A⊥
)

(E.26)

the minus component ofAµ can be expressed in terms of other components:

A− =
2i∂⊥A⊥

i∂+ − 2g

(i∂+)2

[
A⊥, i∂+A⊥

]
+

2g

(i∂+)2ψ̄qmγ+TaψqmTa . (E.27)

One introduces free gluon fields by puttingg = 0 in the above equation:

Ãµ =
(

A+ = 0, Ã−,A⊥
)

(E.28)

Ã− =
2i∂⊥A⊥

i∂+ (E.29)

Likewise, for electromagnetic field one has:

Aµ
E =

(
A+ = 0,A−,A⊥

)
(E.30)

A−E =
2i∂⊥A⊥E

i∂+ +
2eq

(i∂+)2ψ̄qmγ+ψqm+
2e

(i∂+)2ψ̄emγ+ψem (E.31)

Ãµ
E =

(
A+ = 0, Ã−E ,A⊥E

)
(E.32)

Ã−E =
2i∂⊥A⊥E

i∂+ (E.33)

E.4 Energy momentum tensor

Tµν =
∂L

∂
(
∂µφi

)∂νφi−gµνL (E.34)

This defines the Hamiltonian

H = P− =
1
2

∫
d2x⊥dx− : T+− : (E.35)

Using the equations of motion and re-expressing constraint components of full interacting fields
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by their free counterparts, one gets:

1
2

T+− =
1
2

ψ̄qmγ+−∂⊥2 +m2
q

i∂+ ψqm+
1
2

ψ̄emγ+−∂⊥2 +m2
e

i∂+ ψem+ (E.36)

+
1
2

∂kAia∂kAia +
1
2

∂kAi
E∂kAi

E + (E.37)

+ψ̄qm
(
eq/̃AE +g/̃A

)
ψqm+ ψ̄em

(
e/̃AE

)
ψem+ (E.38)

+ j+E
1

2(i∂+)2 j+E + j+a
s

1

2(i∂+)2 j+a
s + (E.39)

+ψ̄qm
(
eq/̃AE +g/̃A

) γ+

2i∂+

(
eq/̃AE +g/̃A

)
ψqm+ ψ̄em

(
e/̃AE

) γ+

2i∂+

(
e/̃AE

)
ψem+(E.40)

+2igTr
(
∂µÃν [Ãµ, Ãν

])
− g2

2
Tr
([

Ãµ, Ãν][Ãµ, Ãν
])

(E.41)

where the currentsjµ are defined as:

j+ := gψ̄qmγ+TaψqmTa (E.42)

j+A := g
[
i∂+A⊥,A⊥

]
=−ig

[
∂+Ãµ, Ãµ

]
(E.43)

j+s := j+ + j+A (E.44)

j+E := eqψ̄qmγ+ψqm+eψ̄emγ+ψem (E.45)

E.5 Expansion into creation and annihilation operators

E.5.1 Fields expanded in creation and annihilation operators

For quark and electron fields, the Fourier transform defines creation and annihilation operators:

ψm(x) = ∑
λ

∫
[k]
(

bkλukλe−ikx +d†
kλvkλeikx

)
x+=0

, (E.46)

where for electrons the indexλ indicates polarization, and for quarks polarization and color.
Fourier expansion of the unconstrained components of the gluon field is:

A⊥a(x) = ∑
λ

∫
[k]
(

akλaε⊥λ e−ikx +a†
kλaε∗⊥λ eikx

)
x+=0

(E.47)

The remaining components of the free gluon field are:

A+(x) = 0 (E.48)

A−(x) =
2i∂⊥A⊥

i∂+ . (E.49)
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Taken together,Aµ can be written as:

Aµ(x) = ∑
λa

∫
[k]
(

akλaTaεµ
kλe−ikx +a†

kλaTaε∗µkλeikx
)

x+=0
(E.50)

with polarization vectors:

ε− =
2k⊥ε⊥

k+ , ε+ = 0 (E.51)

Creation and annihilation operators fulfill:{
bkλa,b

†
pσb

}
=

{
dkλa,d

†
pσb

}
=
[
akλa,a

†
pσb

]
= 2(2π)3k+δ3(k− p)δλσδab , (E.52)

whereλ, σ denote polarizations anda, b denote color.
In all terms, integrals overx give:∫

d2x⊥dx−eix(kcre−kani) = 2(2π)3δ2(k⊥cre−k⊥ani)δ(k+
cre−k+

ani) =: (E.53)

=: 2(2π)3δ3(kcre−kani) = δ̃(kcre−kani) (E.54)

Below, I list terms of the Hamiltonian density (E.41) which contribute to calculatinge+e−→
hadronsscattering amplitude. These terms are expressed in terms of the creation and annihila-
tion operators, and with spinor products expressed in terms of two-dimensional spinors.

E.5.2 Free Hamiltonian

+ + ē+ q̄ :

H0 f ermions = ∑
λ

∫
[k]

k⊥2 +m2
e

k+

(
b†

kλbkλ +d†
kλdkλ

)
+

+∑
λc

∫
[k]

k⊥2 +m2
q

k+

(
b†

kλcbkλc +d†
kλcdkλc

)
(E.55)

λ denotes polarization andc is a color and flavor index of quarks.
+ :

H0bosons = ∑
λa

∫
[p]

p⊥2

p+ a†
gl−pλaagl−pλa +∑

λ

∫
[p]

p⊥2

p+ a†
ph−pλaph−pλ (E.56)

E.5.3 Electrodynamics of electrons and quarks

For the ultraviolet calculation I assumeme = 0 andmq = 0 (see
also AppendixF.1).

H>− = eq ∑
123

∫
[123] ū1/ε3v2δcolor12δ̃(1+2−3) b†

q1d†
q2ap3 (E.57)

ū1/ε3v2 =
1√

x(1−x)
χ1

(
−(1−2x)κkεk

3σ3 +(−i)(κ× ε3)
3
)

ξ−2 (E.58)
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H−< = e∑
123

∫
[123] v̄2/ε∗3u1 δ̃(1+2−3) a†

p3de2be1 (E.59)

v̄2/ε∗3u1 =
1√

x(1−x)
ξ−2

(
−(1−2x)κkεk

3σ3 + i (κ× ε3)
3
)

χ1 (E.60)

H>+< = eqe
∫

[1234]
ūq1γ+vq2(
k+

3 +k+
4

)2 v̄e3γ+ue4δ̃(1+2−3−4)b†
q1d†

q2de3be4 (E.61)

ū1γ+v2 = 2
√

p+
1 p+

2 χ†
1σ3ξ−2 (E.62)

ū1γ+u2 = 2
√

p+
1 p+

2 χ†
1σ3χ2 (E.63)

v̄1γ+v2 = 2
√

p+
1 p+

2 ξ†
−1σ3ξ−2 (E.64)

E.5.4 Chromodynamics

HY1 = g∑
123

∫
[123]ū1/ε∗2u3 (Ta)13δ̃ b†

1a†
2ab3 (E.65)

ū1/ε∗2u3 =
√

x3

x1
χ†

1

(
−x1 +x3

x2
κ1/3ε∗⊥2 − i

(
κ1/3× ε∗2

)3σ3
)

χ3 (E.66)

xi =
p+

i

P+ (E.67)

κ⊥1/3 = p⊥1 −
x1

x3
p⊥3 (E.68)

HY2 = −g∑
123

∫
[123]v̄3/ε∗2v1 (Ta)31δ̃ a†

2ad†
1d3 (E.69)

v̄3/ε∗2v1 =
√

x3

x1
ξ†
−3

(
−x1 +x3

x2
κ1/3ε∗⊥2 + i

(
κ1/3× ε∗2

)3σ3
)

ξ−1 (E.70)

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



E.5 Expansion into creation and annihilation operators 167

HY3 = g∑
123

∫
[123]ū3/ε2u1 (Ta)31δ̃ b†

3a2ab1 (E.71)

ū3/ε2u1 =
√

x3

x1
χ†

3

(
−x1 +x3

x2
κ1/3ε⊥2 + i

(
κ1/3× ε2

)3σ3
)

χ1 (E.72)

HY4 = −g∑
123

∫
[123]v̄1/ε2v3 (Ta)13δ̃ d†

3d1a2a (E.73)

v̄1/ε2v3 =
√

x3

x1
ξ†
−1

(
−x1 +x3

x2
κ1/3ε⊥2 − i

(
κ1/3× ε2

)3σ3
)

ξ−3 (E.74)

HΞ = −g2 ∑
1234a

∫
[1234] ū1γ+u2

1(
k+

3 +k+
4

)2 v̄3γ+v4b†
q1d†

q4dq3bq2 δ̃ (Ta)12(Ta)34(E.75)

Corresponding product of spinors is given in Eq. (E.62).

H>+<g = g2 ∑
1234a

∫
[1234]

ūq1γ+vq2 v̄q3γ+uq4(
k+

3 +k+
4

)2 δ̃ (Ta)12(Ta)34 b†
q1d†

q2de3be4 (E.76)

Corresponding product of spinors is given in Eq. (E.62).

E.5.5 Mixed QED-QCD terms

H>+q> = geq ∑
1234a

∫
[1234] ū1/ε∗3

γ+

2
(
k+

4 −k+
2

)/ε4v2δ̃ (Ta)12 b†
1a†

3ad†
2a4 (E.77)

ū1/ε∗g3
1
2

γ+/εph4v2 =
√

p+
1 p+

2 χ1

[
ε∗⊥3 ε⊥4 σ3 + i (ε∗3× ε4)

3
]

ξ−2 (E.78)
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H>+qb> = eqg
∫

[1234]ū1/ε4
γ+

2
(
k+

4 −k+
1

)/ε∗3v2 δ̃ (Ta)12b†
1a†

3ad†
2a4 (E.79)

ū1/εph4
1
2

γ+/ε∗g3v2 =
√

p+
1 p+

2 χ1

[
ε∗⊥3 ε⊥4 σ3− i (ε∗3× ε4)

3
]

ξ−2 (E.80)
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Appendix F

Effective Hamiltonian of QCD and QED

F.1 Effective QED and QCD Hamiltonian: list of terms con-
tributing to e+e−→ hadrons

In this appendix I give some of the terms in the effective HamiltonianHλ of QCD coupled
to QED which would contribute to calculating a scattering amplitude for the processe+e−→
hadrons. Only some terms have already been calculated and are given below. This preliminary
analysis is presented here to give a general picture of how much more complicated the analysis
in QCD coupled to QED is, compared to the scalar model analyzed in Section5.6.

Based on standard way of simplifying the calculation of this scattering amplitude [98], I
consider massless quarks and add a small gluon massµg which is to go to zero in the end of
calculation.

Calculation of the effective HamiltonianHλ and counterterms in the canonical Hamiltonian
H∆ is based on the simplified procedure described in Section5.6.2, starting from the canonical
Hamiltonian of QCD coupled to QED, presented in AppendixE.. .
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F.1.1 Electromagnetic interactions of electrons only

Parts ofHλ coming fromH for electrons and photons only do not change.

F.1.2 Electromagnetic interactions of quarks

H
e

f
fe

ct
iv

e

H
ca

n
no

ch
an

ge
u 1

H
ca

n
u H

2H
ca

n
u H

H
H

ca
n

Out of the terms in the above table, I have only calculated the terms with quark self-
interactions and corresponding counterterms. All terms with triangle-type strong-interactions
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corrections to electromagnetic interactions of quarks remain to be calculated in future.

F.1.3 Strong interactions of quarks

The effective Hamiltonian of strong interactions comes not only fromU†Hcon. terms, but also
from all the combinations inU†HU . The result is fullHe f f QCD, as follows:

• Terms of orderg0: Hλ 0QCD = H0QCD.

• Terms of orderg:

+ + + , where the bulb denotes a

form factor fλ.

The counterterms of a similar structure are of the orderg3 and therefore do not contribute
to the amplitudee+e−→ hadronsin the ordere2g2.

• Terms of orderg2:

+ + + , where the first term comes fromF2H1H1,

next two terms are fermion and anti-fermion mass corrections, and the last one is the seag-
ull term with a form factorfλ.

There are also mass counterterms of orderg2

F.2 Terms with self-interaction loops

F.2.1 Effective quark mass and mass counterterm

Hλ δm = F (2)
abaH(g)

−<H(g)
>− (F.1)

I calculate denominatorsbaas if gluons had a small massµg→ 0.

Hλ δm = ∑
1

∫
[1]b†

1b1
δm2

λ +δm2
∆

p+
1

(F.2)

δm2
λ =

g2

6π3

∫
dxd2κ

x
1

κ2 +xµ2
g

1+x2

(1−x)2κ2r2
δ f 2

ba (F.3)

δm2
∆ = − g2

6π3

∫
dxd2κ

x
1

κ2 +xµ2
g

1+x2

(1−x)2κ2r2
∆δ (F.4)

r∆δ = e−2κ2/∆rδ (F.5)

rδ = rδ(x)rδ(1−x) (F.6)
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δm2
∆ = − g2

6π2

∆2

4

∫ 1

0

dx
x

1+x2

(1−x)2r2
δ +

g2

3π2 log∆2
∫ 1

0

dx
x

1+x2

(1−x)2r2
δxµ2

g + (F.7)

− g2

6π2

∫ 1

0

dx
x

1+x2

(1−x)2r2
δ
[
xµ2

gγE +xµ2
g log4xµ2

g

]
(F.8)

The limit µg→ 0 is well defined. The first part:

δm2
∆ = − g2

6π2

∆2

4

(∫ 1

0

dx
x

1+x2

(1−x)2r2
δ

)
(F.9)

is divergent and determines the form of quark-mass counterterm inH∆. The other, finite and
λ-dependent part is:

δm2
λ =

g2

6π3

∫
dxd2κ

x
1+x2

(1−x)2κ2r2
δ

1
ba

f 2
ba (F.10)

wherex is x of the quark in the loop.

F.2.2 Seagull with quark self-interaction loop

Hλ + = g2eq
4
3 ∑

1′14

∫
[11′234]

x1

x4−x1′
χ†

1

(
− x2 +x1

x3
κk

2/1εk
4σ3 + iε3skκs

2/1εk
4−

−x2 +x1

x3
κk

2/1iε3ksεs
4− ε3skκs

2/1σ3ε3kzεz
4

)
ξ−1δ11′colδ̃δ̃ b†

1d†
1′a4 (F.11)

Integration overx2/1 is symmetric (r∆δ does not depend in this term on any complicated com-
bination of momenta), therefore this term is zero.

Hλ + = 0 (F.12)

F.2.3 QED vertex with quark self-interaction loop

In any self-interaction loop

∑
12

ū3/ε2u1ū1/ε∗2u3” =
x3

x1

((
x1 +x3

x2

)2

+1

)
κ2

1/3δ33” . (F.13)

MAREK WIĘCKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



F.2 Terms with self-interaction loops 173

Therefore, the term inHλ is

Hλ = g2 ∑
1′2′3

∫
[2′1′]

1

p+
1”

F̃abaū3/ε2′u1′ū1′/ε∗2′u1”
4
3

δcol31′ δ̃ (F.14)

eq ∑
1”2”3”

∫
[1”2”3” ] ū1”/ε3”v2” δcolor1”2” δ̃ b†

3d†
q2”ap3” = (F.15)

= eq ∑
1”2”3”

∫
[1”2”3” ] ū1”/ε3”v2” δcolor1”2” δ̃ b†

1”d
†
q2”ap3” · (∗) (F.16)

where(∗) is:

(∗) =
4
3

g2 1
2(2π)3

∫
dxd2κ
x1′x2′

(−1
2
)
(

1
ba

)2

(1− fba)
2 x3

x1′

((
x1′+x3

x2′

)2

+1

)
κ2

1′/3r2
∆δ (F.17)

A divergent part of(∗) is:

(∗)∆ = −1
3

g2

8π2

∫ 1

0

dx
(1−x)

x3

[
(x+x3)

2 +(1−x)2
]

r2
δ
(
−1− γ− log

(
4xµ2

g

))
− (F.18)

−1
3

g2

8π2

(∫ 1

0

dx
(1−x)

x3

[
(x+x3)

2 +(1−x)2
]

r2
δ

)
log∆2 (F.19)

The last line requires a counterterm. A similar anti-quark self-interaction loop gives the contri-
bution:

(∗̄)∆ = −1
3

g2

8π2

(∫ 1

0

dx
(1−x)

(1−x3)
[
(x+1−x3)

2 +(1−x)2
]

r2
δ

)
log∆2 . (F.20)

Taken together, the divergent parts require a counterterm:

X = eq ∑
1”2”3”

∫
[1”2”3” ] ū1”/ε3”v2” δcolor1”2” δ̃ b†

1”d
†
q2”ap3” (F.21)

−1
3

g2

8π2

(∫ 1

0

dx
(1−x)

[
2(1+x2)− (4x+3)x3(1−x3)

]
r2

δ

)
log

∆2

C
(F.22)

whereC is a constant of dimensionmass2.

F.2.4 Photon seagull quark mass loop

H>+< = eqe
∫

[1234] ūq1γ+vq2
1(

k+
3 +k+

4

)2 v̄e3γ+ue4δ̃(1+2−3−4)b†
q1d†

q2de3be4(F.23)

Hλ = (loop factor as in Eq.(F.13)) ·H>+< (F.24)

After including both fermion and anti-fermion loops:

X = eqe
∫

[1234] ūq1γ+vq2
1(

k+
3 +k+

4

)2 v̄e3γ+ue4δ̃(1+2−3−4)b†
q1d†

q2de3be4×

× (−1)
1
3

g2

8π2

(∫ 1

0

dx
(1−x)

[
2(1+x2)− (4x+3)x1(1−x1)

]
r2

δ

)
log

∆2

C
(F.25)
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F.3 Terms in Hλ due to mass counterterm inH∆

The only way the quark mass counterterm inH∆ could enterHλ in order g2e is through

uH2HQED terms of the type . However,uH2 = {(1− fλ)H2}, and in the case of such a
term,a = b and fλ ≡ 1, and thereforeuH2 ≡ 0. Thus there are no such terms inHλ (see also
comments on p.97).
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Appendix G

Scattering amplitude: LSZ formula

Below I derive the expression for the S matrix following closely the Bjorken and Drell text-
book [96]. I point out key differences and quote their equations when necessary; the result is
discussed in Chapter5.

G.1 In and out fields

G.1.1 Free quantum fields

A free quantum fieldφ0(xµ) fulfills the requirements:

[Pµ,φ0(x)] = i
∂φ0(x)

∂xµ
(G.1)(

�+m2)φ0(x) = 0 (G.2)

– the free Klein-Gordon equation1. One can look for solutions of these equations in terms of
their spatial (x⊥,x−) Fourier transform:

φ0(x) =
∫

d2k⊥dk+

2(2π)3k+ a0~k(x
+)ei~k~x , (G.3)

where~k :=
(
k+,k⊥

)
,~k~x :=−1

2
k+x−+k⊥x⊥, and the integration measure is written for the 3+1

dimensions case. From this,a0~k(x
+) fulfills:(

−i∂−k+ +k⊥2 +m2
)

a0~k(x
+) = 0 , (G.4)

which can be written as:

i∂−a0~k(x
+) =

k⊥2 +m2

k+ a0~k(x
+) . (G.5)

By introducing a symbolk−m for the eigenvalue of this equation:

k−m =
k⊥2 +m2

k+ (G.6)

1� = ∂µ∂µ = ∂+∂−−
(

∂⊥
)2
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176 Scattering amplitude: LSZ formula

the dependence ofa onx+ can be written as:

a0~k(x
+) = exp

(
−ik−mx−

)
a0~k(0) . (G.7)

Thus one particular set of solutions of the Klein-Gordon equation (G.2) is:

φ0(x) =
∫

d2k⊥dk+

2(2π)3k+ a0~ke
−ikµ

mxµ , (G.8)

wherea0~k := a0~k(x
+ = 0). Note that all physical particles havek+ ≥ 0. When acting on any

state, the part of (G.8) with k+ < 0 lowersk+, which can be interpreted as an annihilation of
particles. Therefore one splits the positive and negativek+:

φ0(x) =
∫

[k]
[
a0~ke

−ikµ
mxµ +a†

0~k
eikµ

mxµ

]
, (G.9)

where[k] :=
d2k⊥dk+

2(2π)3k+ θ(k+). Commutation relations imposed on fieldsφ0(x) and their canon-

ical momentaπ0(x) (see Section3.3.3) lead to the equal-x+ commutation relations fora0:[
a0~k,a

†
0~p

]
= 2(2π)3k+δ2(k⊥− p⊥)δ(k+− p+) (G.10)

and all other commutators are zero.
Using the commutation relations and replacing in (G.5) thex+ derivative by a commutator

with the Hamiltonian operatorP−0 , (G.1), one gets[
P−0 −

∫
[k]

k⊥2 +m2

k+ a†
0~k

a0~k,a0~k

]
= 0 (G.11)

and the same for a commutator witha†
0~k

. The assumption that the set of operatorsa0~k anda†
0~k

is
a complete set means that the expression in the left part of the commutator in Eq. (G.11) has to
be a c-numberc:

P−0 =
∫

[k]
k⊥2 +m2

k+ a†
0~k

a0~k +c . (G.12)

The vacuum state|0〉 (i.e., the ground state ofP−0 ) is the one that is annihilated by all the
annihilation operators:

a0~k |0〉= 0 , (G.13)

that is, the one with no particles. It is an eigenstate ofP−0 , with an eigenvaluec, i.e., the vacuum
energy isc:

P−0 |0〉= c|0〉 . (G.14)

In fact, thec constant contributes exactly the same amount to the energy of any state. Thus,
measuring the energy of any state relative to the vacuum energy is equivalent to assigning the
constantc a zero value.

An interesting feature of the light-front construction presented above is that the creation and
annihilation operators are components of the Fourier transform of the filedφ0(x) corresponding
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to the minus or plus sign in exp(∓ik+x−/2) exponents. Botha anda† can be extracted from
one Fourier transform:

a†
0~p = p+

∫
d2x⊥dx−e−ipmxφ0(xµ) (G.15)

a0~p = p+
∫

d2x⊥dx−e+ipmxφ0(xµ) , (G.16)

where p+ can be replaced by a spatial derivative∂+ of the fields. This contrasts with the
equal-time quantization, where to extracta† one needs both the field and the corresponding
momentum, i.e., its time derivative.

G.1.2 Interacting quantum fields

For an interacting theory, one can introduce fieldsφ(x). They are to fulfill the equations: [Pµ,φ(x)] = i
∂φ(x)
∂xµ

(�+m2)φ(x) = j(x) .

(G.17)

(G.18)

This time one can also introduce three-dimensional Fourier transforms. If one splits the creating
part (i.e., those parts increasingk+) and the annihilating part, the fieldφ can be written as:

φ(x) =
∫

[k]
[
a†
~k
(x+)+a~k(x

+)
]

, (G.19)

but the equation (G.18) cannot be rewritten as a simple expression for the∂−φ(x): the depen-
dence of the fields and corresponding creation and annihilation operators on the light-front time
x+ is complicated. Nevertheless, the last equation can be inverted:

a†
~k
(x+) = p+

∫
d2xdx−e+i~p~xφ(~x,x+) (G.20)

where~x~p :=−1
2x−p+ +x⊥p⊥.

G.1.3 Asymptotic condition

In a scattering process, one first considers a number of particles (usually two) in normalizable
wave-packets, separated well enough not to be able to interact with each other. The final parti-
cles emerging from the interaction region are assumed not to interact with each other either.

In order to describe the well-separated wave-packets of particles in the language of QFT
one can introduce so-called “smeared” field operators [100]. For this, we let f (xµ) be any
(c-number) normalizable solution of the free Klein-Gordon equation

(�+m2) f (x) = 0 . (G.21)

One can introduce smeared creation operatorsaf (x+) according to the following relation:

af (x+) =
∫

d2xdx−
[
(i∂+) f (x)

]
φ(~x,x+) (G.22)
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Note that, for the plain-wave solutions of Eq. (G.21), this equation reduces to (G.20). It is
assumed that the packets can have a reasonably small momentum width. Below, I generally
omit the wave-packet smearing subscriptf .

It is assumed that matrix elements of smeared packets of the fieldsφ(x) between any nor-
malizable states|α〉 and|β〉 behave for the timex+→−∞ like matrix elements of the similar
packets of certain free fieldsφin:

lim
x+→−∞

〈β|φ(xµ) |α〉=
√

Z lim
x+→−∞

〈β|φin(xµ) |α〉 . (G.23)

This means that thein creation operators – which, as free operators evolve with simply a change
of a phase (G.7) – create physical states as the timex+ approaches−∞.

G.2 Reduction formula for scalar fields

Let us consider the scattering amplitude with a particle of momentum~p = (p+, p⊥) and some
other particles (denotedα) in the initial state, and some particles (β) in the final state:

Sβ,~pα = out〈β | α,~p〉in = (G.24)

= out〈β|a†
in(~p) |α〉in = (G.25)

= out〈β−~p | α〉in + out〈β|a†
in(~p)−a†

out(~p) |α〉in = (G.26)

= out〈β−~p | α〉in + out〈β|
∫

d2x⊥dx−e−ipmxp+ (φin(xµ)−φout(xµ)) |α〉in ,(G.27)

where|β−~p〉out := aout,~p |β〉out is a state with oneout particle of momentum~p removed. Note
that, althoughx+ does appear in (G.27), it is x+ independent. As arbitrary values ofx+ can be
used, they can be chosen to approach±∞. In this limit, one can use the asymptotic conditions:

lim
x+→±∞

〈β|φout/in(x
µ) |α〉= 1√

Z
lim

x+→±∞
〈β|φ(xµ) |α〉 . (G.28)

Sβ,~pα = out〈β−~p | α〉in−

− 1√
Z

(
lim

x+→∞
− lim

x+→−∞

)∫
d2x⊥dx−e−ipmxp+

out〈β|φ(xµ) |α〉in = (G.29)

= out〈β−~p | α〉in−
1√
Z

∫
d4xµ ∂

∂x+

[
e−ipmxp+

out〈β|φ(xµ) |α〉in
]

, (G.30)

where d4xµ = d2x⊥dx+dx− = 2d2x⊥dx+dx+ = 2dx0dx3d2x⊥.2 Differentiating the exponent
leads top−mp+ = p⊥2 +m2. Thus:

Sβ,~pα = out〈β−~p | α〉in−

− i√
Z

∫
d4xµe−ipmx1

2

[
−p⊥2−m2 +2p+(−i)

∂
∂x+

]
out〈β|φ(xµ) |α〉in = (G.31)

note: p+ = i
←−
∂ + =−i

−→
∂ +, p⊥ =−i

←−
∂ ⊥ = +i

−→
∂ ⊥ ;

= out〈β−~p | α〉in +
i√
Z

1
2

∫
d4xµe−ipmx

[−→
� +m2

]
out〈β|φ(xµ) |α〉in . (G.32)

2Note that when I break equations at a minus sign, I put minus sign both at the end of the first line and at the
beginning of the second line (which is usually clearer than putting one+ and one−).
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In a similar way, if the state|β〉out has a particle of momentum~p′ we can remove it from the
state in favor of an extra field in the matrix element:

out〈β|φ(x) |α〉in = out
〈
β−~p′

∣∣a~p′outφ(x) |α〉in + out
〈
β−~p′

∣∣φ(x)a~p′in |α〉in−
−out

〈
β−~p′

∣∣φ(x)a~p′in |α〉in = (G.33)

= out
〈
β−~p′

∣∣φ(x)
∣∣α−~p′

〉
in +

+out
〈
β−~p′

∣∣[a~p′outφ(x)−φ(x)a~p′in
]
|α〉in . (G.34)

a~p′out =
∫

d2y⊥dy−eip′myp′+φout(y) = (G.35)

=
1√
Z

lim
y+→+∞

∫
d2y⊥dy−eip′myp′+φ(y), (G.36)

where the last equation is understood to be a part of a smeared matrix element. We can proceed
in a similar way for thein field. Note that, becauseain stands to the right ofφ(x) andaout stands
to the left, the limits:

lim
y+→∞

φ(y)φ(x)− lim
y−→∞

φ(x)φ(y) =
(

lim
y+→∞

− lim
y−→∞

)
Tx+ [φ(x)φ(y)] . (G.37)

“Time-ordering” inx+ will be denoted here asT(+) (contrast ordering inx0 denoted asT).
One can now repeat steps (G.29) to (G.32) for all other particles in|α〉 and|β〉. The final

result for allpi 6= q j is:

out〈p1 . . . pm | q1 . . .qn〉in =
(

i√
Z

)m+n m

∏
i=1

∫
d4xi

n

∏
j=1

∫
d4y je

−iqimxi

(−→
�xi +m2

)
×

×〈0|T(+) [φ(y1) . . .φ(yn)φ(x1) . . .φ(xm)] |0〉×

×
(←−

�y j +m2
)

eipm jy j . (G.38)

When anyp are equal to anyq, there are forward-scattering terms (compare the first terms of
the equations (G.32) and (G.34) ).

G.3 Perturbation expansion of the tau functions and the S
matrix

One may assume that the operatorsa~k(x
+) and a complete set of free operatorsa0~k(x

+) are
unitarily equivalent, that is, that there exists an operatorU(x+) such that

a~k(x
+) = U−1(x+)a0~k(x

+)U(x+) (G.39)

and the same fora†. Note that this is consistent with the fact that, for a given timex+, opera-
torsa~k(x

+) anda0~k(x
+) fulfill the same commutation relations. Moreover, they have the same

quantum numbers – here, for scalar particles, the three-momentum.
The dependence ofa0~k(x

+) onx+ is known, hence:

a0~ke
ik−mx+/2 = UaU−1 (G.40)
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By differentiating this equation with respect tox− one gets:

a0~k(x
+)(ik−m) = U̇aU−1 +UȧU−1 +UaU̇−1 = (G.41)

= U̇U−1a0(x+)+Ui
[
H,a(x+)

]
U−1 +a0UU̇−1 , (G.42)

where a dot indicates differentiation overx−. Note that

U̇U−1 +UU̇−1 = 0 . (G.43)

Moreover, from the fact thatH is a product ofa(x+) for arbitrary time it follows that

UH(a)U−1 = H(a0) , (G.44)

whereH(a0) has the same form asH(a), but with all the creation operatorsa replaced by their
free counterparts. Substituting Eq. (G.43) to the last part of Eq. (G.42), and (G.44) to the middle
part, one gets:

0 =−ikma0(x+)+
[
U̇U−1 + iH (a0),a0

]
, (G.45)

If one denotes:

HI (x+) := H0(a0)−H(a0) (G.46)

H0(a0) :=
∫

[k]k−ma†
0~k

a0~k . (G.47)

(G.45) can be written as: [
U̇U−1 + iHI ,a0

]
= 0 , (G.48)

which is fulfilled for all a0 operators and arbitrary times. Together with the completeness of
the a0 operators set, this means that the combination on the left side of the commutator is a
c-number,E0(x+). One can introduce a convenient combination:

H ′I := HI (x+)+E0(x+) , (G.49)

and a new operator:
U(x+,x′+) := U(x+)U−1(x′+) . (G.50)

From the definition ofE0(x+) it follows thatU(x+,x′+) fulfills a Schrödinger equation:

∂
∂x−

U(x+,x′+) = iH ′IU(x+,x′+) (G.51)

with boundary conditions:
U(x+,x+) = 1 . (G.52)

The equation forU(x+,x′+) can be solved in perturbation theory. Standard manipulations
[96] give the following result:

U(x+,x′+) = T(+)

[
exp

(
−i

∫ x+

x′+
H ′I (ξ

+) · 1
2

dξ+
)]

. (G.53)

In AppendixG.2the S matrix was expressed in terms of the Green function:

τ(x1, . . . ,xn) = 〈0|T(+) [φ(x1) . . .φ(xn)] |0〉 . (G.54)
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Using the definition ofU operators above, the expression for this function can be rewritten in
terms ofφ0:

τ(x1, . . . ,xn) = 〈0|T(+)
[
U−1(x1)φ0(x1)U(x1) . . .U−1(xn)φ0(xn)U(xn)

]
|0〉= (G.55)

= 〈0|T(+)
[
U−1(x+

1 )φ0(x1)U(x+
1 ,x+

2 ) . . .

. . .U−1(x+
n−1,x

+
n )φ0(xn)U(x+

n )
]
|0〉 . (G.56)

We can usex+
max to denote the latest time andx+

min to denote the earliest time. For the description
of a scattering process, these would go tox+

min/max→±∞. Using Eq. (G.53) and the fact that,
under the time order operatorT(+), change of order of the expressions is allowed, one gets:

τ(x1, . . . ,xn) = 〈0|U−1(x+
max)T(+)

[
φ0(x1) . . .φ0(xn)exp

(
−i

∫ x+

x′+
H ′I (ξ

+) · 1
2

dξ+
)]
×

×U(x+
min) |0〉 . (G.57)

It is straightforward to show that the vacuum is an eigenstate ofU . Let |~p,α〉0 be an arbitrary
state with at least one free particle of momentum~p. Then:

0〈~p,α|U(x+) |0〉 = 0〈α|a0~pU(x+) |0〉= (G.58)

= e+ipmx
0〈α|a0~p(x+)U(x+) |0〉= (G.59)

= eipmx
0〈α|U(x+)a~p(x+)U−1(x+)U(x+) |0〉= (G.60)

= eipmx
0〈α|U(x+)a~p(x+) |0〉 . (G.61)

In a corresponding expression in the equal-time theory, one was forced to take the limit
t→−∞ and, by the asymptotic condition (G.23), get proportionality to:

√
Z in〈α|U(x+)a~p,in |0〉in , (G.62)

which is zero. To do this, one had to choose as the free operatorsa0 in Eq. (G.39) the physical
in operatorsain (or out operators, if the limitt→+∞ had been used).

In the case of a light-front Hamiltonian, such a limiting procedure, although possible, is not
necessary: in the cutoff theory the free and the physical vacua are essentially the same, and the
result of Eq. (G.61) is zero for arbitraryx+ and arbitrary choice ofa0.

It is thus clear thatU(x+) |0〉 does not have components with a number of particles greater
than zero, and:

U(x+) |0〉= ζ(x+) |0〉 , (G.63)

i.e., the vacuum is an eigenstate ofU(x+). The c-number eigenvalueζ(x+) may depend onx+.
We are concerned with a limit

ζ+ζ− = lim
x+→∞

〈0|U−1(x+) |0〉〈0|U(−x+) |0〉= (G.64)

= lim
x+→∞

〈0|U−1(x+,−x+) |0〉= (G.65)

= lim
x+→∞

〈0|U(−x+,x+) |0〉= (G.66)

= lim
x+→∞

〈0|exp

(
+i

∫ x+

−x+
H ′I (ξ

+) · 1
2

dξ+
)
|0〉 . (G.67)
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Note that in the cutoff theory, the normal-ordered Hamiltonian annihilates the vacuumHI |0〉=
0, and thus only thec-number components ofH ′I contribute to this expression:

ζ+ζ− = lim
x+→∞

exp

(
+i

∫ x+

−x+
E′0(ξ

+) · 1
2

dξ+
)

. (G.68)

Such terms also appear – with the opposite exponent sign – as a factor in internal exponent of
Eq. (G.57). Once these are canceled, one is left with:

τ(x1, . . . ,xn) = 〈0|T(+)

[
φ0(x1) . . .φ0(xn)exp

(
−i

∫ x+

x′+
HI (ξ+) · 1

2
dξ+

)]
|0〉 . (G.69)

This equation is a light-front analog of Equation (17.22) in the Bjorken and Drell textbook [96].
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Appendix H

Description of scattering amplitude using
effective particles

H.1 Interpolating, bare- and effective-particle fields

The free interpolating fieldsφin(x), and corresponding creation operatorsa†
in correspond to the

physical situation one describes (i.e., the way one prepares an experiment). It is assumed, that
in a distant past (x+→−∞) the physical situation is described by free evolution, i.e., only by a
phase shift exp(−ik−mx+/2).

Two kinds of interacting fields are introduced:φ∞(x) (expressed as an integral of the bare-
particle creation operatorsa∞) andφλ(x) (expressed as an integral of the effective-particle cre-
ation operatorsaλ). Evolution of both these fields is determined by the same evolution opera-
tor H:

H := H∆(a∞) = Hλ (aλ) . (H.1)

Namely,

i
∂φ∞
∂x−

= [H,φ∞] , (H.2)

i
∂φλ
∂x−

= [H,φλ] , (H.3)

(it may be more natural to useH∆(a∞) in the first of these equations, andHλ (aλ) in the second
equation, but since these operators are equal, it does not matter).

However, both fields have different asymptotic behavior. For example, one can consider a
matrix element of each field between the vacuum and one-out-particle state:

〈p|φ∞(a∞) |0〉 =
√

Z∞ 〈p|φin(ain) |0〉 (H.4)

〈p|φλ(aλ) |0〉 =
√

Zλ 〈p|φin(ain) |0〉 . (H.5)

The constantsZ∞ andZλ correspond to a normalization of a one-physical-particle state, and are
different: Z∞ appears in expansion of the one-physical-particle state in terms of bare-particle
Fock sectors, andZλ appears in expansion of the one-physical-particle state in terms of effective-
particle Fock sectors (cf. Sec.5.2.2).
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184 Description of scattering amplitude using effective particles

This result can be generalized to an asymptotic condition for matrix elements of these fields
between any (normalizable)in andout states, in the limitx+→ ∞:

lim
x+→∞

out〈β|φ∞(a∞) |α〉in = lim
x+→∞

√
Z∞ out〈β|φin(ain) |α〉in (H.6)

lim
x+→∞

out〈β|φλ(aλ) |α〉in = lim
x+→∞

√
Zλ out〈β|φin(ain) |α〉in . (H.7)

H.2 Reduction formula in terms of bare and effective fields

All steps of AppendixG can be repeated using either asymptotic condition for the bare fields
φ∞ (Eq. (H.6)), or the effective fieldφλ (Eq. (H.7)). This leads to two equivalent forms of the
LSZ equation, expressing the same S-matrix element in terms of time-ordered matrix element
of either of the two kinds of fields:

out〈p1 . . . pm | q1 . . .qn〉in =
(

i√
Z∞

)m+n m

∏
i=1

∫
d4xi

n

∏
j=1

∫
d4y je

−iqimxi

(−→
�xi +m2

)
×

×〈0|T(+) [φ∞(y1) . . .φ∞(yn)φ∞(x1) . . .φ∞(xm)] |0〉×

×
(←−

�y j +m2
)

eipm jy j = (H.8)

=
(

i√
Zλ

)m+n m

∏
i=1

∫
d4xi

n

∏
j=1

∫
d4y je

−iqimxi

(−→
�xi +m2

)
×

×〈0|T(+) [φλ(y1) . . .φλ(yn)φλ(x1) . . .φλ(xm)] |0〉×

×
(←−

�y j +m2
)

eipm jy j . (H.9)

H.3 Perturbative expansion of the S matrix in terms of bare
and effective fields

AppendixG.3above presents perturbative expansion of the time-ordered product in the equation
(H.8). Let us now address the question of how the expansion of the same S-matrix element looks
like when one uses effective particles, (H.9).

We can use now unitary equivalence of the bare and effective creation operators:

a†
~k,∞

(x+) = U†
λ (x+)a†

~k,λ
(x+)Uλ(x

+) . (H.10)

Substituting this to unitary-equivalence of the free (in) and bare (∞) operators, (G.39), one gets:

a~k,λ(x
+) = Uλ(x

+)U−1(x+)a0~k(x
+)U(x+)U†

λ (x+) (H.11)

(note thatUλ is RGPEP similarity rotation, whileU is the operator introduced in AppendixG.3
in the context of scattering matrix). This means thata0(x+) andaλ(x+) operators are unitarily
equivalent:

a~k,λ(x
+) = W−1

λ (x+)a0~k(x
+)Wλ(x

+). (H.12)

This is analogous to (G.39) for the bare andin operators, but the unitary rotation operator is
now:

Wλ(x
+) := U(x+)U†

λ (x+) . (H.13)
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One can now follow closely the derivation from AppendixG.3. First, one differentiates Eq.(H.12)
with respect tox−, using exact, known evolution ofa0:

a0~k(0) ·e(ik−x+/2) = Wλ(x
+)a~k,λ(x

+)W−1
λ (x+) (H.14)

By differentiating this equation with respect tox− one gets:

a0~k(x
+) ·k−m = ẆλaλW−1

λ +WλȧλW−1
λ +WλaλẆ−1

λ = (H.15)

= ẆλW−1
λ a0 +Wλi [H,aλ]W

−1
λ +a0WλẆ−1

λ = (H.16)

=
[
ẆλW−1

λ ,a0

]
+Wλi [Hλ (aλ),aλ]W

−1
λ = (H.17)

=
[
ẆλW−1

λ + iHλ (a0),a0

]
, (H.18)

where I used unitarity ofWλ. By defining:

H0(a0) :=
∫

k−0 a†
0a0 (H.19)

Hλ ,I := Hλ (a0)−H0(a0) , (H.20)

equation (H.18) can be written as:[
ẆλW−1

λ + iHλ ,I ,a0

]
= 0 . (H.21)

Following steps from AppendixG.3 with operatorU replaced byW, one gets perturbative
expansion of the S matrix in the form (H.9):

〈0|T(+) [φλ(x1) . . .φλ(xn)] |0〉=

= 〈0|T(+)

[
φ0(x1) . . .φ0(xn)exp

(
−i

∫ x+

x′+
Hλ ,I (ξ+) · 1

2
dξ+

)]
|0〉 , (H.22)

where the expansion is done in powers ofHλ ,I .
To summarize: The same S-matrix elementout〈β | α〉in can be calculated

• using the bare fields;
— one gets LSZ formula (H.8) and expansion (G.69) for thex+-ordered product of fields
in terms of the bare interaction HamiltonianH∆

I ;

• or using effective fields;
— one gets LSZ formula (H.9) with different wave-function renormalization factorsZ,
and a perturbative expansion (H.22) in powers of the effective interaction Hamiltonian
Hλ ,I .

This result is analyzed further in Section5.3.
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Appendix I

Examples of scalar S-matrix elements in
1+1 dimensions

I.1 Scalar propagator in 1+1 dimensions

The perturbative formula (G.69) allows us to calculate any Green’s function in perturbation the-
ory. However, the formula needs to be reduced to a set of simpler rules. To see how the formula
works in a specific example I consider here a propagator in scalar theory in 1+1 dimensions,
introduced in Section5.4. Although this theory is finite, and the calculation reviewed below
does not include regularization, it can be generalized to more complicated cases.

One can use Eq. (5.15) to calculate a two-point tau function (quark propagator):

τ(x1,x2) = 〈0|T(+)
[
φq(x1)φq(x2)

]
|0〉 . (I.1)

The zeroth order term in (5.15) is simply:

τ(0)(x1,x2) = 〈0|T(+)
[
φ0q(x1)φ0q(x2)

]
|0〉 (I.2)

which leads to free Feynman propagator:

τ(0)(x1,x2) =
∫ ∞

0

dk+

4πk+

[
θ(∆x+)e−ikµ

m∆xµ +θ(−∆x+)e+ikµ
m∆xµ

]
. (I.3)

θ-function can be replaced by an integral:

θ(∆x+) =
−1
2πi

∫ ∞

−∞

dω
ω+ iε

e−iω∆x+/2 . (I.4)

Also, one can change variables in the second integral in Eq. (I.3) from k+ to−k+. This leads
to:

τ(0)(x1,x2) =
∫ ∞

−∞

d2k
(2π)2

i
k2−m2 + iε

e−ik∆x (I.5)

where d2k = 1
2dk+dk−(= dk+dk+ = dk0dk1). Note the following:

• Although in the initial expression there was an integration over only physical momenta
k+ > 0 andk−m was fixed at the physical positive valuem2/k+, in the final expression there
is integration over the full range of the Fourier parameterkµ: k+ ∈ (−∞,∞), k− ∈ (−∞,∞).
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• The expression for the full Feynman propagator has in the light-front variables only one
pole ink− for given momentumk+ (see Fig.3.4).

The propagator in the second order (g2) is:

τ(g2)(x1,x2) = 〈0|T(+)

[
φ0q(x1)φ0q(x2)

1
2

∫ ∞

−∞

dx+

2
(−i)

(
H(g)

>−(x+)+H(g)
−<(x+)

)
×

×
∫ ∞

−∞

dx′+

2
(−i)

(
H(g)

>−(x′+)+H(g)
−<(x′+)

)]
|0〉 , (I.6)

I review here the calculation of this expression in more detail. The scattering amplitude calcu-
lations in Sections5.4and5.7follow a similar path.

SinceHI annihilates the vacuum, it has to be separated from it by at least oneφ0. Therefore
only orderings leading to〈0|φ0HIHI φ0 |0〉 may lead to non-vanishing results. Also, different
orderings ofx+ andx′+ reduce to re-labeling these variables. This cancels the factor one-half
coming from the exponent. The expression forτ(g2) can thus be written as:

τ(g2)(x1,x2) =
(−i)2

22

∫ ∞

−∞
dx+dx′+ 〈0|

φ(+)
0q (x1)H

(g)
−<(x+)H(g)

>−(x′+)φ(−)
0q (x2)θ

(
x+

1 > x+ > x′+ > x+
2

)
+ (I.7)

φ(+)
0q (x2)H

(g)
−<(x+)H(g)

>−(x′+)φ(−)
0q (x1)θ

(
x+

2 > x+ > x′+ > x+
1

)
|0〉 , (I.8)

whereφ(+)
0 denotes the annihilating part of the field, andφ(−)

0 the creating part. For the matrix
element not to vanish, each creation operator has to disappear by commutation with some anni-
hilation operator. Whenever a particle is created at some interaction vertexHI or external field
φ0, it has to be annihilated at some other part of this expression, and vice versa. Therefore, the
structure of this expression can be shown as a number of lines, each representing a creation-
annihilation operator pair:

Theθ functions can be written as

θ
(
x+

2 > x+ > x′+ > x+
1

)
= θ

(
x+

2 −x+)θ
(
x+−x′+

)2θ
(
x′+−x+

1

)
, (I.9)

associating oneθ function with each diagram line.
At this point it is simpler to calculate the Fourier transform of the tau function:

τ̃(g2)(p1, p2) =
∫ dx+

1 dx−1
2

eip1x1

∫ dx+
2 dx−2
2

eip2x2τ(g2)(x1,x2) . (I.10)

The initial expression can then be extracted by an inverse Fourier transform:

τ(g2)(x1,x2) =
∫ dp+

1 dp−1
2· (2π)2 e−ip1x1

∫ dp+
2 dp−2

2· (2π)2 e−ip2x2τ(g2)(p1, p2) . (I.11)

The Fourier transform (I.10) has the following form. For eachinternal linethere is a factor:∫
[k]e−ik−mx+/2e+ik−mx′+/2θ(x+−x′+) , (I.12)
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where the exponents are related to the free evolution of the creation and annihilation operators
in terms of which the interaction HamiltonianHI is expressed. Once theθ function is expressed
as an integral (I.4), this leads to:

∫
d2kθ(k+)

(2π)2

i
k2−m2 + iε

e−ik−(x+−x′+)/2 (I.13)

(d2k = 1
2dk+dk−). For eachexternal linethere is a similar factor: the difference is that the

Fourier expansion of the fields introduces for the externalxµ an exp(ikµ
mxµ), instead of exp(ik−mx+/2).

Integration overxµ
i in (I.10) substitutes physicalpµ of the external particle for momentum pa-

rameter corresponding to this line. The formal requirementk+ > 0 is thus automatically ful-
filled, andθ(k+) may be dropped for external lines. For eachinteraction vertexthere are factors:

(−i)g
∫

dx+

2
4πδ(k+

cre−k+
ann) , (I.14)

wherek+
cre is the sum of the momenta of all particles created in the vertex, andk+

ann is the sum of
the momenta of all annihilated particles. Integration over the vertex timex+ can be performed,
leading to 4πδ(k−cre−k−ann). Altogether, each vertex gives:

(−ig)2(2π)2δ2(kµ
cre−kµ

ann) , (I.15)

and exponent factors for each line should be dropped, except for the exponents for the external
lines, corresponding to unintegratedxµ.

These rules may be summarized as follows:

• For each internal line there is an integral:

∫
d2kθ(k+)

(2π)2

i
k2−m2 + iε

(I.16)

(d2k = 1
2dk+dk−);

• For each external lineending at a pointxµ:

∫
d2k

(2π)2

i
k2−m2 + iε

e−ikµxµ
; (I.17)

• For each interaction vertex:

(−ig)2(2π)2δ2(kµ
cre−kµ

ann) . (I.18)

Accordingly,τ(g2)(x1,x2) is:

τ(g2)(x1,x2) =
∫

d2p
·2π

e−ip(x1−x2)(−ig)2 i
p2−m2 + iε

i
p2−m2 + iε

×∫
d2k

(2π)2

i
k2−m2 + iε

i
(p−k)2−m2 + iε

. (I.19)
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(d2p = dp+dp−/2). Together, the zeroth and the first order lead to:

τ(0+g2)(x1,x2) =
∫

d2p
(2π)2e−ip(x1−x2) i

p2−m2 + iε
×

×
[
1+

i
p2−m2 + iε

g2
∫

d2k
(2π)2

1
(k2−m2 + iε)((p−k)2−m2 + iε)

]
(I.20)

We are interested in this expression at its pole. Perturbation expansion can only be used if the
pole is not shifted too much. The bare expression has the pole atp2 = m2, so we are interested
in this expression forp2 ≈ m2 ∈ (0,4m2). The d2k integral can be calculated explicitly (see
AppendixI.2), leading to:

τ(0+g2)(x1,x2) =
∫

d2p
(2π)2e−ip(x1−x2) i

p2−m2 + iε+ g2

4πm2
δ√
δ−1

arctan 1√
δ−1

, (I.21)

whereδ := 4m2/p2 is assumed to be in the regionδ ∈ (1,∞).
This expression is analyzed further in Section5.5.1.

I.2 Propagator in 1+1 dimensions in orderg2: results of inte-
gration

The integral

I1+1(pµ) :=
∫

d2k
1

k2−m2 + iε
1

(p−k)2−m2 + iε
(I.22)

(d2k = dk+dk−/2) can be performed either by replacing integration overk− with a sum of
residues, or by introducing Feynman parameters. Both ways lead to the same result given
below.

δ :=
4m2

P2 (I.23)

For P2 > 4m2 (i.e.,δ ∈ (0,1)):

I
(
4m2 < P2) =

iπ
2m2

δ√
1−δ

[
log

(
1−
√

1−δ
1+
√

1−δ

)
+ iπ

]
(I.24)

For P2 ∈
(
0,4m2

)
(i.e.,δ > 1):

I
(
0 < P2 < 4m2) =

iπ
m2

δ√
δ−1

arctan
1√

δ−1
(I.25)

For P2 < 0 (i.e. δ < 0):

I
(
P2 < 0

)
=

iπ
2m2

δ√
1−δ

log

(√
1−δ−1√
1−δ+1

)
(I.26)

For example, forP2 = m2:

I
(
P2 = m2) =

iπ
m2

4√
4−1

arctan
1√

4−1
=

iπ
m2

4√
3

arctan
1√
3

=
iπ2

m2

2

3
√

3
(I.27)
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I.3 1+1 triangle term

k2

k1 + q

k1

q

k2 − q

The integral:

f = i
∫

dq+dq−

2(2π)2

1
q2−m2 + iε

1

(k1 +q)2−m2 + iε
1

(k2−q)2−m2 + iε
(I.28)

can be performed either by replacing the integral overk− by a sum of residues, or by introducing
Feynman parameters (for details of how to integrate the Feynman parameters explicitly in this
case, see e.g. [119]). Either way, it is easier to first calculate the imaginary part of this function:

Im( f ) = − 1
4m4

δ√
1−4δ

1−2δ
1−3δ

(I.29)

(δ := m2/s∈
(
0, 1

4

)
), and then the real part, using the dispersion relation:

f (s) =
1
π

∫ ∞

4m2
ds′

Im( f (s′))
s′−s− iε

. (I.30)

The result is:

Re( f (s)) =
1

4πm4

δ
1−3δ

[
2π

3
√

3
+

1−2δ√
1−4δ

log

((
1+
√

1−4δ
)2

4δ

)]
. (I.31)
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Appendix J

Eigenvalue equations

J.1 Schrödinger’s solution in Coulomb potential

The equation:
~k2

2µ
φ(~k)−

∫
d3k′

(2π)3

4πα
(~k−~k′)2

φ(~k′) =−Bφ(~k) (J.1)

(i.e., the Schrödinger equation for positronium without spin and with reduced massµ = m/2)
has the ground state eigenvalue:

B0 =
1
2

µα2 , (J.2)

and the normalized ground-state wave function:

φ0(k) = N
1

(a2 +k2)2 , (J.3)

with N =
√

8α5µ5/π anda = αµ.

J.2 Reduction procedure

The eigenvalue equation for a HamiltonianH:

H |ψ〉= E |ψ〉 (J.4)

for certain low eigenvalues, is replaced using the operationR (see [49, 44]) by an eigenvalue
equation for eigenstates|ϕ〉=

√
P̂+R†R|ψ〉 of the reduced HamiltonianHR. This is given by

the following formula:

HR =
1√

1+R†R
(P̂+R†)H(P̂+R)

1√
1+R†R

. (J.5)

If one splits the initial Hamiltonian into the free and interaction parts:

H = H0 +HI , (J.6)

then one can look forR andHR in perturbation theory inHI . This leads to the lowest (second
order) expression forHR:

HR = P̂HP̂+
1
2

P̂HI Q̂
{

HI

}
0
P̂− 1

2
P̂
{

HI

}
0
Q̂HI P̂+ . . . (J.7)
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Appendix K

Mathematical formulae

K.1 UV divergent integrals

Let us consider an integral:∫ ∞

a

dz
z

exp
(
−cη

z
∆2

)
=

∣∣∣u := cη
z

∆2

∣∣∣= ∫ ∞

cηa/∆2

du
u

e−u = (K.1)

=
∫ ∞

1

du
u

e−u +
∫ 1

cηa/∆2

du
u

(
e−u−1

)
+

∫ 1

cηa/∆2

du
u

= (K.2)

= ln
∆2

m2 − lncη− ln
a

m2 + Iγ (K.3)

Only the first two terms depend on the regularization.Iγ is a constant numerical term:

Iγ :=
∫ ∞

1

du
u

e−u +
∫ 1

0

du
u

(
e−u−1

)
=−0.577216. . . (K.4)

Using this, one can calculate frequent divergent integrals: the logarithmically divergent one:∫
dz

z+d
exp
(
−cη

z
∆2

)
=

∫ a

0

dz
z+d

+
∫ ∞

a
dz

(
1

z+d
− 1

z

)
+

∫ ∞

a

dz
z

exp
(
−cη

z
∆2

)
=

= ln
∆2

m2 − lncη− ln
d

m2 + Iγ , (K.5)

and the quadratically divergent one:∫ ∞

0
dz

z
z+d

exp
(
−cη

z
∆2

)
=

∫ ∞

0
dz

(
1− d

z+d

)
exp
(
−cη

z
∆2

)
=

=
∆2

cη
−d

(
ln

∆2

m2 − lncη− ln
d

m2 + Iγ

)
. (K.6)

K.2 Area of an n-dimensional sphereΩn

The area ofn-dimensional sphere is:

Ωn =
(∫ π

0
dθnsinn−2θn

)
. . .

(∫ π

0
dθ3sinθ3

)∫ 2π

0
dθ2 = 2

πn/2

Γ
(

n
2

) (K.7)
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For example:

Ω4 = 2π2 (K.8)

Ω3 = 4π (K.9)

Ω2 = 2π (K.10)
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