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Abstract

This thesis presents examples of a perturbative construction of Hamiltarjamer effective
particles in quantum field theory (QFT) on the light front. These Hamiltonians (1) have a
well-defined (ultraviolet-finite) eigenvalue problem for bound states of relativistic constituent
fermions, and (2) lead (in a scalar theory with asymptotic freedom in perturbation theory in third
and partly fourth order) to an ultraviolet-finite and covariant scattering matrix, as the Feynman
diagrams doA is a parameter of the renormalization group for Hamiltonians and qualitatively
means the inverse of the size of the effective particles. The same procedure of calculating the
operator#), applies in description of bound states and scattering. The question of whether this
method extends to all orders in QFT is not resolved here.

The relativistic Hamiltonian formulation of QFT is based on a global regularization of all
terms in a relativistic operatdi? (a canonical Hamiltonian with an ultraviolet cutdff plus
counterterms). The renormalization group procedure for effective particles (RGPEP) makes it
possible to find the structure of the countertermsithand calculate the effective Hamiltoni-
ans#, for A ranging from infinity down to\ on the order of masses of bound states.

| investigate bound states of two relativistic fermions using Yukawa theory as an example.
| give an explicit form of the effective Hamiltoniafi, in the second order, and discuss the
reduction of its eigenvalue equation to a Schrédinger equation for the wave function of the con-
stituents. Every interaction term in the Hamiltonizf contains a form factof, generated
by RGPEP, which eliminates overlapping divergences in the bound-state eigenvalue problem
expressed in terms of effective particles. The overlapping divergences appear in the eigenvalue
problem expressed in terms of pointlike particles and without the form faéforand result
from relativistic relative motion of fermions. Such divergences appear in all Hamiltonian the-
ories of pointlike particles with spin, and in particular in quantum chromodynamics (QCD).
The advantage of the Yukawa theory is that it allows one to investigate the ultraviolet behav-
ior in bound states of fermions without additional complications of QCD. The form faéfors
also cause the bound state to be dominated by the lowest sectors in the Fock-space basis built
with effective particles. The ultraviolet complications of local QFT are contained in a complex
structure that emerges in the effective particles as a result of dressing of the bare particles of the
initial canonical theory.

My description of scattering in an asymptotically free scalar field theof dfpe in 5+1
dimensions starts from constructing explicitly countertermbithby calculating#, . | then
use the Hamiltoniai? to calculate a scattering amplitude for a process analogoeiseto —
hadronsin perturbation theory up to the ordefg?, i.e., in one loop € is an analogue of the
electric charge of electrons in QED, agdof the color charge of quarks in QCD). | show
that counterterms found using RGPEP without referring to the S matrix, remove the divergent
regularization dependence from the calculated amplitude. | also give the explicit form of the
finite parts of the counterterms i that lead to a covariant result for the scattering amplitude.
| show that the dependence of the amplitude calculated this way on the momenta of the colliding
particles, is the same as the dependence derived from Feynman diagrams (the diagrams are
regularized covariantly and without defining a regularized Hamiltoalamitio).

| prove a theorem that states that the scattering amplitude obtainedHi8irggthe same
as the scattering amplitude obtained us#ég. Note that in the calculation usirig® physical
states of colliding particles are expressed in terms of bare particles and one uses the renor-
malized interaction Hamiltonial®. In the calculation using4, physical states of colliding
particles are expressed in terms of non-pointlike effective particles and one uses the effective
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interaction Hamiltoniar#, | with form factors in all vertices. In the case of the considered am-
plitude of the typeste~ — hadronsin a one-loop approximation, this theorem implies that the
effective Hamiltoniar#, leads to the same predictions for the scattering matrix as the Feynman
diagrams.

| also present an alternative, simplified procedure for deriving the Hamiltonian counterterms
needed for the description of the scalar analogue'@& — hadrons | illustrate the simpli-
fied procedure by giving mass and some vertex counterterms in QCD coupled to QED, in the
Appendices.
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Streszczenie

Niniejsza praca podaje przyktady perturbacyjnej konstrukcji takich Hamiltoniakpwla cza-

stek efektywnych w kwantowej teorii pola (KTP) na fronéwietinym, ktore (1) maja dobrze
zdefiniowany (ultrafioletowo skwzony) problem wtasny dla standéw zwiazanych relatywistycz-
nych fermionéw-sktadnikéw, oraz (2) w skalarnej teorii z asymptotyczna swoboda w rachunku
zaburzé do trzeciego i cZiowo czwartego rzedu przewiduja ultrafioletowo fsézona i ko-
wariantna macierz rozpraszania, taka jak diagramy Feynmajest parametrem grupy renor-
malizacji dla hamiltoniandw i jalk&ciowo oznacza odwrot8o rozmiaru czastek efektywnych.

Ta sama procedura obliczania operatéfastosuije sie w przypadku opisu stanéw zwiazanych i
rozpraszania. Dowod stosowasud metody do wszystkich rzedoéw w KTP nie jest rozwazany.

Relatywistyczne hamiltonowskie sformutowanie KTP opiera sie na globalnej regularyzacji
wszystkich wyrazéw w relatywistycznym operatotzé (hamiltonian kanoniczny z ultrafiole-
towym obcieciem, plus kontrcztony). Procedura grupy renormalizacji dla czastek efektyw-
nych (RGPEP) pozwala znakegtrukture kontrczionow W2, a nastepnie oblicZyhamiltonian
efektywny#, dlaA z zakresu od nieskaezondci do matych wartsci rzedu mas standéw zwia-
zanych.

W przypadku stanéw zwiazanych dwdch relatywistycznych fermionéw (zbadanym na przy-
ktadzie teorii Yukawy) podana jest jawna pdsteamiltonianu efektywneg@f, w drugim rze-
dzie rachunku oraz redukcja jego rownania wkasnego do réwnania Schrodingera na funkcje fa-
lowa efektywnych sktadnikéw. Hamiltonia®, zawiera w oddziatywaniach czynniki ksztattu
f\ wygenerowane przez RGPEP, ktére usuwaja nakrywajace sie rozbiefonerlapping di-
vergencepw problemie wlkasnym stanu zwiazanego. Nakrywajace sie rozbéezpojawiaja
sie w problemie wlkasnym zapisanym za pomoca czastek punktowych bez czynhjikosa
spowodowane relatywistycznym ruchem wzglednym fermiondéw. Takie roztiekzpojawiaja
sie we wszystkich hamiltonowskich sformutowaniach teorii czastek punktowych ze spinem, aw
szczegolnsci w chromodynamice kwantowej (QCD). Zaleta teorii Yukawy jest moZaaba-
dania ultrafioletowego zachowania fermionéw w stanie zwiazanym niezaleznie od dodatkowych
komplikacji w QCD. Czynnikif) powoduja réwniez, ze w stanie zwiazanym dominuja najniz-
sze sektory Focka czastek efektywnych. Ultrafioletowe komplikacje lokalnej KTP zawarte sa w
skomplikowanej strukturze, ktéra powstaje wewnatrz czastek efektywnych na skutek ubierania
sie czastek gotych wgiowej teorii kanonicznej.

W przypadku teorii rozpraszania, jawna konstrukcja kontrcztondAma podstawie obli-
czeh H, jest przeprowadzona w przypadku asymptotycznie swobodnej skalarnej teorii pola
typu @ w 5+1 wymiarach. Nastepnie hamiltonidt® jest uzyty do obliczenia amplitudy
rozpraszania dla procesu analogicznegaetie- — hadronyw rachunku zaburfedo rzedu
€°g%, tj. w jednej petli € jest analogiem tadunku elektronéw w QEydadunku kolorowego
kwarkéw w QCD). Kontrcztony znalezione za pomoca RGPEP bez odwotywania sie do ma-
cierzy rozpraszania, usuwaja rozbiezna zalézraul regularyzacji w obliczonej amplitudzie.
Podane sa jawne wzory na skazone czgci kontrczionéw wH?, prowadzace do kowariant-
nego wyniku na macierz rozpraszania. Zalé&trmtrzymanej w ten spos6b amplitudy od pedéw
zderzajacych sie czastek jest taka jak otrzymana z diagramow Feynmana (zregularyzowanych
kowariantnie i bez definicjb initio zregularyzowanego hamiltonianu).

Podane jest twierdzenie, ktére mowi, ze amplituda rozpraszania otrzymana za géfnoca
jest taka sama, jak amplituda otrzymana za ponscaW rachunku H2 stany fizyczne zde-
rzajacych sie czastek sa reprezentowane za pomoca czastek gotych i rachunekhzaktrze
prowadzony przy uzyciu zrenormalizowanego hamiltonianu oddzia’ryv\raiﬁiaN rachunku z
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Vi

H, stany fizyczne zderzajacych sie czastek sa reprezentowane za pomoca czastek efektywnych
i rachunek zaburzejest prowadzony przy uzyciu efektywnego hamiltonianu oddziatywania

Hy 1, zawierajacego czynniki ksztattiy we wszystkich wierzchotkach. W przypadku rozwa-
zanej amplitudy typwe™e~ — hadronyw przyblizeniu jednej petli, z tego twierdzenia wynika
wniosek, ze wyliczony efektywny hamiltoniatf, przewiduje taki sam wynik na macierz roz-
praszania jak diagramy Feynmana.

Podano rowniez alternatywna, uproszczona procedure otrzymywania hamiltonowskich kontr-
cztonéw potrzebnych do opisu skalarnego odpowiednika progesu — hadrony llustracja
uproszczonej procedury sa wzory na kontrczton masowy i niektore kontrcztony wierzchotkowe
w QCD sprzezonej z QED (podane tylko w dodatkach).
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Chapter 1

Introduction

The problem of the relativistic description of bound states of particles in quantum field theory
(QFT) has fascinated physicists for more than a half a century. Yet the theory is still not under-
stood well enough to precisely describe strongly bound particles starting from first principles.
The problem is most acute in the case of quantum chromodynamics (QCD), because of the
strength of the interactions involved and the inapplicability of perturbation theory. Although
high-energy scattering processes can be treated perturbatively in asymptotically free theories,
it is not clear how to calculate interactions that govern the formation of bound states at low
energies.

The leader in the field of low-energy effects is lattice gauge theory. Its impressive and un-
paralleled successes elevate lattice gauge theory to the central stage of strong interactions. Still,
there is a problem of how the phenomenology of hadrons that is based on the constituent picture
could be incorporated using lattice in a single, complete formulation of the theory that could
cover both bound and scattering states. Other methods, such as Dyson-Schwinger equations or
methods based on the operator product expansion, are advancing at a rapid pace and attempt to
compete with, supplement, or take advantage of lattice calculations; however, in principle they
also face the problem of how to provide a complete formulation.

The author of this thesis believes that a Hamiltonian approach with a single Hamiltonian
defining the whole theory, scattering through an S-matrix calculation, and bound states through
an eigenvalue problem, could potentially contribute to the field if one only knew how to calcu-
late the required Hamiltonians. Although we are still far away from a complete Hamiltonian
picture, and this approach is much less researched than the currently dominant approaches, this
thesis shows that, in some simple cases, recently developed methods for evaluating Hamiltoni-
ans for effective particles in QFT, can be employed in construction of the required operators.
The main issues | discuss in this thesis are (1) universal regularization of all terms in the entire
Hamiltonian operator; (2) construction of Hamiltonian counterterms (these are not the same
as in the standard Lagrangian approach to scattering); (3) systematic method for evaluating
interaction terms in Hamiltonians for bound states (these are not calculable from perturbative
S-matrix considerations); (4) a path to resolution of the problem that an infinite number of bare
particles is involved in the bound-state eigenvalue equation; (5) resolution of the overlapping
divergences in the bound-state eigenvalue problems that are limited to a small number of con-
stituents; and (6) construction of the finite parts of the Hamiltonian counterterms that guarantee
covariance of observables. In addition, an important result of this thesis is that the Hamilto-
nians for effective particles can produce the same scattering matrix that is obtained from the
canonical QFT.



2 Introduction

We do not yet know how to overcome all of the conceptual and technical difficulties asso-
ciated with the so-called smallsingularities in gauge theories (due to interactions that involve
massless gauge bosons that carry small longitudinal momentum), but it is possible that these sin-
gularities are a benefit in a Hamiltonian formulation and a source of useful effects (especially
regarding confinement), rather than artificial singularities that ought to be entirely removed.
This thesis does not answer the question of how to seek a solution to thexspnabitem in
gauge theories, but it does develop a Hamiltonian approach and achieves some success in tack-
ling the six issues listed above.

To place the Hamiltonian approach studied here in the context of the struggle with the de-
scription of hadrons using QCD, let us mention that the Feynman-diagram approach, combined
with parton models and operator product expansion, is still so far from a direct connection with
the constituent classification of hadrons that recent studies of pentaquarks — a flurry of pub-
lication activity — involve all kinds of methods and are largely free from the strict theoretical
constrains of QCD with exactly three colors and six flavors of quarks. Similar problems plague
studies of exotics with constituent gluons — one might even wonder how it is possible that mass-
less gluons are not visible in the hadronic spectrum like photons that correspond to the Coulomb
potential with the Balmer series of energy levels. Some QCD-motivated string picture or flux-
tube models may correspond to lattice calculations, but how gluons bind and what makes them
so greatly inactive in the classification of hadrons is still entirely unclear. This is in a sharp con-
trast with the success of precise QCD predictions in the high-energy domain, where the widths
of hadronic wave functions are small in comparison to the energies and momenta that matter.
Therefore, any systematic approach that could offer some hope for constructing a relativistic
constituent description of hadrons (to replace a parton model) and a description of scattering
processes for the constituents (as Feynman diagrams can for quarks and gluons) is worth in-
vestigating. An example of entirely unexpected possibilities that Hamiltonian approaches to
QFT may offer is that QCD has an infrared renormalization group limit cycle behavior, whose
treatment is perhaps beyond the scope of all other methods. However, this thesis does not deal
directly with QCD since the issues (1) to (6) above have to be solved even in much simpler
cases before an admissible Hamiltonian approach to QFT can be proclaimed to exist.

| begin my discussion i€hapter 2, which is based on a joint publication with Mastowski
[1], by presenting an extremely simple Hamiltonian model. This serves the purpose of explain-
ing in concrete terms what type of structure an admissible relativistic Hamiltonian formulation
of a theory should have. The model is restricted to two Fock sectors only, but this does not
represent a drawback. The simplification allows a relativistic description of bound states and
scattering amplitudes to exist with full control over analytic expressions. In particular, it is
shown how strict conditions can be placed on Hamiltonian counterterms so that both bound
states and scattering satisfy the constraints of special relativity: a physical fermion is described
by a Dirac equation and fermion-boson scattering amplitude is fully covariant when proper
renormalization conditions are satisfied. One of the critical questions addressed in this thesis
is whether similar conditions can be formulated for counterterms in full QFT, which is much
more complex than the model Hamiltonian that | use for heuristic purposes.

Chapter 3 presents the general methods that | apply to bound-state and scattering issues
in selected QFTs in the chapters that follow. The first part of Chaptamtains a brief in-
troduction to the light-front quantization of fields, starting from the more familiar standard
approach and proceeding to the light-front Hamiltonian dynamics that forms the core of this
thesis. Next, a renormalization group procedure for effective particles (RGPEP), based on the
work of Gtazek, is reviewed concisely. | use it to develop a theory of effective particles that is
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1. Introduction 3

applied in Chapterd and5 to relatively simple QFTs, according to the outline of the heuristic
model presented in Chapt2r This review is also useful at this point because it allows me to
present the notation used in this thesis and introduce equations that appear often in the main
discussion.

Chapter 4, which is based on a joint publication with Gtaze},[discusses the issues of
regularization of the initial Hamiltonian operator, construction of mass counterterms, systematic
evaluation of effective Hamiltonians for bound states, and removal of overlapping divergences
in the case of fermions. | take the example of Yukawa theory, which is considerably simpler
than QCD, as it does not involve the smalsingularity. On the other hand, theories of the
Yukawa type are not asymptotically free (which poses problems in perturbation theory), and
suffer from the problem of triviality. However, the bound-state problem for effective particles
is shown to be free from the ultraviolet divergences that occur in the Tamm-Dancoff approach,
and the treatment of bound states | describe is more generic than the actual example | consider:
namely, the overlapping divergences are removed by the from factors that emerge from RGPEP
and will emerge in a similar way in the treatment of bound states in asymptotically free theories.
RGPEP thus allows us to derive from QFTs well-defined equations for bound states.

Chapter 5 is entirely new. Taken together with Chapt@rand4 it completes my investi-
gation of whether the heuristic reasoning outlined in a very simple model in CHapgar be
applied to QFT, at least in lowest orders.

Chapter5 applies the Hamiltonian approach developed in this thesis to scattering processes,
which are treated in perturbation theory in the simplest asymptotically free theory of which | am
aware: scalar theory in 5+1 dimensions. | address the issue of complete regularization of the
Hamiltonian for the entire theory (not a loop-by-loop type of approach, but the regularization
of an operator in a Fock space). | explicitly construct the counterterms that lead to covariant
scattering amplitudes. The most difficult part of the construction is establishing finite parts of
the counterterms, that is, the parts of the Hamiltonian operator that are independent of the cutoff
parameters but nevertheless depend on regularization. | provide explicit expressions for these
finite parts. | also demonstrate in a one-loop example of a model amplitude (analogous to the
amplitudee*e~ — hadrong the details of cancellations between different terms and factors of
a Hamiltonian quantum-mechanical calculation of the scattering process. These cancellations
are responsible for obtaining covariant results, despite the fact that the initial Hamiltonian is
regularized in a way that is not fully covariant (it explicitly preserves boost invariance, but not
rotational invariance). This is possible because of light-front Hamiltonian dynamics. An inter-
esting aspect of the whole calculation, despite the fact that it is effectively only a third-order
perturbative calculation, is that it can be carried out using a Hamiltonian for effective particles
that appear to have all the properties required of constituents such as constituent quarks and glu-
ons in hadrons. The interactions of the effective particles are highly non-local because they are
modulated by form factors whose width is a renormalization-group parameter and can be tuned
for optimal economy of calculations. Nevertheless, the physical scattering amplitude obtained
in perturbation theory is completely independent of the renormalization-group parameter, and
exactly the same as in local asymptotically free theory. This is established by showing that the
Hamiltonian theory leads to the same answers as the Feynman diagrams, independently of all
details of the explicitly non-covariant elements involved in defining the Hamiltonian operator
in the Fock space. Additionally, | consider two procedures, a full one (complete RGPEP in the
third order) and a simplified one (limited to dressing by strong interactions only), and | show
that they both lead to the same counterterms that contribute to my scalar analog of the amplitude
ete” — hadrons However, the Hamiltonians that | obtain contain interaction terms that are
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4 Introduction

completely different from the terms that are typically inferred from Born-like approximations
for scattering amplitudes. For example, the Hamiltonian terms have well-defined off-energy-
shell behavior that cannot be deduced from the on-shell S-matrix calculus and they contain
dynamical information reaching far beyond the perturbative aspects of the theory. (This is sim-
ilar to the situation with the Coulomb potential, which describes an unimaginable richness of
bound states of charged particles despite the fact that it is only of efjlet provide a few
examples of counterterms that are calculated by the same methods in QED and QCD.

Chapter 6 summarizes the key findings of this thesis. Itis followed by a series of appendices
that contain the details of the material presented in the main part of the thesis. A summary of
the notation used in this thesis is given in Appendlix
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Chapter 2

Model of a relativistic Hamiltonian for
simultaneous description of bound states
and scattering processes in a single
formalism

2.1 Introduction

In this chapter | present a simple model that features a bound state and scattering states. The
model is based on quantum field theory of fermions and bosons coupled by Yukawa interaction,
but so severely simplified, that a number of analytic results can be obtained at the expense
of a relatively small effort. The bare model interaction leads to infinities when calculating
physical observables. Therefore, one is forced to introduce cutoffs in order to obtain finite
results. However, this is done according to principles of the renormalization group procedure for
Hamiltonians, and the introduction of cutoffs is accompanied with insertion of Hamiltonian (not
Lagrangian, as in the Euclidean path-integral approach) counterterms whose structure is found
from well-defined finiteness conditions imposed on an effective Hamiltonian theory and from
threshold and covariance conditions on the results for bound states and scattering amplitudes
that follow from the effective theory. This chapter explains the meaning of the above statements.
The model has attractive properties and serves as a heuristic example to follow in the case
of QFT.

In particular, despite the fact that the cutoff is introduced in a non-covariant way, the proper
choice of finite parts of the counterterms leads to the scattering matrix which is not only finite
but also covariant. The same choice of counterterms guarantees that the structure of a physical
fermion agrees with demands of the Dirac equation for the wave function that describes motion
of the center of mass of the fermion. Nonetheless, the interaction between bare fermions and
bare bosons include a vertex that has an unusual structure, and one has to correlate four constants
using three conditions to obtain physical results that obey conditions of symmetry of special
relativity and proper threshold behavior.

This chapter is not meant to be exhaustive. It aims to present a general picture and ideas
that are developed further in the following chapters, where more complex model theories are
considered.

This chapter, and the corresponding Apperdi4, is based on a paper published by Masto-
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6 Model of a relativistic Hamiltonian for simultaneous description of bound states and. ..

wski and myself I]. In the quotations used here, | have made small changes to simplify the
notation and unify it with the rest of this thesis. | have also left out parts of the quotations that
are not relevant in this chapter.

In the joined paper with Mastowski, we studied the similarity renormalization scheme for
Hamiltonians to the fourth order in perturbation theory using a model Hamiltonian for fermions
coupled to bosons. The model consists of oy sectors in the Fock space This great
simplification of the space of states allowed for a complete analysis of the renormalization
scheme and still included typical factors and divergences that appear in quantum field theory.
Therefore, the model could be used as a good testing ground. Our model was based on Yukawa
theory.

The Hamiltonian of Yukawa theory truncated to one fermion and one fermion plus one
boson Fock sectors leads to infinities in the fermion-bosonatrix. Therefore, we introduced
an ultraviolet (high-energygutoff A for the momentum transfer in the interaction part of the
Hamiltonian. The similarity transformatior3] allowed us to construatounterterms in the
initial Hamiltonian. The complete Hamiltonian gives finite, cutoff independent results fdr the
matrix. We constructed renormalized Hamiltonians using expansion in powers of the effective
fermion-boson coupling constant and including terms up to the fourth order.

In thesimilarity renormalization scheme, one constructs effective HamiltoniaHg whose
form is a function of the widthA. H, is obtained by a unitary transformation from the initial
HamiltonianH? with counterterms. The transformation and counterterms are found order by
order in perturbation theory using the requirement that matrix elememts afe independent
of the cutoffA when the cutoff goes to infinity.

To find values of theinknown finite parts of the countertermswe calculated th& matrix
for fermion-boson scattering. The condition that thematrix is covariant implies relations
between the finite parts of different counterterms. We also required, that the physical fermion
is described by the Dirac equation with the fermion mass equal to the fermion mass term in
the fermion-boson sector. This requirement also provides a relation between finite parts of
counterterms called the threshold conditidh [

In this chapter, the so-called algebraic version of the similarity renormalization scheme is
used. Although it may be considered simpler, it is not used in complicated cases because it in-
troduces sharp similarity form factors that complicate numerical calculations. Ghamptions
are also used here for ultraviolet cutoffs.

The model Hamiltonian we studied was originally considered by Gtazek and Bgrihey
guessed the form of counterterms which remove divergencé@snmatrix and they obtained
covariant results for th& matrix to all orders.

Our main question about the model was if the systematic similarity calculation carried out
in perturbation theory would produce the same solution to the Hamiltonian renormalization
problem as guessed by Glazek and Perry. The cutoff in the model is limited by the triviality
bound p], but one can assume that the coupling constant is small enough for reliable use of the
perturbation theory.

2.2 The model

The initial Hamiltonian is a light-front Hamiltonian for Yukawa theory projected on two Fock-
space sectors, namely, one with a fermion and one with a fermion and a boson. The reasons for
using light-front formulation are explained in Secti®r3.4
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2.2 The model 7

The model Hamiltonian is:
H® = Hor + Horp + Hy + HY + X2 . (2.1)

The free partis

+ P
+ b

p
2 2 2
pP4+m? KR4+
Hor = 3 1 o (po ki (i )

where|po) (po| is an operator projecting on a Fock state of one fermion of momeritem
(p*, pt) and spino, and|po, k) (po, k| projects on a one-fermiorp(o) plus one-bosor{ k

state. This free Hamiltonian assigns the same mass fermions in both Fock sectors, and
massy to the boson (cf. Eq.3(48). Boson creation and annihilation vertices, proportional to
the coupling constarg, are

2
Hot = Y [ [plIpo) (pol 22)

(2.3)

HE = 93 [ [pspekB(a? — ME 03(p— p2—K) x

01,02

X [!pszz, k) (p101|U(p2,02)u(p1,01) +H ~C~] =HS +HA | (2.4)

and the seagull term, of ordgf, is

HY = & 5 /[Dl, P2, k1, ko] B(A% — MP)B(A — MF)B(p2 + ko — P1— ka) x

01,02

X |P202,02) (P101,K1| U(p2,02) u(p1,01) . (2.5)

X2 in Eq. (2.1) is an unknown counterterm.

Cutoffs on the freginvariant massW/? = (p-+k)? of the two particle sector in the interaction
parts of the Hamiltoniarkl® and Hﬁ (see alsof]). For example, theta function in Eq2.6)
permits creation of only low-energy fermion-boson pairs, that is, only if tAéfris smaller
thanA2.

The standard three-dimensional integration meaglyéhree-momentum conservation delta

functiond, Fock state$p) and spinorsim(p, o) are defined in detail in Appendik. Note, that
spinorsu depend on the mass of the fermion. In this chapter all spinors correspond to the
fermion massnin Hg (i.e. u(p,0) := um(p, 0)), unless stated otherwise (cf. EQ.33).

2(py +ki)

LIn the definition of the invariant mass the enerfgy (a light-front analogue df®) enters. Therefore, the value
of M? assigned to a state depends on how one assigns an energy to this state. “Free invariant mass” means, that to
any Fock state a corresponding eigenvalue of the free Hamiltéhjamassigneda/? defined this way is invariant
under kinematical Lorentz transformations (see Se@i@n
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8 Model of a relativistic Hamiltonian for simultaneous description of bound states and. ..

2.3 Renormalization

The similarity transformatiotd, transformsH2 to a new Hamiltoniar,, :
H, =UTHAU, . (2.6)

Expressions fou, andH, are found in perturbation theory. The procedure is tailored in such
a way that the effective Hamiltonian, is band diagonal. Namely, one chooses suitable form
factorsf, — functions of momenta in a vertex, which are to limit ranges of possible momenta of
particles involved in the effective interaction — and uses renormalization group equé&litms [
calculate the transformatidsy, which leads to a HamiltoniaH, with such form factors. The
result is that the rotated Hamiltoniady, is band diagonal (each term has a factgy, but the
matrix elements oH, within the band get changed in such a way that both Hamiltonians are
unitarily equivalent (see also FiguBe9 on page45, and Sectior8.4). X2 in H2 is fitted order
by order ing, so thatH, does not havA-dependent (i.e., divergent) matrix elementsfos oo,
This can be guaranteed in any finite order in perturbation theory.

Form factorsf) (the diagonal proximum operator) for the calculation of this chapter are
presented in Appendik.4.

In the zeroth order, the transformation gives an unchanged free Hamiltonian:

Hyo=H§ . (2.7)

In the first order (Fig2.1), one gets:
o = gy [[prpekBNZ |32~ mP])3(pr— p2—k) x
01,02

X [|p202, k) (P101|U(p2,02)u(p1,01) + H-C-} =
= f\H? (2.8)

— rotation of the basis leads to an interaction term with an induced fgctalso, in the presence
of f,, one can take the limiA — o, and thus there is no initial cutoff factor in the above
expression).

In the second order, the transformation gives:

A =t (He4x@0 - [{a- nrg} 0 nre] ) (2.9

The curly brackets denote the free energy denominator, square brackets a commutatpr, and
is the form factor (see Append®.4).
In the fermion-boson sector, EQ.9) reads:

1 1
H% o= (= 3{A- RS} (4 RS 4 0t RS {1 s}
(2.10)

2The differential equation for renormalization group procedure based on the idea of similarity rotation is dis-
cussed in detail in SectioB.4. However, for the model described in the current section it was enough to intro-
duce simple sharp cutoff® 4-2.5) and sharp similarity form factor§, (C.78. For such factors, the differential
equations cannot be easily used, and the model calculation is based on an algebraic similarity renormalization
procedure. Although the motivation of Secti8rtis the same as here, the actual formulae used here are given in
the algebraic version of the same procedure, and are the same as those presented in detajl in ref. [
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2.3 Renormalization 9

Figure 2.1: Terms in the effective model Hamiltonian in the first and the second orders. (a)
Effective vertexHA(” is limited by a form factorf,. (b) In the fermion-boson — fermion-boson

part of HA(Z), apart from a seagull term with a form factor, there is a new interaction term,

which makedH, unitarily equivalent tdH2. (c) The second order fermion — fermion teHy is
divergent, which enforces existence of a counterterm and determines its form. In all figures, the
factors coming from the similarity renormalization group (combinations of the form factors, cf.
(2.9) are marked with grayed circles.

This expression is not divergent fér— c. Hence, no counterterm is needed in this sector.
However, in the fermion-fermion sector, one obtains:

o) = —{(@-HHA | HE +Xx@8, (2.11)

The loop integration in the first term is quadratically diverger.im he form of this divergence
dictates the form of the second-order counterterm. Explicitly, one has to choose:

Z/ | |po) (po |p+162[ + (3P — p)logWJrA (2.12)

This term acts in fermion—fermion sector only and means an infinite fermion mass-shift (cf. Eq.
(2.2)), whereAis an undetermined finite constant.
(4)A

Higher-order calculations lead to the following expressions{G® andX;, iy

3 1 ¢? N2
x@ = x¥ 4 x¥ = 4167 2'090HY+
+ z /[p17p27 ] (A M ) (pl—pz—k)
01,02
g3 2 V+
5162095 IIOzoz,k>(I01c51|u(|02,cr2)2|01 u(p1,01) +H.c.| ,(2.13)
(4)a 1, N 4

Xio-tb = 3762 29 H+>
whereB, C, andD are finite unknown constants.
There is also another counterterm of orgeém the fermion-fermion part ok? . We did not
have to calculate it because our goal was to investigate the possibility of fitting finite parts of

(2.14)
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10  Model of a relativistic Hamiltonian for simultaneous description of bound states and.. ..

counterterms by requesting tfiematrix covariance in the fermion-boson channel (S24.1)
and the emergence of the Dirac equation for physical fermionsxgﬁ_?ﬁ does not contribute
either toT ¥ or the second-order Dirac equation, it was irrelevant for our considerations. Also,

Xf(f)fA is more complicated to calculate than the terms we need to discuss here, because it in-
volves two correlated loop integrations.

2.4 Relativistic covariance and finite parts of counterterms

The renormalization procedure does not determine values of the finite parts of counterterms.
To find them, we need to introduce additional conditions. In principle, the constants should be
fitted to the experiment. Still, it is interesting to look for theoretical requirements of symmetries,
which may constrain these constants. Thenatrix calculated with the general counterterms
(2.12-(2.14) is not automatically covariant. Therefore, the covariance ofltheatrix provides

useful conditions. Another condition will be provided by the study of the bound-state eigenvalue
equation for the full Hamiltonian. In this simple model, the eigenvalue problem reduces to an
equation for the physical fermion, and it will be required to reduce to a free Dirac equation.

2.4.1 T matrix

TheT matrix which describes fermion-boson scattering can be calculated using the forinula [

T(E)=H +H Hi+-- . (2.15)

E—-Ho+ie
The only non-vanishing terms are those of even order in

The second-ordeF matrix has a covariant form and does not depend on the counterterms —
Fig.2.2a. X2 starts contributing in the fourth order. The explitidependence of counterterms
cancels divergences in the loop integrations in other terms. This ledd$ t=ig. 2.2b) which
is finite, but not automatically covariant:

4 ~
082~ UP)B(A% — MF)B(pz + e — pr— ko) x

A
2(p; +k;)

(P202, k| T | proy, ke) =

X U(p2,02) T 1(S)P+T2(s) +T3(9) } u(p1,01), (2.15)

whereP' = p; +kf, P = p{ +k{, P~ = (p'?+-m2)/p’ + (k'2+1P)/k* ands= PHp, =

(p1+ke)? = M2. To obtain a covariant result f&F ), we demand that the functiofg(s)
vanishes for arbitrarg. Its explicit form reads:

rg(S):ﬁ (s—mz)%log%+3mzlogg—A+16rt20(f(s)(s—mz)+vf(s)} . (2.16)

Functionsa¢(s) andys(s) are given in AppendixC.4, Egs.C.79-(C.81). The combination
16120 ¢ (S)(S—n?) +y¢ (S) turns out to be real and independensadnd the conditio3(s) = 0
implies two relations:

B=C (2.17)
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2.4 Relativistic covariance and finite parts of counterterms 11

a’/\/\
& /”“”\/ﬁ/“\/*\

Figure 2.2: Fermion-bosoh matrix in the orderg? (a) andg” (b). In the ordery®, there are
also terms with sea-gulls and counterterms on the lines on the right-hand side of diagrams (not
shown above).

and 5 2
A= —mP+2log L 4+ 3mPlog™ . 2.18
+ulog. 5 +3mlog 5 (2.18)
These two equations relate constaft®, C andD, but there are additional requirements due
to the eigenvalue equation.

2.4.2 Eigenvalue equation

To describe a physical state in terms of free Fock states, one considers the eigenvalue equation

PL2 4 ¢

A
H |P0> physical — P+ |P0> physical - (2-19)

The physical fermion state is a superposition of the bare fermion and fermion-boson states:
|P0> physical — Z ng |P02> + z /[pv k]g(P —P- k)(pgz (X, Mz) |p027 k> : (2.20)
02 O2
By following the steps given in Ref5], one can reduce Eg2(19 to
AT
(pl?m Pom+ P35t W =0, (2.21)

for the one-body sector wave functign Ph= (P*, Py, P+) with Py, = (P+2+m?) /P*. Using
our Hamiltonian with counterterms restricted by conditich4d.{) and @.18), one gets:

2
p1 = 1+122[3Iogé—8<mz>}+o<g“>, (2.22)
2
P2 = 1+%a(m2>+0(g4), (2.23)
ps = 0+o(gh. (2.24)

The earlier demand of th€ matrix covariance established the value of the mass counterterm
X (22 in a way that also leads to the vanishingpafin orderg?.
In general, one can expand both nonzero tgprimsa power series iq:
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12  Model of a relativistic Hamiltonian for simultaneous description of bound states and. ..

and translate the requirement tinats the mass of a physical fermion:

O, (@21 oD s ...
<I?m—p2 TP O 1P 9T m>q;:0 (2.26)

oy +pg+pi Mgt -

into the condition for all coefficients:
Pl =pY. (2.27)

This is the threshold conditiord] that makes th& matrix threshold appear at= (m+ p)?,
wheremis the position of its fermion pole.

Let us now investigate which terms of the Hamiltonian contribute(to If one putsg =0,
then the only condition one gets is:

Po) physical = Po) . (2.28)

Technically, the zeroth order termléo) and p(20) come from the inversion of ; UpgmUpom =

I}‘m+ m, which is a part oH-_H__. Dirac equation results in this order automaticatbf) =

py.
@

Likewise, it is clear that the second order terpﬁ@ andp,” partly come from the term
H}Xf). Thus, one needs third order vertex corrections, suOhi%{sto determine all second
order contributions to the Dirac equation. There is an unknown finite paraméma(f). The

conditionp(lz) = p(zz) and Egs. 2.22 and Q.23 lead to the condition:
D 2
log =3 1612 [or ¢ (MP) + Bt (MP)] . (2.29)

The functionsa¢ (s) andf+(s) are given in AppendixC.4, in Egs. C.83-(C.85.
Altogether, the requirement that is equal to the mass of a physical fermion implies one
more condition on the free parts of counterterms.

2.4.3 Discussion

Taking conditions 2.17), (2.18 and @.29 together and looking at the structure of the coun-

terterms, one can observe the foIIowirvgss) can be accounted for by changing the coupling
constant oH&:
3 2
g A
——log— 2.30
o4 ?9c (2.30)

in the original Hamiltonian, Whilé(]gf))ffb shiftsg? in the seagull tern4:

g—g

> 2. ¢ N?
g —g +Wlogg. (2.31)

Thus, these two counterterms can be absorbed indedependent coupling constari.80).
. . . 2 .

Note that, in physical resultd-dependent logarithms Ic& cancel each other, leaving

1 g® |

g+

m?
1672 ogE. (2.32)
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2.5 Heuristic meaning of the model 13

Thusg andC will never appear independently and there is only one parameter, combination
(2.32), that can be fixed from experiment.
X (22 shifts the mass in the one fermion free energy. The subt%&nd one of the third-

order countertermé{ig) , reproduces the same interaction term, but with a shifted mass of the
spinor in the one-particle sector, according to the formula (cf. AppeBdix

(1+ y;pé_[n) Um( P, O') - um+6m( P, 0) . (233)

The same model has been analyzed by other authors — se&Rdh¢y have shown that,
in this model, to get finite and covariant results for thenatrix to all orders of perturbation
theory, and to get the mass in the Dirac equation which is required by the threshold condition,
it is enough to: (1) add to the bare cutoff Hamiltonian a term that shifts the mass of fermions
in the free partos; (2) correspondingly, change the spinor mass in the vertex — se@ B§); (
and (3) allow the coupling to depend An

This simple result — renormalization leading just to redefinition of the constants in the canon-
ical Hamiltonian — works only for the severe truncation of the model considered in this section.
The authors of Refq] write: “If we were to consider a Tamm-Dancoff truncation that allowed
more particles (e.g., two fermions and one boson), we would need terms that are not found in
the canonical Hamiltonian to obtain covariant results.”

If one rewrites the Hamiltonian of Ref5] using the invariant mass cutoff and expands it in
powers ofg{m) up to the fourth order, one gets the same result as we obtained in our similarity
calculation, with:

10° v’
g+ ZWIOQE (2.34)
replaced by: .
G(m) — 5G*(m)ar (). (2.35)

Hence, one may choo€kto obtain the same result as in Réd].[

The results presented in Reb][were obtained before the introduction of the similarity
renormalization scheme and were guessed, based on the experience of the authors. Such guess-
ing would be hard, if not impossible, in the case of realistic QFTs. Thus the systematic proce-
dure of this chapter offers a huge advantage.

2.5 Heuristic meaning of the model

The results presented in this chapter, basedlpmpfovide an example of the application of the
similarity renormalization scheme for Hamiltonians in its algebraic version. We have shown
how this systematic procedure leads from a divergent Hamiltonian to a finite one. The finite
Hamiltonian has well-defined eigenvalue equation for bound states and produces finite and co-
variant results for th& matrix. The question | address in the remainder of this thesis is whether
one can apply a similar procedure in QFT. In Cha@tdrreview the formalism of Renormal-
ization Group Procedure for Effective Particles (RGPEP) which is an extended version of the
similarity renormalization scheme used above. RGPEP is formulated in differential form (rather
than the algebraic form used above) and in terms of creation and annihilation operators in a Fock
space. In Chaptet, | apply RGPEP to a bound state of fermions in a Yukawa theory. This re-
sults in a well-defined bound-state equation, which | contrast with divergent equations based on
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14 Model of a relativistic Hamiltonian for simultaneous description of bound states and.. ..

the Tamm-Dancoff truncation. In Chapterl show that counterterms found from RGPEP lead

to finite Smatrix, and their finite parts can be chosen in such a way th& thegtrix is covariant.
Therefore, both key results of the model calculation presented above appear obtainable in QFT,
although the calculations | will discuss are limited to low orders and the required extension to
all orders is not yet completed.

Let me remark that even though | have presented the simple Hamiltonian model of this
chapter mainly to familiarize the reader with the aim of the thesis, the model itself is interesting
because it may find applications in pion-nucleon physics when another Fock sector, with one
fermion and two bosons, is include@l |
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Chapter 3

Renormalization group procedure for
Hamiltonians in quantum field theory

3.1 Introduction

In this chapter | present the formalism which forms the basis of the Chapserds.

Section3.2summarizes the basic concepts of Quantum Field Theory (QFT) in the language
of Hamiltonians. | review the standard formulation, using as an example a scalar theogy with
interaction, and | introduce the notation used in this thesis. After | present the standard equal-
time quantization and show some of its problems in Sec3@@g | introduce the light-front
Hamiltonian approach, which avoids similar problems, beginning with Se8ti®n

Section3.4summarizes the Hamiltonian renormalization procedure called Renormalization
Group Procedure for Effective Particles (RGPEP), whose application is the key focus of this
thesis. | present here the motivation behind its use and some basic results; the application of
RGPEP to bound states and scattering processes is described in Chajpiets

3.2 Canonical Quantum Field Theory

This section reviews the basic construction of Quantum Field Theory (QFT), the basis for the
modern description of elementary particles, in the language useful in Hamiltonian dynamics.

One of the best known QFTs is Quantum Electrodynamics (QBEY]. Its formulation
is based on two rules. The first of these is the correspondence principle: Maxwell equations
of classical electrodynamics described very well most of electromagnetic phenomena known
at the end of XIX century; quantum theory had to reproduce these equations in certain limits.
The second rule is agreement with the requirements of special relativity. This led first to the
formulation of the Dirac equation and then to the conclusion that a complete theory is not
consistent within the framework of quantum mechanics of a fixed number of particles.

As the correspondence of quantum mechanics to classical mechanics was already well un-
derstood, QFT followed a similar path. The first attempts at formulating relativistic quantum
mechanics led to some paradoxes (such as the Klein paradox) and prompted the introduction
of the concept of antiparticles and interactions changing the number of particles. Relativistic
guantum mechanics, based on a concept of a fixed number of interacting particles, proved un-
tenable and only the introduction of quantum field theory put relativistic quantum theory into a
consistent framework.

15



16  Renormalization group procedure for Hamiltonians in quantum field theory

In this section, | describe the key steps in the Hamiltonian construction of a quantum theory
of scalar fields. This example demonstrates the main steps, avoiding many of the complications
of gauge theories. QED and QCD are only mentioned briefly here; the canonical quantization
procedure for these theories is described in Appekdix

3.2.1 Classical field theory Lagrangian

The path towards a first guess for the quantum theory of particles begins with a Lagrangian
for a classical field. At this point it is easy to introduce into the theory the Lorentz symmetry
or other symmetries. Nevertheless, it is not obvious that all such symmetries will hold in the
guantum case (and, in fact, for some theories not all the symmetries will). Lagrangian also
provides a way to connect the interacting theory, with a certain coupling comsialt with

the free theory in the limig — 0. The free theories are simpler and better understood, and for
weak couplings many effects can be analyzed as perturbations around the free case.

One of the key assumptions of the quantum theories is that there exists a hermitian Hamil-
tonian operator, which is a generator of time evolution: time derivatives of operators are equal
to their commutators with the Hamiltonian (times a universal constant). This assumption leads
to conservation of probability. The Hamiltonian, however, is not a Poincaré scalar, and there
iSs no easy way to require or check its Poincaré symmetry. Nevertheless, if the Hamiltonian is
build according to the canonical rules, the Heisenberg equations for time evolution are equiv-
alent to the classical Euler-Lagrange equations (which are covariant, provided the Lagrangian
is a Poincaré scalar). This not only eases the building of symmetries into the theory, but also
allows for correspondence with the classical theory. For example, following this path in the
case of Quantum Electrodynamics (QED) leads to the Heisenberg equations which look like the
classical Maxwell equations. One may then try to follow the path opened by QED in the case
of other theories, even if the classical correspondence principle does not apply to them.

The standard construction consists of the following steps:

1. A Lagrangian density is constructed;

2. Classical energy-momentum tenga¥ is calculated:;

3. The fields are required to fulfill canonical commutation relations at equal time;
4. One of the components d# defines a Hamiltonian density.

Certain important points have been excluded from the list above — for example, as the quantum
fields do not commute, it is important in which order they are writtefith Usually, fields are
expressed in terms of their Fourier components (which have a clear interpretation of creation
and annihilation operators of particles) and the resulting operatorsHg¢ @&ye normal ordered
(corresponding to subtraction of the energy of the vacuum from all energies).

However, quantum theory as defined in this way leads to infinities when one calculates
physical observables. To arrive at meaningful results that can be compared to experiments
two more steps are required: the introduction of some form of regularization (to parametrize
the infinities in terms of an ultraviolet cutoff) and renormalization (to remove artificial cutoff
dependence). This can be done at the level of physical observables, e.g. a scattering matrix.
However, such an approach cannot easily be extended to other types of predictions: knowing
how to calculate a scattering matrix in a meaningful way does not automatically allow us to
formulate a well-defined bound-state problem, and there is no clear connection between the
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3.2 Canonical Quantum Field Theory 17

way one describes bound states and scattering when divergences are taken seriously. This is
particularly important as there are experiments in which bound states are involved in scattering
and the bound states structure matters in the final results.

Therefore, it is preferable to introduce renormalization already at the level of the quantum
Hamiltonian (rather than observables, such as the scattering matrix). In principle this allows
us to discuss all kinds of phenomena within a single theoretical description. However, as men-
tioned above, symmetry requirements are hard to maintain in a Hamiltonian approach: the
cutoffs break the connection with the initial Poincaré-invariant Lagrangian, and there is the
important question of whether it is possible to construct counterterms in the Hamiltonian that
remove cutoff dependence from physical results and lead to covariant predictions and, if so,
how it may happen. That it is, in fact, possible in the case of a simple model has been shown in
Chapter2; a similar result in the case of divergent QFTs is presented in Chapter

An important fact about classical Lagrangians is that, using this language, symmetry re-
quirements are very simple to formulate. Since the action of the theory is defined as a four-
dimensional integral of the Lagrangian density:

[ diLiode = [ d'xL (0x).00) (3.1)

it is enough to require the classical Lagrangian density to be a Poincaré invariant in order to
define a classical theory respecting special relativity. This simple rule is obscured in the quan-
tum theory because of the necessity of regulating divergences. Despite that, there is probably
no better starting point for construction of a quantum field theory as a tool for particle physics.

Another advantage of the Lagrangian formulation is that, through the Noether theorem,
independence of a Lagrangian from some variables automatically leads to conservation laws.
In the case of Eq. 3.1), the fact that the Lagrangian density does not depend directly on the
space and time coordinatesandx?, leads to conservation of momentum and energy.

In the following, | consider the example of a Lagrangian density describing a scalar field

Q0x):
=3 (0@ Pe) + o8 (3.2)

The terms in parenthesis are kinetic terms with a nrmas§ hese terms would correspond to
a free field evolution (i.e. wheg = 0). The last term is an interaction term; its strength is
determined by a coupling constamt

3.2.2 Classical equations of motion

Classical equations of motion (Euler-Lagrange equations) for thediatd:

0L 0L
n’= _ 7=
30 3¢ (3.3)
In the case of Eq.3(2), there is just one equation:
M, + nP) o= -
(040, + ) o= égcpz. (3.4)
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18 Renormalization group procedure for Hamiltonians in quantum field theory

3.2.3 Energy momentum tensor

The energy-momentum tensor density is:

0L
0(0,9)

The integrals of its components over space represent energy and momenta — quantities which
are conserved due to the explicit independence of the Lagrangian densityfrom

By defining energy density, one can rewrite equations of motion in a formally equivalent
Hamiltonian form. This is a canonical transformation of variables, from figldsd their time
derivativesipin the Lagrangian to fieldg and corresponding momentan the Hamiltonian.

The energy of the field at a given tim@ is defined by the integral:

W do—gVr . (3.5)

H= dx T (3.6)
x0=const
and the canonical momentumis: 5
L
M= —. 3.7
300 (3.7)

For theq?® theory defined by Eq.3(2), these quantities are:

n = % (3.8)
00 1 302 1
TO = 2 (124 (80 + @) — So¢° (3.9)
2 3!
The equations of motion are:
oT%
O f— R
o'mn = 30 (3.10)
0T
0 = . (3.12)

By substituting the second of these equations into the first one, one can verify that this set of
equations reproduces.{).

3.2.4 Field quantization, creation and annihilation operators

One of the most important lessons from classical quantum mechanics is that, if the position and
momentum variables are replaced by operators, proper commutation relations between them
are required. When their evolution is generated by the canonical Hamiltonian, then quantum
equations of motion correspond to their classical counterparts. It can be demonstrated that, in
the classical Ehrenfest limit, matrix elements of these quantum operators evolve in agreement
with the classical equations of motion.

The same applies to field theories. One can require that, at a givextime

[OX),1(y)] = 8} (X—Y) (3.12)
[9(X), @] = [m(R),n(y)]=0. (3.13)
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3.2 Canonical Quantum Field Theory 19

In this case, the quantum equations of Heisenberg picture are:

¢ = i[H,q (3.14)
T = i[H,m. (3.15)

These equations state tHdtis the generator of a time-translation. Similarly, other space in-
tegrals of T have an interpretation of generators of space translations (momenta), rotations
(angular momenta), or boost generators.

One can introduce creation and annihilation operators at xfae 0 via a spatial Fourier
transform of the fields:

3Kk - -
X xX’=0) = /Z(ZdW (allze""anaRe'kX) (3.16)

d3k - -

In both equations, there are only three-dimensional space-like integrals. Both equations are
needed to express creation and annihilation operators in terms of fields. Note that the appear-

ance of an extra free energy factkff, = v/ k2 + R, introduced in the second of these equations

to represent the time derivative, means that some assumption about field evolution was made.
In this case, it was assumed that at the tixfie= 0 field @ evolves as a free field. The stan-

dard momentum integration measures are markefklay= d*k/ (2(2r)3k°), and a frequently

encountered delta-functiadk) := (2rm)383(K) = [ d3x exp(—kX).
Eq. (3.12 implies that the operatoe fulfill:

[aﬁ, aH — 2k%(k—p) . (3.18)

The Hamiltonian, given in Eq.3(6) in terms of fieldsp and momentar, can be expressed in
terms of creation and annihilation operators. Further, the space of states on which all operators
act is defined in terms of creation and annihilation operators. By definition, there is a unique
vacuum staté0) — the state that is annihilated by all annihilation operators:

a|0)=0. (3.19)
All states can be written as combinations of the following basis states:
|P1y---s Pn) = agl...agn |0) . (3.20)

The space of all states with this basis is called the Fock space. Note that the action on any state
of the form 3.20 of any operator expressed in terms of creation and annihilation operators, can
be calculated using Eqs3.0.8 and @.19. For example, for the free the0|()(Eq. 3.2) with

g = 0), the Hamiltonian i&;
Ho:/[k],/I(’2_|_r'r]2a.l:r(_a_k.7 (321)

and, when acting ofps, ..., pn), it gives:

H0|p17"'7pn> = (p(1)7m++ pg,m) ’p17~-'apn> ) (322)

LActually, a constant c-number term was dropped, see discussion at the beginnin@dt.Sec.
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20  Renormalization group procedure for Hamiltonians in quantum field theory

where pﬁm =4/ fii2+mz. Thus, the Fock space basiz 40 is the basis of the eigenstates of
the free HamiltoniarHp. It is a complete basis, and can be used in interacting theory, where
eigenstates dfl may be complicated combinations of these basis states.

Note also that, withHg given by Eq. 8.21), the energy of the vacuum is zero:

Ho|0) =0. (3.23)

3.2.5 Quantum Hamiltonian of interacting theory

One may express the Hamiltonian operator of quantum field th&d)i( terms of the creation

and annihilation operators, by substituting the quantum figlasdrtwith their Fourier expan-

sions (3.16-(3.17). Using the commutation relations, one can order each expression in such a
way that annihilation operators stand to the right of the creation operators. In the process, the
o-functions from commutators contribute additional c-number terms. Thes terms simply add
the same — and in fact, infinite — quantity to the energy of each state. Since physically observ-
able quantity is the difference between energies (e.g. of two different states) such terms may
be dropped. The procedure of commuting annihilation operators to the right and dropping the
o-functions is called “normal ordering” and it is indicated by double dots (colon) to the left and
right of an operator.

This leads to:
H= /O d3x : T = Ho+Hy +Hs ¢ (3.24)
x9=0

Ho— [ 14 kPl - — (329

1 ~
Hy = _ég/[1236(1—2—3) <a1azaa+a§a£a1> = {ﬂL} (3.26)

1 ~
Hspe = _gg/[1236(1+2+ 3) (alazag—i-a;aZaI): + . (327)

(In the above equations, | have used numbers to mark specific momenta: 1knestng
The first termHo, is the free Hamiltonian. Acting on a bare vacu|@nit gives zero, and on

one particle statal |0), Ho gives an eigenvalue factor — the free enekfly= v/ K2+ m2. This
part does not change the structure of the state (the number of particles or their momenta).

The second and third termbly andH>,  constitute the interaction Hamiltonian. In the
limit g — 0, they both vanish. These are two distinct parts. Ternt$sichange the number of
particles by one. For example, when this term acts on four-particle states, it gives a combination
of three- and five-particle Fock states. Each teridyrhas a creation operator on the left-hand-
side and an annihilation operator on the right-hand-side, and therefore gives zero, both when
acting on the vacuum ket and in matrix elements with the vacuum bra.

The third termH-. ¢, changes the particle number by three. The part with three creation
operators is the only part ¢f that does not vanish when acting on the vacuum, a fact that has
important consequences (see Set5.

3.2.6 Problems

Although the Hamiltonian3.24) appears quite reasonable, in fact it leads to a number of prob-
lems. | list some of them briefly here.
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Figure 3.1: In equal-time coordinates (S¥2), boosts are dynamical. For example, for a
classical trajectory of a heavy particks)(decaying into two lighter one8@ndC), it is possible

that in one reference frame an observer sees the particle before the decay (at tfe=tidje

while an observer in another frame sees the result, after the decay (at th@'tim@). Hence,

one must know the dynamics in order to be able to describe processes in a boosted reference
frame. Contrary to this, in the light-front coordinates (Se%), boosts are kinematical, and
information about the state &t = 0 in one reference frame can be immediately translated to

the moving reference frame.

The first problem is that in the equal-time formulation of QFT, boost generators depend on
interactions and are complicated. This means that, even if one knows a state in one reference
frame, one still needs to know all the dynamics in order to predict the corresponding state seen
by a moving observer (see Fi§.1). The situation is especially unsatisfactory for bound-state
calculations. Spectra and wave functions of bound states are usually calculated in their rest
frame of reference, and the theory is supposed to automatically take care of describing the
states in motion. Yet, it would appear that no such explicit construction has been successfully
carried out.

The second problem is, thit, . term inH does not vanish when acting on the vacuum.
Thus the “bare vacuumf0) is not an eigenstate of the Hamiltonian and a good starting point
for solving the theory is lacking. The true vacuum — the ground state of the theory — has to be
determined from dynamical equations and may be a very complicated state, involving infinitely
many different Fock sectors (i.e., components with different numbers of bare particles).

There are many effects in QFT which are commonly interpreted as a result of the compli-
cated vacuum structure (for example, spontaneous symmetry breaking). Nevertheless, it would
be very useful if the theory could be reformulated in such a way that the vacuum was simple,
and all “vacuum” effects reproduced by additional interaction terms in the Hamiltohihn [

The third problem concerns requirements of special relativity in divergent QFTs. Let us
imagine, for example, that we want to calculate the energy of a state of one physical particle of
momentunk. If the relativistic dispersion relation,

E = \/k2+const , (3.28)

is to be preserved, then the only acceptable correction is a change in the value of the particle’s
mass ¢onst in Eq. (3.29). Assuming that the mass shii? is small (compared t&? or the
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a) @
0 < O+
o —(

Figure 3.2: Examples of corrections to one-particle energy in the equal-time old fashioned
perturbation theory (a-b) and light-front calculation (c). The vacuum term (a) shifts energy of

all states and thus has no physical significance. Only two terms (b) (the “O” and the “Z” terms)

contribute in the equal-time old-fashioned approach. But in the case (c) of the corresponding
old-fashioned light-front Hamiltonian calculation there are no “Z” terms.

initial bare massr?) for small coupling constants, the square root can be expanded in a series:

= 5mR)?
E:\/k2+mz+6msz(o)+}6m2—}( ) F.. (3.29)

k T 20 80,3

Ey (B™)

Thus, any small correction to the one particle endié@ — VK24 has to be of the form
const/ElgO), or the result will not be relativistic.

Let us now look at the two important second-order corrections to the one-particle energy.
Up to the second order in the coupling constant, there are four terms:

Ex=\/K2+m2+ AP, +AED +AEP . (3.30)

The first term is the initial, free enerdf;éo). The second term comes from tHe acting twice,

and corresponds to the first diagram in FigBr&b). Next part comes frorfls < acting twice,

and corresponds to the second diagram in Figuab) (a “Z” term). The final part comes from

H-. ¢ acting twice, but forming a disconnected expression corresponding to the Big(ak

Since the second-order vacuum energy is exdkﬂy), the shift of the physical energy of one
particle state (that is, how much more energy than the vacuum this state has) in the second order
ingis:

AE? = AEPS +0ED . (3.31)
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One may calculate it for 1+1 dimensional theory, obtaining a finite result:

@ _ lom
AE? = 30 (3.32)
k
¢ [k
L, f(m) (3.33)

© 1 1
dp + X
I V9 1 (/(p-9) +2
X 1 (3.34)

—(R+1)+ (\/(p— U241y \/(p+‘§‘)2+1)2

(Note that in 1+1 dimensions, the coupling constghts dimension ofnas$ — see Appendix
A.5.) We can evaluate

21
f(0)=——, 3.35
O=57 (3.35)
and the physical mass is:
9
mf)hyssz—G\/émz. (3.36)

(The light-front approach presented in Secti®f leads to the same result without relying on
the expansion of the square root in E§.29), cf. Eq. 6.51)-(5.53.)

In the case of scalar theory in 3+1 dimensions, however, the second-order correction to the
energy of one particle is divergent. It requires regularization and renormalization. One has to
make sure that both diagrams in Figi&&(a) are regulated in a consistent way, and that there
is no additional non-covariant finite dependence on regularization (for example, as a function
of R/m). Covariant regularizations, such as the dimensional regularization or Pauli-Villars reg-
ularization, are not easy to extend to the Hamiltonian formulation in its explicit operator form.
And when one cuts off momenta the result of integration will produce a whole functi@n of
divided by the cutoff parameter.

A similar problem, discussed in more detail in Chapiieoccurs due to non-covariant reg-
ularization in scattering amplitudes. It is difficult to introduce regularization in standard canon-
ical Hamiltonians that lead to diagrams with different orderings (analogous te@heand
Z energy corrections discussed above) in such a way that the whole expression preserves the
Poincaré symmetry. These problems with a momentum cutoff regularization seem very un-
fortunate, because Hamiltonian-based calculations — in particular, the old-fashioned perturba-
tion theory — are very attractive from a conceptual point of view. Among its advantages are a
clear physical interpretation of the energy operator and an explicit construction of states in the
Fock space. Nevertheless, because of the problems with ultraviolet divergences, regularization
and renormalization of Hamiltonians, it was long believed that Hamiltonian-based calculations
could not produce relativistic results, and this approach to QFT was neglected for many years.
Covariantly regularized Feynman diagrams are beautiful and more effective in perturbation the-
ory for scattering processes. It is very interesting to observe, the the properties of Hamiltonian
calculations dramatically change when one switches from the standard time evolution to the
light-front of dynamics introduced in the next section.
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3.3 Light-front Hamiltonian dynamics

3.3.1 Forms of relativistic dynamics

Different forms of relativistic classical dynamics were analyzed by Diratéh [The dynamical
problem is usually formulated as follows: certain arbitrary initial conditions are imposed on a
given hyperplane in the space-time. The dynamical equations (Euler-Lagrange equations in
Lagrangian dynamics) then allow us to predict what happens with the system elsewhere in the
space-time.

Three forms were considered by Dirac:

1) Equal-time (“instant”) form : this is the standard form presented in Sec8¢h The initial
conditions are specified at a timt& = 0 (or some other fixed time), and the generator of
evolution in the time direction is the energ¥;

2) Point form : here, the initial conditions are specified at a 4-dimensional hyperb%eid
%2 = a, and the evolution proceeds in directions perpendicular to this hyper-surface;

3) Light-front form : here, the initial conditions are specified on a plahe= —x3 (which is
tangent to a light cone, Fig.3), and dynamical evolution proceedsxn, the dynamical
generator bein@ .

Choosing one of these three forms looks like a simple choice of parameters for describing
one and the same physics. However, from the point of view of special relativity and quantum
mechanics, there are some important differences between them.

Special relativity requirements can be formulated in terms of the Poincaré algebra (gener-
ators of translations, rotations, and boosts). The same reference frame can be reached by per-
forming different transformations in different orders. Whatever transformations one chooses,
and in whatever order they are placed, the description of physical processes must produce the
same results. Therefore, there are fixed relations that have to be fulfilled by the Poincaré gener-
ators. In a classical theory, these are:

{PLP'} = 0
{MW, PP} = g"PPH —g®P¥ (3.37)
{MI,MP} - = gfOM™P — gHPM™® — g"OMIP 4 g"PMHE,

wherePH are generators of translations av#’ are generators of rotations and bodsts the
guantum case, the Poisson bracl{e}tsare replaced by commutators.

In the free case, all these generators are easy to construct on the basis of general rules. In
interacting theory, the situation is more complicated. For example, let us look at the equal-
time theory defined in Sectich2.5 For the free theory, witl°® = Hq of Eq. (3.21), all other

2More specifically, the angular momentum operators ireX, 2, 3):

.
L= 78Ijijk
2 )

and boosts are generated by:
Kl =M.
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generators are easy to find: for example, the space translation generators are:

P— [ kK ala. (3.38)

In the interacting theory (i.e., the one with the coupling consga#t0) the conditions defin-

ing the Poincaré algebr8.37) can be split into two parts. Becaug¥ is diagonal, thei, j)
components oP andM are not influenced by the change of the interaction paR%fThey

are “kinematical” (i.e., simple, not influenced by the interaction — their form in the interacting
theory is exactly the same as in the free theory). Howéw€rgenerating boosts have to fulfill
the condition:

MO PO = —P. (3.39)

This means that whe® changes (i.e. when there is an additional interaction tevff) has to
change accordingly, such that the commutators still produce the kinematical monfnséim
the known, simple form.

There does exist a geometrical interpretation of these considerations, albeit a slightly sim-
plified one. In the equal-time form of dynamics, one specifies initial condition &t0 hy-
perplane, and® (the time evolution operator) is responsible for generating the solution of the
dynamical problem at all other times. PP is changed, a different solution will be generated.
Now, all other Poincaré algebra generators can be split into two groups. The six transformations
that do not change th€ = 0 plane (three translations and three rotations) do not change the
system in any way that depends on the interactioR%nOn the other hand, the three boosts
move the system off thé = 0 plane:

V-X .
X0 — XY = xPcoshw+ —- sinhw (3.40)

\

(with tanhw = v wherev is the speed of the new reference fraxig elative to the old onex}),
and must be modified in the interacting theory (c.f. Big).

3.3.2 Light-front coordinates

Dirac’s LF form of dynamics16] contains as many as seven kinematical Poincaré generators.
This makes it easier to formulate a relativistic theory in the LF form than in the equal-time form.
Light-front dynamics is defined in terms of new coordinates:

(xT,x7,xt %) (3.41)
st 0453 (3.42)
x~ =x0—x5, (3.43)

instead of(x%, x1, x2, x3). One specifies the initial conditionst = 0 (see Fig8.3). New +, —
components of any covariant four-vector are specified in the same way.
The metric tensor is:

012 0 O
/2 0 0 0

o =| 0 0 -1 0 (3.44)
0 0 0 -1
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T

SN2
“:‘11 ’l"',' %
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Figure 3.3: Light-front initial conditions are specified on a hyperpbane- xX° +x3 = 0 (a null-
plane tangent to the light cone); dynamical evolution determines the system'’s state at different
light-front timesx™.

For example, a four-dimensional product of two four-vectgfsand p* is:
L I
x”puzéx p +§x pr—xp-, (3.45)

wherex! = (xt,x?). In particular, this means that a momentum conjugate t(.e., the evolu-
tion operator — the Hamiltonian) is:

1 G
ip —M—'W; (3.46)
and a momentum conjugate)o is p* = —i29/0x .
Further, square of a four-vectpt in the light-front coordinates is:
1., 1 _
Pou=5p"p +5p P —pt=pp —p, (3.47)

and the dispersion relation for a particle on mass shelk prpu=p p"— p-?) becomes:

pJ_2_|_m2
pt

P = (3.48)

This is a light-front analogue of the equal-time dispersion relation:
Py =/ P2+mR. (3.49)
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PP =+

p0=—

(@) (b)

Figure 3.4: (a) In the equal-time dynamics, for each space-like momepttivare are two
values ofp® possible on mass shelp® = ++/p2 + m?; evolution of particles forward in time
(p° > 0) is an additional condition which cannot be imposed as a condition on morgenta
(b) In the light-front dynamics, positiveness pf momentum results in a positive value of the
light-front energyp~ = (p2+m?)/p*.

There are a number of important differences. Fpstjs not squared in Eq.3(47) and therefore
knowledge of the three-momentupr determines the light-front energy” without ambigu-
ity in its sign. This has important consequences. For example, as shown in Chdpterhys-
ical three-momentunp™ -+, the scalar particle’s propagator has only one pole at phygical
(3.48. This is quite different from the equal-time variables, where for each three-momentum
there are two corresponding poles: pitgreater than, and less than zero. Thus, in the equal-
time form, one has to specify the condition of forward-evolution of particles as an additional
condition on their energieg’ > 0, which is needed irrespective of particle’s three-momentum
p. In the light-front dynamics, the conditiop~ > 0 automatically follows from a kinemati-
cal conditionp™ > 0. In other words, a requirement on the light-front space-like momentum,
pt > 0 chooses the forward light-cone for the evolution of particles &=#.

In the light-front form, thep~ is the Hamiltonian an@ = (p*, p*) constitutes a three-vector
of generators of translations in space directipns x=).

Let us consider a boost in the directigh

X — xPcoshw+x3sinhw (3.50)

x> — x’sinhw+x3coshw. (3.51)
By adding and subtracting these equations, one gets:

xt — &’ (3.52)
X~ — e 9% . (3.53)

This leads to a second difference. In the light-front coordinates, this boost is a simple rescaling
operation: it does not mix light-front timext) and spacex ) coordinates, and it preserves
the hyperplane™ = 0.

In total, there are seven kinematical Poincaré generators in the front form (compared to six
in the equal-time form): three space-like translatid®s {), z-direction boost* ™), rotation
aroundz-axis (M2, and two mixtures of boosts and rotationd () [17]. Only the other
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three Poincaré transformatioris! (') are dynamical and are modified when the Hamiltonian
P~ changes.

3.3.3 Quantum Field Theory Hamiltonian

For introduction to light-front quantization se&323] and [24]. For a review of modern appli-
cations of the light-front formalism in QFTs, see e 20|
For the scalag® Lagrangian 8.2), one can introduce canonical momentam

0
At
m = 0 cp_Zaxfcp, (3.54)

and request commutation relations:
[90X), TUY) Lty o = I8(X” =y )& (X" —y*). (3.55)
Note that the space-like derivative i8.54) can be formally inverted, leading to:
— — U \R2 (vl L
[@0%), DY)y —y+—0 = —~SGHX™ —y )& (x" —y~) (3.56)

(this can be also verified by differentiating the last equation gvér
Fourier expansion of the field &t = 0 introduces creation and annihilation operators:

9 =00 xt) = [[K (alek X /20X gk /20a) - (387)

where[k] = d?k-dk*0(kt)/2(2m)3. Eq. (8.55 requires thagy fulfill:
|, ah| = 2(2m3p*a(kt — p")&(k- — pt) . (3.58)

Using 3.5, one may calculate the — component of the energy momentum tensor:
T = olete+mie? - %g(ps : (3.59)
and the Hamiltonian:
P — / By, (T (3.60)
xt=0

This Hamiltonian can be split into two partdp, Hy.

H = Ho+Hy (3.61)
k-2 4+ m?
Ho — % / ot : (L@ @+ P?) : = / Ko o (3.62)
Hy = %/dzxidx‘ : (—%g(p3) P = (3.63)
g

= -3 [[123202m%* (1" +2' ~3")5(1" 42" - 3) (a{a;ag + a§a1a2> . (3.64)

3Sometimes in the literature, all the dynamical Poincaré generators are referred to as “Hamiltonians”.
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In this Hamiltonian, there are no terms similar 8047) in the equal-time Hamiltonian, such as:
1
Ho = —50 / [1232(2m)38% (11 + 21 +34)5(1" + 2" +3")alalal.  (3.65)

This term would create three additional particles when acting on any state. Note, however, that
p™ momenta of these particles would have to add up to zero. As'aih this expression are
greater than or equal to zero, all three created particles wouldfhaneomenta equal exactly
to zero. For the massive particles considered here, such momenta mean infinite fregpenergy
and are not possible. FiguBe4 shows that there is no point on tpé = n? hyperboloid which
would corresponds to such situation. Instead, zEranomenta would correspond to a limit of
a particle moving with the speed of light in the directien®. But as long as the limit is not
reached, even for a very fast particlg;, # 0. On the other hand, afi* = 0 are possible if
all the created particles are massless. In this thesis, only the bosons in Chapgenassless.
Nevertheless, in aterm such as the one above, they would be accompanied by a massive fermion
and an anti-fermion for whiclp™ cannot be equal zero. Thus, terms of the typ€% do not
matter in this thesis.

Let us turn now to the question of whether results presented here could be extended to other
theories. The question arises of whether the terms in a Hamiltonian, su8l68s ¢hould be
taken into account in a massless theory. Particles of gérare the ones moving exactly in the
direction of —x3, see also Fi§.2. For an external particle scattered on a target, it is enough
to choose thec axis not in the direction of motion of the incoming particle to avoid such a
problem, and the result should not depend on an artificial choice of coordinates. But for mass-
less particles whose momenta are not fixed by experimental conditions (for example, the final
particles in a measurement of a total cross-sectiph)¢cannot be made non-zero by a simple
choice of coordinates (for example, because one integrates over all pgssjbloreover, in
the standard calculation of scattering cross sections based on Feynman diagrams, massless par-
ticles in the final state may also create complications. These are usually handled by treating the
particles as massive and, in the final result, taking a limit- 0. This is equivalent to including
a low-energy (infra-red) cutoff, parametrized by the artificial mass. In Hamiltonian light-front
theory, the situation is even more complicated. For gauge theories, choosing the light-front
gauge leads to additional powers @f-momenta in denominators of certain expressions (see
for example a sea-gull ternic(51) and other expressions in Appendix This leads to terms
divergent forp™ — 0, irrespective of whether the particles are massive or not. An additional
cutoff parameter must be added, and renormalization is more complicated. This additional (and
perhaps inevitable) smaji cutoff means that, again, there are no particles of exactlygéro
and the delta function ir3(65 cannot be fulfilled.

Within this approach, the canonical light-front HamiltoniandgBiscalar theory has only two
kinds of terms: 8.62 and (3.64). There are no terms of typ&.69. This simplifies the theory
significantly compared to the equal-time Hamiltonian theory. For example, the LF Hamiltonian,
when acting on the vacuum state, gives zero: the Fock space vacuum is the physical vacuum,
i.e., the eigenstate of the Hamiltonian. As there are no particlgs ef 0 in this theory (all
particles are massive, or a smalt-cutoff is introduced), the physical vacuum is simple, having
no components with a non-zero number of particles.

This simplification is not possible in the equal-time formulation presented in Segtion
The three-dimensional delta function in EQ.47) can be easily fulfilled with the creation of

4When | discuss counterterms in QED and QCD, the smdiltergences pose an additional problem but not
of the ultraviolet type. See Appendix
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three patrticles of finite momenta (and finite energies). In particular, the Fock vacuum state
(“free” or “bare” vacuum) is coupled to a huge range of states and it is hard to find the physical
vacuum which should be the starting point for any description of physical processes. Neverthe-
less, the two formulations of the theory may be consistent — one expects that the introduction
of the smallp™ cutoff in P~ operator, which leads to a simple vacuum, will be accompanied
by extra counterterms in the Hamiltonian, which may create effects usually attributed to a com-
plicated vacuum structurelp]. See also 16, 27], where issues of discretization @t are
considered. Discretized™ has also been used by Pauli and Brodsk§, 29]. One has to be
careful when discussing global lower boundspn because they violate boost invariance and
canonical representation of boost symmetry in quantum mechanics does not allow for scaling
of the lower bound omp™ when one boosts bound stat&§]

Readers interested in vacuum issues related to spiaBingularities can consult Refs.
[31-34]. Vacuum studies in Lagrangian approach can be traced starting 8813q].

3.3.4 Arguments for and against the light-front Hamiltonian approach

The light-front approach to QFT has a number of pros and cons compared to the equal-time
approach. | summarize some of the advantages bellow; the specific examples in Chapters
5 will make them even more explicit.

First of all, the light-front form of dynamics features kinematical boosts. To describe a
process in a boosted frame of reference (or to describe, e.g., a bound state in relativistic motion),
one does not have to solve a complicated dynamical problem. This allows one to connect
measured or calculated properties of a bound state at rest and in motion with huge energy
[37,38].

The second advantage is that this approach is simpler than the equal-time Hamiltonian the-
ory due to the following facts. The requirement tipat of all particles is greater than zero can
be imposed even for massless theory, and there are no terms in LF Hamiltonians & &gpe (

This leads to two effects. First, Z diagrams do not appear in perturbation theory (S.2xig.

and it is possible to introduce cutoffs and counterterms in such a way that the Hamiltonian
calculation leads to relativistic results for a scattering amplitude (see CHgpt8econd, the
vacuum structure is simple. Thus, the bare vacuum is a good starting point when building phys-
ical states, although additional terms may be needed in Hamiltonians to represent dynamical
effects usually associated with the vacuum structure.

The third advantage of the LF form is that the dispersion relat®ad( is considerably
simpler than its equal-time counterpart, since the dependence of epergy the momenta
pt -t is a rational expression.

However, the light-front approach also introduces a number of problems. Probably the most
important is lack of manifest rotational invariance. Formally, one may calculate all components
M9P of the Poincaré generators:

MOB — / d?x*dx,. (x"‘T+B — XBT“’) . (3.66)
xt=0

But in the case of the interacting theory not only the Hamiltor®an but also all the dynam-

ical generatordM—' lead to divergences. For example, one cannot exponentiate a dynamical
generator to get a Poincaré operator, because already a square of any dynamical operator is
infinite. One is forced to include regularization to make the operators meaningful, but this in
turn leads to violation of the Poincaré algebra, as the regulated generators no longer commute
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as expected (cf. Eq.3(37). Thus, any divergent quantum theory may lead to violation of
Poincaré symmetries, and it is necessary to find counterterms not only in the HamiRonian

but also in other dynamical operators. Recently, Mastowski and Gtazek have shéwhdt

the effective particles approach allows one to construct regularized and renormalized effective
Poincaré generators which fulfill the algebra conditions order by order in perturbation theory
(despite the use of Hamiltonian form factors and non-covariant cutoffs).

3.4 Renormalization Group Procedure for Effective Particles

Below | present key elements of the Renormalization Group Procedure for Effective Particles
(RGPEP). | show how this procedure works in the case of a sgéldreory, deriving the ef-

fective Hamiltonian up to the second order in perturbation theory in the bare coupling constant.

| show the differences between theories in 1+1 and 3+1 dimensions (in 1+1 dimensions, the
theory is not divergent and no counterterms are needed); | also review theories othgt. than
The renormalization procedure presented here is applied to the description of bound states and
scattering in Chaptesand5.

3.4.1 Regularization

Both the equal-time Hamiltoniar3(24) and the light-front Hamiltonian3(61) lead to divergent
results when physical observables (such as scattering cross-section) are calculated in perturba-
tion theory. Since one cannot even multiply these operators, a statement seci4s'2 is an
operator of translation ik time” is not mathematically meaningful.

Regularization means that the interaction terms in a Hamiltonian are supplied with factors
limiting the range of integration over momenta. These can be shamgoffs on particles
momenta or smooth functions that vanish fast enough for large momenta. They are arbitrary,
and are included in the theory only in order to make the Hamiltonian expression meaningful.
Each cutoff factor adds a cutoff parame®), (which determines how big a range of momenta is
included in the Hamiltonian. The physical results calculated using the regularized Hamiltonian
depend o\, and diverge foA — . It is assumed that one can add to the Hamiltonian extra
terms (counterterms) that explicitly depend®m such a way that physical results have finite,
well-defined limits forA — «. The procedure of finding counterterms for a given cutoff is
called renormalization.

By introducing the cutoffs, the naive connection between the quantum Hamiltonian and
the classical Lagrangian is lost. In particular, regulating factors usually violate some of the
symmetries of the classical theory. Yet, some form of regulators are necessary, since quantum
theory is mathematically meaningful only if the regulators are there. The quantization procedure
allows for a reasonable first guess of the quantum theory Hamiltonian, but extra (steps such as
the regularization) are needed. The fact that the Hamiltonian is not strictly derived from classical
theory does not have to invalidate the procedure: we are trying to build the quantum theory, and
the canonical Hamiltonian represents a good starting point.

Of course, this does not mean that it does not matter how one regularizes the Hamiltonian.
Finding the proper counterterms may be easier or more difficult depending on the regularization.
This brings us to the question of what regularization is the best. Here, above all, one should try
to break as few classical symmetries as possible, if they are to be respected by physical results.
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If regulators violate them, counterterms should be chosen in such a way that the symmetry is
restored; if possible, it is preferable not to break such symmetries in the first place.

Each term of the Hamiltonian annihilates some particles and creates others. It may act on a
state with many particles, some of which do not take part in the interaction. Regulators should
only involve momenta of particles taking part in the interaction. Otherwise, the counterterm
would have to depend on the spectator particles also, and would have to depend on a Fock sector
(and be written in terms of projections on some Fock sectors, rather than in terms of creation and
annihilation operators acting in the same way in different sectors). Such counterterms seem very
complicated, as they involve independent constants in different Fock sectors. In particular, the
results of an experiment involving one set of particles would not be enough to fix counterterms
that could be afterwards used for different processes in another set of particles.

Ideally, the regulators depend on relative momenta only. For each patrticle involved in the
interaction, a relative momenturak can be defined:

Pohila = *c/pPparent (3.67)
Pehid = X¢/pPparent+Ke/p - (3.68)
For example, in a term on the following picture:
P1
P3
P2 there are two relative momenta, with the first child-particle haviggs(

K1/3) and the second child-particle having 3, K2/3):

X1/3 % =1- X2/3 (369)
3
I L P
Kiyz = P1— i P3 = —Ky/3, (3.70)

3

while the parent-particle hasd and p3 X1/3 Will be simply calledx, andKl/3 =K .
The regularized Hamiltonian of thg theory is thus:

HA = Hg+ H3 + X2 | (3.71)
whereHy is not changed (se@62), H& is:

9
HE = =2 [11238(1+2-3) (alajas + abnae ) ra(a/s.Keja)Nalosa ko) . (372)
andX? are unknown counterterms which are to remove the dependence of the result on regula-

torsrp (the standard three-dimensional delta functidrse defined in AppendiRr).
The regulators used throughout the Chapfesad>5 are:

ra(x, k) = exp(—Z—f) : (3.73)

In fact, it is possible use a more general form:
K12
1
ra(X,K—) = exp(—n(x)ﬁ) (3.74)
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(cf. [40])). The advantage of3(73 is that it is simpler, whereas proper choice of t)
function may preserve more symmetries. For example, chowogixig= 1/x leads for the full
vertex 8.72) to the exponenk?/(x(1— x)), which is very similar to the free invariant mass of

the created or annihilated particle pair. Many modifications are possible here, and each will
require different counterternts.

The renormalization procedure is described in SecB@gn2 It is not entirely straightfor-
ward to find countertermX® based on the condition that they remove divergent dependence
on regularization from physical observables. This is because observables usually involve some
special situation — for example, in &matrix, the free energy of initial and final particles is the
same, while a full operatot? has to be defined also for momenta not respecting this restriction.

It is even more difficult to take into account the finite effects of regularization, and these have
an impact on whether the results are covariant.

A well-known example of the physically important finite effect of regularization is found
in the calculation of electron magnetic momeqit(2) in QED. The result in ordes® is finite,
but it comes from a difference of two divergent term§][ If one regularizes them in a non-
covariant way, omitting the renormalization, the divergences will cancel each other and the
result will be finite, but wrong (in fact, it will be arbitrary, depending on the regularization).
Thus, a renormalization procedure has to take into account not only the divergent terms, but
also finite dependence on regularization. In the model example presented in Chdjptite
parts of counterterms had to fulfill certain relations for the theory to lead to relativistic results.
Fixing the finite parts of the counterterms so that they lead to covariant results will be further
discussed in Chaptéx

In discussing the finite effects of regularization, | use the more general forp) wfithout
specifying the functiom(x).

In the case of gauge theories such as QED and QCD, there are additional divergences due
to small p™-momenta of particles involved in the interaction. As a result, extra regulators are
needed [5]. Such divergences do not appear in the theories considered in detail in this thesis
(see also the discussion in the end of S&8.3and Appendix-).

3.4.2 RGPEP — Physical motivation

The divergences in the results obtained from the canonical Hamiltonian are caused by the fact
that the Hamiltonian couples each state to other states in a huge range of momenta, and coupling
between small-free-energy (or small momentum) and large-free-energy (or large momentum)
states is important. The fact that a state is coupled strongly to high-energy states means that
it is also strongly coupled to other Fock sectors — Heisenberg’s uncertainty principle suggests
that if high-energy states are important, so is the creation of additional particles. This adds to
the complexities of quantum field theory: states of different momenta and different numbers
of particles are coupled and the eigenstates of the Hamiltonian are likely to be complicated,
multi-sector and wide-momentum-range states.

In renormalization theory, one assumes that there are counterterms in the regularized Hamil-
tonian that make low-energy dynamics independent of high-energy details of the theory, and in
particular of the ultraviolet cutoff. This is a requirement of existence of an effective theory: one
only has access to experiments at limited energies, and if low-energy predictions of the theory

SNote that 8.74) is still not the most general form of possibile One should also be aware of other possible
regularizations, for example, introduction of Pauli-Villars bosons with imaginary couphrigs7].
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were sensitive to all the details of the high-energy physics, the theory would have no predictive
power.

The RGPEP procedure is based on the idea of limiting the range of energies that interac-
tions can couple, rather than only looking at states of limited energies. The latter alternative
forms the basis of Wilson’s renormalization group]. In that formulation, it is hard to make
a Hamiltonian theory agree with special relativity, as the possible energy range is arbitrarily
limited.

RGPEP avoids the problem of Wilson’s theory in the case of Hamiltonians. It also intro-
duces effective particles that allow us to formulate a well-defined bound-state problem with a
few effective particles.

The idea of effective degrees of freedom is, in fact, more general. Essentially, it means that,
for particular process, a description in terms of specifically defined degrees of freedom (which
are superpositions of the original ones) may be significantly simpler #$ee [

The effective theory should, however, describe the same physics. In particular, all the spec-
tra, S matrices, and other observables, should be the same as in the original theory. For a QFT
Hamiltonian, the easiest way to do this is to change the basis of the creation and annihilation
operators, i.e., to define new operatafsas combinations of the original a' and re-express
the Hamiltonian in terms of new degrees of freedom:

7, (a) = H(a). (3.75)

RGPEP introduces the simple, effective theory by the requirement that the effective Hamil-
tonian #, contains form factors and its matrix is band-diagonal. This meanstHhatouples
each state to only a limited range of states of similar momenta; coupling between different Fock
sectors is also limited. Note that this is exactly what is expected of the effective (constituent)
guarks. The fact that a simple description of hadrons as bound states of a fixed number of
constituents is successful, means that the most important component (e.g., the one with three
qguarks in the case of baryons), couples weakly with other sectors.

3.4.3 Effective particles and renormalization group equations

RGPEP is defined as a rotation of the basis of Fock-space operdfp#$)[ For each “bare
particle” created by an operatal, there is a family of “effective particles” (parametrized by a
parametel), defined as being created by unitarily equivalent operati\]rs

al =uyalu) . (3.76)
The same Hamiltonian operator can be expressed in terms of both operators:

I (&) = H(aw) (3.77)
where the functional dependence of the Hamiltonian operat@s dmarked#4, ) is different
from the functional dependence ag (markedH). Re-expressing the last equation in terms of
one operator basis,, and using the fact that each termtbfis a product of some number of
creation and annihilation operators, gives the equation:

Hy (8e) = U H (@)U, - (3.78)
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HA H, =UTHAU,
A2

Us J

Figure 3.5: By a unitary (similarity) rotation the bare Hamiltontdfi is transformed into an
effective Hamiltonian#, , which is narrow (of width\), but equivalent tdH2 (because of an
appropriate change of elements within the non-vanishing near-diagonal band).

This means that elements of the operatyr come from a unitary rotation dfl.® The unitary
equivalence oH and#), means that both operators describe the same physics. For example,
they have equal eigenvalues and eigenstates — the energy spectrum of physical states.

| now proceed to defining a specific form of the unitary operatpr For more details
see fi5,40)].

As argued in Sectio3.4.2 #, will have interpretation of an effective Hamiltonian aab
of creation operators for effective particles, if the momentum range of non-vanishing elements
of #, is limited to a band close to the diagonal. RGPEP starts from choosing a form factor
whose purpose is to limitfy to a band-diagonal form. Next, using the differential equations,
one calculates — order by order in perturbation theory — the transforma{idnat generates
such form factors. The transformation also changes the elememfswithin the near-diagonal
band such thatf, is unitarily equivalent tdd (Fig.3.5). f, may be chosen in any way one likes,
and can depend on the difference of energies of particles created and annihilated by a specific
term in #, , or on a difference of invariant masses. Below | shnwdepending on relative
momenta of particles created and annihilated in a Hamiltonian term. The difference of invariant
masses of statesandb will be denotedab (for a detailed definition see Appendix3, cf. [40)).
f\ acting on an operator crating particlkeand annihilating is defined as:

fra = exp(—a;\#f) : (3.79)

This means that each term wifig, will be exponentially weakened when the invariant mass
changes from state to a by more tham\. Note that spectator particles do not influence this
expression.

Other choices ofy, are also possible and can influence the complexity of solving the theory
significantly. For example, Mtynik and Gtazek{] analyzed an asymptotically free model: they
find the effective Hamiltonian in perturbation theory by solving RGPEP equations numerically
at each order and solved a nonperturbative eigenvalue problem for a small-window Hamiltonian
extracted from the effective Hamiltonian. They showed that, for a specific choifg tfe
bound-state energy of the initial Hamiltonian is reproduced with 1% accuracy.

For the calculation presented in this thesis, it is sufficient to condjddefined by 8.79);
the possible advantages of different formsfpfwill not be discussed here. Each termf

SHenceforth, each operator which does not have its operator basis explicitly indicated is understood to be
expressed in terms a,.

MAREK WIECKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. ..



36  Renormalization group procedure for Hamiltonians in quantum field theory

can be written as:
H = HG (3.80)

(note that | use the same symbglfor an operator and a function of momenta; for the definition
of f\ acting on an operator see Appendix).
Differentiating equation3.80 with respect to\ and using 8.78 leads to the equations:

T = {((1— fA) Ql)'}o (3.81)

d
@d =BG Tl (3.82)

where prime means differentiation with respecMaand{A}o marks an operatok with extra
energy denominator, see Ed\.2) and AppendixC.

Fromthe first equation, (3.81), it follows that the operator structure ®fis the same ag;,
despite that there are additional factors, i.e., the similarity form falgtognergy denominator
{ }, and factors coming from differentiation gf. For example, it has two creation and one
annihilation operator, the same is trueTarThe only exceptions are terms proportionadt@ap:
as stressed above, the similarity rotation does not change the diagonal Hamiltoniah otes.
also, that 8.81-3.82) are written in terms o0&}, which do not undergo the differentiation, since
they do not depend ok

The second equatiorn(3.82 expresses; in terms of a commutator, therefore the resulting
operator will not have disconnected parts as long as the operators on the right-hand side do
not. If this equation is solved in perturbation theory, thth order of G on the left-hand side
depends on then—1)-th orders ofG, andT on the right-hand side, since the expansion of both
these operators starts at orggand the right-hand side expansion starts at ogder

One may thus attempt to solve these equations in perturbation theory. There is a starting
point: in the zeroth and the first orders, the right-hand side of the second equation is zero. Thus
G© and GV do not depend o and are equal to their valueskat= «, i.e., to the canonical
Hamiltonian terms. Using;(Y, one can calculat& (Y; from this, G®; from this, T(?); and
SO on.

This procedure also allows us to perform a systematic renormalization. The renormalization
is done in the following way. The resulting Hamiltonian is “narrow” in invariant masses and re-
quiring cutoff independence of its matrix elements, or coefficients in front of each combination
of creation and annihilation operators, makes it produce only finite results. This requirement
allows one to find divergent parts of the counterterms in the initial bare Hamiltonian.

The procedure thus works in two ways: it allows us to construct the effective Hamiltonian
#, and it also determines the initiell® (Fig.3.6). However, it does not fix the finite parts of the
counterterms. In Chapte; | show that in a simple model, such finite constants can be used to
restore Poincaré covariance of physical observables. In the case of QFT, especially the gauge
theories, these finite parts may have to have a more complicated strucijre [

To show how this procedure works in practice, | describe in following sections the terms
in the effective Hamiltonian that result from the initial, bare Hamiltonian of E@1) using
equations 3.81)-(3.82. | also describe how the basg and the effectives, are related.

’Note, however, that the form df, is chosen in such a way that fab — 0, the numerator of3.81) goes to
zero faster than the denominator. Thus the absence of terha is not an artificial requirement here, e.g., it does
not violate unitarity otJ,.
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Figure 3.6: The unitary transformatitl facilitates the calculation of the effective Hamiltonian
Hy . In turn, the condition that the derived, is independent ofA, determines the form of
counterterm® in the initial, bare Hamiltoniai?.

3.4.4 RGPEP - Orderg®

In the zeroth order, the Hamiltonian does not change:
HO = 1,6 =Ho. (3.83)

For practical reasons, | list hesd expressed as a seriesa;t\l, rather than the other way
around. Although it is interesting to see the structurei)bfn terms ofal,, al, written as a
series:
al, =al@ @ +alV@)+al@@) +..., (3.84)
where parenthesis denote functional dependence on the other set of operators, can be used to
express any operator which is known as a function of the bare particle creation opalaiars

terms of the operatona‘{. The series can be inverted to expra%s};n terms ofal,.
In the zeroth order:

al®=al. (3.85)
3.4.5 RGPEP — Orderg!
In orderg!, G is also independent of:
d%gm =0 (3.86)
g(l) - HO (3.87)

The first order effective Hamiltonian is:

HY = £, = _g [1233(142—3) (a}ag% + agalaz) f,(12,3), (3.88)

where the regulatong, (cf. (3.72) can be setto 1 in the limfi — o becausd) is present. The
general form off, defined in Eq. 8.79 reduces in this expression to:

1 (kP24 2

This means a serious change in the form of the interaction Hamiltonian compared to the bare
HamiltonianHy. }[)\(1) has similar terms to the bare interaction Hamiltonian: it can create an
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HA H

Figure 3.7: The main difference betweld& and#, is thatH?2 is for pointlike bare particles,
whereas#, is for effective particles of sizd . In #, , interaction terms are limited by form
factorsf,, marked by a black blob.

additional particle or annihilate a pair and replace it by a single particle. But if the difference
of free invariant masses of the one particle and the two particles involved is large, elements

of }[)\(1) are weakened by the form factdx. Only states with similar invariant masses are
coupled strongly by}[)\(l). In diagrams, the effective Hamiltonian vertices are marked with a
black circle, representing the form factor, as in FigBiré Wherever it is important to stress the
difference between the bare and effective particles, | use bold lines for thélatter.

One can also calculate the first-order operatpand creation operatm”;\.

W _ {1
ul._{u fUHﬂqo (3.90)

As expected from unitarity considerations (see Appei@ik 2, uY is anti-hermitian. This is
due to the energy denominato[rs}o, which can be written explicitly as:

P+
utl = DAL~ fa)HLY (3.91)
It can be easily verified that:
(1-uHE+uY) =HO + HH, (3.92)

if only terms up to ordeg! are retained. This simply confirms that the rotationUyy= 1+
ugl) + ... indeed leads to the effective Hamiltonian with a form fadtor

In the first order, the relation between the creation operators of bare and effective particles
is:

ngz[%ww”]z[#w{ﬂ—wa”@J. (3.93)

As far as the operator structure is concerned, this expression means that, in each term of the in-
teraction Hamiltonian, one annihilation operator and corresponding integration disappear, while
the momentum of this operator is replacedkoyAccordingly, in the first order, a bare opera-

tor creating a particle of momentuky al(i), has a term with two creation operato%l(kal2 A

with k; + ko = k) and a term with one creation and one annihilation opera!hr)\(akm with
ki — ko = K). ’

8n the case of coupled QED and QCD, bold lines are also used in this thesis to distinguish between quarks
(bold) and electrons (plain lines).
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3.4.6 RGPEP — Orderg?

The canonical Hamiltoniai (Eq.(3.61) for the ¢ theories has only terms of order O (the

free Hamiltonian) and 1 (terms changing the number of particles by one). Introducing cutoffs
requires adding extra counterterms of order 2 and higher. In the theories considered in Chapters
4 and5 and in the Appendixes, the canonical Hamiltonian will have terms of ayfleThe

initial Hamiltonian can be written as a series in the coupling constant:

H=Ho+HY 4 H@ 4+ (3.94)
In this expansion, the second-order effective Hamiltonian is:
2 _ (2 (2)
T = Hhn T (3.95)
A
HE = ( A dz| fHY, u&l)']) (3.96)
H2 = HH@ (3.97)

| explicitly show subscripts indicating the scaledr z) to which an operator corresponds. The
scalez is the scale one integrates over and the sgaterresponds to the calculated operator
H, .

}[A(,zjz is simply a second order counterpartﬂ)fl), Eq. 3.89. The comments in Section
3.4.5also apply here, i.e., the operator structure of this part of the effective Hamiltonian is
identical to the structure of the bare Hamiltonldf?) apart from the form factof, .

The operator structure of the first paﬁ,faH, is more complicated. It can be written as:

2 . 2 1 1
}[}\(I-aHac = facg:afbc): Hé(lb) ngc)

(3.98)

connected
The external similarity factofyc limits invariant mass change, possible Wfﬂ)[(laH acts once.
For f, defined by Eq3%.79), fafg coming from the integral3.96) is:
?_(2) B Pg;ba+ Pg;:bC
abe ™ pa? +bc?
The second order part of the rotation operatgis:

1 1A
U — {(1_ fA)H@)} +§“(l)“(l)+§ L dz [ugn,uglw} . (3.100)

The first and the last parts of this expression are anti-hermitian. The middle (hermitian) part,
1/2uMu® is exactly what is needed fok, to be unitary (cf. C.14). Note that this hermitian

part is not a commutator, but a product of operatufﬁ;thus has disconnected parts.
For f) defined by Eq.3.79, the last part of§.100 is:

(2)

(foafoc—1) - (3.99)

—- 5@ 1)y @
U\nn = aHHabcHab I_lbc connected’ (3.101)
where the anti-hermitian factaﬁ,abc is:
(2 Pat Ribc+ P ba
BHHabe ﬁ(l_ fac)tc)(lz—i——ba%“bafbc_l)_'—
1 PP b — ba?
S22 (fha— foc) + 75— (frafbc—1) | - 102
2 babc (Toa— foc) + (ba2+b02)( bafbc—1) (3.102)
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The relation between the bare and effective creation operators in the second order is:

al® = [ai,{(l— fA)H(Z)}] +% qu,uﬁl)] uﬁl)] 4

+/:dz[a{,{(1—fz) [EH®, W] 2/ cz[a]. [ut. ]| (3209

see also39].

3.4.7 Second order effective Hamiltonian foxg® theory

In Sections3.4.5and3.4.61 listed perturbative solutions to RGPEP equations. However, | did
not analyze the resulting effective Hamiltoniafy in detail to find its dependence on the ul-
traviolet cutoffA and the counterterms. In this section, | use the equations presented above
to calculate the effective Hamiltonian for tigé theory and analyze the details which will be
important in Chapterd and5, using similarity form factors of Eq.3(79).

The starting point for the procedure is the bare, canonical HamiltoBi&d) (vith regulators
(3.73. In the zeroth order, the Hamiltonian does not change. The effective free Hamiltonian is
still (3.62. However, the effective mass is corrected in the second order. The first-order effec-
tive Hamiltonian has already been discussed in detail (cf. 3f)). It has a one-additional-
particle-creation term and a one-particle-annihilation term. The only difference from the bare
HamiItonianH$, is that each term has a similarity form factiqr

Presence of form factors in the Hamiltonian interaction term is an important feature of the
effective theory. Matrix elements of the effective Hamiltonian are small between states whose
invariant mass differs greatly. However, if we consider a theory with massive particles — like
the @® — the invariant mass of a two-particle state must be at laast while the mass of any
one particle state is¥?. Thereforebain the definition off, is at least &7 and, ifA is of the
order ofm, the factorf) is extremely small, no matter what the momenta of the created particles
are. This means that these terms — connecting different Fock sectors of effective particles — are
extremely weak for a smak.

This is part of what is dubbed an effective particle: physics should be described well in
the approximation, in which the number of these particles is fixed. And this is, indeed, what
we observe i, : different Fock sectors are hardly coupled and theory splits into quantum
mechanics in each sector separately. The effects of interaction with other sectors are small and
can be taken into account in perturbation theory.

Below, | summarize the second-order effective Hamiltonian terms. These are all calculated
from Eq. 3.99.

The first type of terms are terms with closed loops &i@h). All such terms may be writ-
ten as:

2 6m§

whereémﬁA is a constant, dependent on the cutdfind the effective scalg, but independent

of momenta. If one compares this with the form of the free Hamiltonian, it is clear that this
term shifts the value of the effective particle mass, without changing the form of the relativistic
dispersion relatiom, (p*, pt) of Eq. 3.49.
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Figure 3.8: The effective Hamiltonian up to the second order has a) a free term, argorder-
vertex with a form factorfy, and more complicated terms of ordgh. Among the terms of
orderg?, there are terms that do not change the number of particles, including a “potential”
term~ aIa{aAa)\ and b) a mass correction a, a,.

One of the requirements of RGPEP is that the effective Hamiltonian matrix elements should
be independent df for A — . This is always true for thg® theory in 1+1 dimensions. Here,
in the limit A — o the effective mass is:

/N2 1t dx mt (1—x-+x2)°
m§,1+1—<§> 2T[mz/o 1—x+x2 {eXp[“ZF X2(1—x)2

a finite, A-dependent result. But for the theory in 3+1 dimensions described above, the result
turns out to be a divergent function Af

- 1} , (3.105)

G A2 2
9
m§3+1A 1 8Tr2|Ogm2 7.8 2/ dxlogcn+4 3 2/ dxlog(1—x+x%) — 1.8 5ly+

+ o /dx/ e ex —2(Z+1_X+X2)
4.812 Jo 0 z+1-—x+x2 P X2(1—x)2A4 /mf

wherec, = 4 (ly is defined in the Appendix (see EH.B8))). This determines the form of the
second order counterterm iy : it must be:

. (3.106)

x5® — [ala 8 (3.107)

wheremﬁ is (—1) times the regularization dependent part®fl0, plus an arbitrary constant
Ci:
2

g2
M= 72 %9 482

X2 contributes to the effective Hamiltonian without a change (BP4), leading to the
effective kinetic term:

12
HOHD / [k]ﬂalak (3.109)

~a'a
B dz (z+1 x+x2)
= 4. 8n2/ / 2+l x1e p[ X2(1—x)2A4/mft
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. . . 2
(for convenience, | introduce a new, shifted constaat= C} + f’wfoldxlog(l— X+ X?) —

%zly). In this expressiorCy is a finite constant that is an unknown finite part of the countert-
erm. To fix its value, one can calculate the physical mass of a particle (the eigenvalue of the
Hamiltonian corresponding to a one-particle state) and compare it to the experimental value.
Calculating this in perturbation theory to the second order gives the following value:

m2

Shys= M +Cx . (3.111)

The same result is found if one starts from the effective Hamiltonian of any Ad@eeven
from the initial bare Hamiltonian). The mass term of the effective Hamiltonian depends on the
scaleA, Eq. (3.110, but the physical eigenvalug.(1]) does not. This is a consequence of
unitarity of the change of basis in RGPEP, and we will observe it also in the theories presented
in Chapterst and5.

All other terms of the effective Hamiltonian are finite in the lihit— 0. Thus, no additional
counterterm is needed in ordg.

The first group of non-divergent effective Hamiltonian terms of ogfeare the terms with
two creation and two annihilation operators. These can be still split into two parts. The first is
a potential with three particles in the intermediate sbkat€he structure of this part is:

_ (2)
}[)\:/: - faCfabcH<H>‘connected:/: ) (3'112)

Terms like these will be analyzed in more detail in ChapterThe second part consists of
“s-channel” terms with only one patrticle in the intermediatgate. The explicit expression is:

2
Hy o= faC—{Fa(b():H>—H< ‘connected>—< : (3.113)

In the second order, there are also other terms which change the particle number by two (cf.
Fig.3.8). For example, the part which creates two additional particles is:

Hh - facgjeft?():H>—H>— ‘connectedi)— : (3.114)

In each of the terms3(112-(3.114, the renormalization group factofg¥# introduce different
dependencies on the momenta of the particles involved. For example, paatahekc may
have the same momenta {12 and in 3.113 but the expressioab has a different meaning
for each of these terms.

3.4.8 Other theories

Theories other thag? in 3+1 dimensions will be discussed in detail in Chapteand5. Here,

| list the key features that differentiate them from the simple soatatheory described in
Section3.4.7. In the appendix one can find details of the effective Hamiltonians for Yukawa
theory, QED and QCD (calculated to different orders in the coupling constants).

One key difference between the scalar theory described above and any theory involving
fermions, is that spinor factors introduce additional powers of momenta in the numerator of
H®. For example, if one does not add counterterms, the second-order effective fermion mass
term in Yukawa theory would be:

@? [A? Lo a2 N? fini
énﬁukawaA:—W Z/dx)—(r5+4 ogﬁ + finite terms, (3.115)
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(cf. Eq. (.29 in AppendixD). This expression is linearly divergent &f, which can be
contrasted with only logarithmic divergences in 3+1 scalar theory. Although calculating more
divergent expressions is more complicated (and may involve soifategulatorsrs), they do

not present fundamental problems. Simply, extra terms proportiodé! have to be present in

X2 (cf. Eq. @¢.21).°

Another feature of Yukawa theory is that there are seagull “instantaneous” terms. These
do not influence the second order calculations significantly; however, some autBpus¢
“self-inertia” (terms that may be obtained from the seagulls when normal-ordering them) to get
covariant results, for example for the S matrix. Such an approach cannot easily be extended to
a higher order calculation, and is not required for the approach presented here.

Fermion spinorsB.42) introduce into matrix elements additional factors in denomi-
nators. For this reason, lowfegularization (used temporarily also for scalar fields to avoid
H- c-like terms) has to be included explicitly. However, in Yukawa theory the onlyxoeg-
ularization dependence is in t&-divergent mass tern3(119, and this is removed by the
ultraviolet counterterm.

In gauge theories with vector bosons, there are likewise extra boson-line seagulls. Such the-
ories also lead to additional small light-froxtivergences that introduce many complications
(see AppendidF). QED and QCD are not analyzed in detail in this thesis, although the results
presented here are a necessary step towards an analysis of the two gauge theories.

3.4.9 Rotation of operators other than the Hamiltonian

After the basis of creation and annihilation operators for effective particles has been found, one
may turn to an examination of the operators other than the Hamiltonian in this basis.

First, it is interesting to describe how effective particles interact in more detail. One way
to systematize this description is to determine their relative angular momentum, i.e., a spin of
their bound state.

Any operator written in terms of bare creation or annihilation operagisan be expressed
in terms of effective operators, for example by using equati8r3(,(3.103. Mastowski and
Gtazek have done this for the dynamical Poincaré oper&ots They found that in the basis of
effective particles, the Poincaré algebra relations are fulfilled in perturbation theory. A relativis-
tic angular momentum operator can be defined and used, for example, to classify eigenstates
of the effective Hamiltoniai®,~ or help in the construction of counterterms leading to a theory
which agrees with the requirements of special relativity.

There is another situation where expressing certain operators in terms of effective particles
may be useful. We may imagine a theory of two kinds of interactions of different strengths,
QED and QCD. The strong interactions determine most of the quarks interactions and their
electromagnetic interactions may be considered a small correction. One could perform RGPEP
taking asH the full Hamiltonian of QED and QCD. This would lead to effective particles that are
dressed both strongly and electromagnetically. All the terms of the full effective Hamiltonian
are narrow, i.e., have the form factadls but the theory becomes complicated: there are many
terms in#, and not only quarks, but also electrons and all other particles, get dressed (cf.
AppendixC.2.3.

9Note that | have not analyzed here finite dependence on regularization. For the mass term, this would be a
finite constant, i.e., momentum-independent shift of the value. Leaving the counterterm in the form of an integral
with explicit regulators takes care of both finite and infinitedependence, but the degree of divergence is not as
explicitas in Eq. 8.115.
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One may also consider another way of introducing effective particles. As stated above, the
bulk of the interaction is due to the strong interactions. Accordingly, one can base RGPEP on
Hqocp rather than the full Hamiltoniaklgep + Hoep. This leads to a description in terms of
effective quarks and gluons, dressed up by the strong interaction (i.e., being a combination of
a bare quark, a quark and a gluon, a quark and a quark—anti-quark pair, etc., but not a quark
and a photon or a quark and an electron-positron pair). In such an approach, bare creation
and annihilation operators are used for particles that do not interact strongly. Now, having
the definition of effective quarks (frotdgcp), one can express the full HamiltoniaAdcp +
Hoep) in terms of them. This leads to an effective Hamiltonian expressed in terms of effective
guarks and gluons interacting with bare electrons and photons. This way one may simplify the
calculation of certairfs matrices. This is one of the approaches described in Chapter

The simplified form of RGPEP also seems natural from another point of view. If one wants
to describe strong bound states of quarks, there is no need to take into account in the first approx-
imation their electromagnetic interactions. One would define effective quarks and their bound
states looking at the strong interactions only. Next, one can investigate what the electromagnetic
interactions of such bound states look like. It seems natural to leave the bound states expressed
by the effective quarks defined by the strong interactions, rather than redefine the degrees of
freedom (and define new effective quarks, now dressed both strongly and electromagnetically).

Nevertheless, the electromagnetic interactions of the “strong” effective quarks differ from
the interactions of the bare quarks. The effective Hamiltonian in this approach is defined in de-
tail for two coupled scalar theories in Appendix3; certain terms of the effective Hamiltonian
of QCD coupled to QED are given in Appendix

These two approaches — RGPEP based on the full Hamiltonian, and the simplified one
based on the strong interaction Hamiltonian only — are used and compared in the description of
scattering in Chaptes.

3.4.10 Other renormalization procedures

The Hamiltonian renormalization group procedure presented in Se@tbis similar to the
procedure discussed by Wilso#4]. In both procedures, an initial, artificial cutaff is intro-
duced. The Hamiltonian is then transformed to an equivalent form, parametrized by an arbitrary
parameteA. The results would be independentdoby construction if the transformation was
exact. Next, one requires that the resulting Hamiltonian matrix elements do not depé&nd on
for A — oo.

In Wilson’s renormalization group\ limited the space of states by limiting their energies.
One could calculate such a limited Hamiltonian matrix using Bloch transformatigrof the
R transformation (presented in Appendix2 see also Fig.9). Unfortunately, when one calcu-
lates this transformation in perturbation theory, small expressions appear in denominators, due
to differences of energies of the retained and eliminated states (cf. App&@diXhis means
that the effective Hamiltonians have to be determined with infinite precision when looking for
the counterterms ikl#, and numerical or any other approximate treatment of renormalization
group equations is impossible. The situation is even worse for a theory with degeneracy: if one
wanted to eliminate some of the degenerate states, and leave oth&#,ahsformation could
not be defined in a plane perturbative way at all.

RGPEP avoids these problems. When calculating the effective Hamiltonians, no small en-
ergy denominators are generated. This is because the similarity transformation does not elim-
inate any of the considered states; instead, it expresses the Hamiltonian in a different basis of
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(b)

Figure 3.9: (a) Wilson’s standard renormalization procedure is based on the reduction of a space
of states. This leads to small energy denominators in perturbation theory. (b) The RGPEP is
based on a rotation of basis. It avoids small denominators in perturbative derivation of effective
dynamics, by integrating out only these energy changes that are larger.than

creation and annihilation.

This is a general feature of RGPEP that it shares with the Gtazek-Wilson general similarity
approach3,50]. However, this feature can also be observed explicitly order-by-order in pertur-
bation theory. For example, in the first order rotatiBrB(), there is a denominator/ab that
may be small. But wheab — 0, the similarity factor behaves as follows:
fy(ab) = exp(—?\#lf) ~1— a}\—az , (3.116)
and the factof1— f)) goes to zero faster than the denominator. This makes the calculation of
#, and counterterms iH® possible in practice.

The renormalization procedure for Hamiltonians in QFT described here is different from
that of the renormalization of Feynman diagrams. The latter is done by introducing regulariza-
tion in a specific expression for a physical observable: the scattering amplitude. Until such a
regularization is introduced, the expression (including the derivation of the Feynman diagrams)
is only formal. When a regularization is introduced, a counterterm to a specific scattering am-
plitude is constructed. Feynman’s approach, although extremely successful, is hard to extend to
a description of processes other than the scattering (see Cbapter

Unlike the Feynman diagrams, the approach to Quantum Field Theory presented here aims
at defining a relativistic and finite Hamiltonian, that may be used to describe both bound states
(cf. Chapterd) and scattering (cf. Chapt&) within one theory using one set of parameters.
Note that the Hamiltonian has matrix elements between states of different free energies. When
it contributes to theS matrix, because of free-energy conservation, its contributions simplify

greatly. For examplefésg (cf. (3.99):

P ba+ P bc
2
Ta(b(): = w (foafoc—1) , (3.117)

simplifies on energy shell to:
P+
ﬁ(f&a_ 1), (3.118)
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because energy conservation in the S matrix elements meam@sth&. Note that the factor in
(3.119 is, in fact:
Pa 1

S 3.119
ba P —Py’ ( )

and #, contributes tdS standard momentum functions. The external form fadtgr= 1 for

ac= 0, and the squared form factdy in (3.119 is canceled by contributions froab[A(l). Alto-
gether, the complicated effective Hamiltonizfy with form factors leads to a simple, standard
expression for the scattering mat®(see Chaptes). Contrary to this, in bound state calcula-
tions, the full form of#, (including terms which do not conserve the free energy) is important.
In particular, the similarity form factor$, are the key to a well-defined bound state equation
for two effective fermions (see Chap#x.

Nevertheless, scattering processes are important and the lessons from the Feynman diagrams
are extremely useful. For example, comparing the scattering matrix calculated with the renor-
malized Hamiltonian with the corresponding relativistic Feynman diagrams may be used to fix
finite parts of Hamiltonian counterterms.
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Chapter 4

Resolution of overlapping divergence
problem in bound-state dynamics of
fermions

4.1 Introduction

The development of quantum mechanics at the beginning of tﬂb(ﬂmwry was mainly fo-

cused on trying to understand the structure of matter. The two basic areas of investigation were
the description of atoms as bound states of electrons and nuclei, and the description of free
radiation which was used to observe this structure. The success of Schrddinger’s equation in
describing the hydrogen atom as a bound state of one proton and one electron was a basis for
further development. Further elements were added to the picture (most importantly, the descrip-
tion of the electron and proton as fermions), which allowed experimental results to be described
by nonrelativistic eigenvalue equations with great accuracy.

Today we view quantum mechanics as an approximation to the full description given by
QFT. However, it is still not fully understood how a QFT applies to bound states.

The first problem is that the width of the wave functions that solve a bound-state problem
depend on the coupling constant. For couplings as small as those in QED, wave functions do
not extend to large momenta and a nonrelativistic description may be consistent. This is not true
for large coupling constants — one of the reasons why our understanding of bound states in QCD
is complicated. The fact that the coupling constant at binding energy scales is large (bigger than
0.3) has two consequences. First of all, standard S-matrix computations based on perturbation
theory are no longer precisely valid and may only provide some motivation or starting point
for educated guesses. The description of bound states in strongly interacting theories is mainly
driven by phenomenology. The second effect of the wave function reaching high momenta is
that a bound state cannot be thought of as a state consisting of a fixed number of particles. If
large energy components are involved in the motion of bound-state constituents, the Heisenberg
uncertainty principle suggests that other Fock sectors with man more constituents will also be
important.

The second problem obscuring the connection between QFT and nonrelativistic quantum
mechanical models, is a complicated renormalization issue. Most of the developments in renor-
malization of relativistic quantum field theories has occurred in scattering problems, an it is not
clear to what extent similar approaches may be useful in the description of bound-states.

This chapter presents the derivation of the bound-state eigenvalue equation derived using
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RGPEP. It focuses on the readily accessible quantitative estimates that show the magnitude of
the difference between the convergent bound-state dynamics of two effective fermions and the
diverging dynamics of two bare fermions in the approaches based on the Tamm-Dancoff trunca-
tion in local QFT p1,52). | start with the Tamm-Dancoff-like approach to local theory, because
itis more familiar. 1 then introduce the effective particle approach, with its new features exposed
through the contrast with the Tamm-Dancoff approach. SedtiBprovides definitions of the
renormalized Tamm-Dancoff scheme in Subsectidhl, and the effective particle scheme in
Subsectiort.3.2 Both approaches involve a universal procedure for obtaining a two-fermion
eigenvalue equation that can be compared with the nonrelativistic Schrodinger equation. This
universal procedure is calledductionfor brevity. It is denoted by the symbBland described

in Section4.3.3 Sectiord.4introduces a bare light-front Hamiltonian in Yukawa quantum field
theory that serves as a starting point for subsequent sections. The canonical Hamiltonian is
supplied with some regularization factagsand counterterms. Sectidn5 describes details of

the approach that treats bound states of fermions as if they could be viewed as made of two
bare fermions. This approach is call@oproach land encounters conceptual and calculational
difficulties in the large-momentum region that are removed by switching over to the approach
discussed in detail in Sectich6. In this section, | present the effective fermion approach,
calledapproach 2 comparing and contrasting it with approach 1. In approach 2, bound states
of fermions are treated as built from effective fermions of $izé. Conclusions are drawn in
Sectior4.7.

This chapter follows closely the description presented in an article co-authored with Gigzek [
which described the example of a bound state of two effective fermions, coupled to massless
scalar bosons by Yukawa coupling. A number of details have been added (see especially Sec-
tion 4.4 and AppendixXD). Quotations from the published material have been reworked in the
notation that is consistent with the other parts of this dissertation. | have often decided to use
verbatim quotations from Ref2], because | need to explain its content and | found itimpossible
to shorten the original text without loosing clarity.

4.2 Critical aspects of bound-state dynamics of fermions

Nonrelativistic bound states

The notion of a bound state of fermions is based mainly on the examples of atoms and nuclei.
The common feature of these systems is that theypaneelativistic. This means three things:

(1) Kinetic energies of the fermions are small in comparison to their rest mass energy; (2)
dominant interactions are not able to produce fast-moving fermions from the slow ones and
hence no significant large-momentum spin effects are generated; and (3) creation of additional
particles can be neglected and one can describe the bound states as built from a fixed number of
fermion constituents. These features are all related to the fact that the domain of large relative
momenta is not important in a bound states of two fermions, such as positronium or deuteron.
Their wave functions are self-consistent solutions to the nonrelativistic Schrédinger equation
H|W) = E|W) with HamiltonianH = Hp+ H,, whereHp denotes the kinetic energy operator and

H, stands for the interaction operator. The matrix elenjg@iH, |1'2’) is the quantum Coulomb

or Yukawa potential with a repulsive core, respectively. The|k&t denotes a state of two
fermions labeled 1 and 2, with all their quantum numbers collectively denoted by these labels.
The self-consistency of this well-known picture means thawthee function(1,2) = (12|W)

quickly vanisheswhen the relative momentum of fermiords= p1 — p2, becomes comparable
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with masses.

Description of hadrons

The success of the Schrédinger picture for bound states of fermions extends also to quarks.
This is reflected in theonstituent quark model (CQM3ee e.g. §3-60]%) used in classifica-

tion of hadrons in the particle data tabléd], and providing a benchmark for more advanced
approaches. However, the self-consistency of the nonrelativistic picture is much harder to main-
tain for bound states of up, down, and strange quarks, than for systems such as positronium and
deuteron. This is because the hadronic wave functions tend to have considerable components
with |B| comparable to or exceeding the reduced ma$sr the quarks, and the domain of

large relative momentabegins toplay a significant role in the binding mechanism. One is

also interested in the description of hadrons moving with speeds very close to the speed of
light. Since thefast-moving hadronsand their interactions cannot be consistently described
within a purely nonrelativistic Schrédinger framework, theorists use the Feyparéon model

in that case§2, 63,64]. Unfortunately, the binding mechanism of partons is not explained the
parton model. As alternative to these models, one can approach the issue of bound states of
fermions usingjuantum field theorywhere the corresponding operakbappears to contain all

the relevant information about relativistic effects in the domain of large relative momenta of the
constituents.

Problems with applying QFT to hadrons

The relativistic description of bound states of fermions in QFT, especially in QCD in the case of
light quarks, makes the conceptual difficulties with the constituent picture even greater than in
the simple models. In the equatiétycp|W) = E|W), all factors remain unknown. This status

of the theory partly originates in the large-relative-momentum domain in the motion of virtual
particles. This is illustrated by the following examples. The first example is that local QFTs lead
to canonical interaction Hamiltoniafd that change individual bare particle energies by unlim-

ited amounts (spin-dependent factors grow with momentum transfers). The large-momentum
range is enhanced and leads to divergences, invalidating the concept of a nonrelativistic picture
entirely unless special conditions, such as an extraordinarily small coupling, are met. An-
other example is that the interactions create new bare particles and this effect contributes to
the boosting of bound states, which implies that the motion of bound states is associated with
multiparticle components and tteel hoclimitation to a fixed number of bare constituents is

no longer consistent in relativistic QFTs. A third example is that even the state with no con-
stituent patrticles, i.e., the ground state of a theory, or vacuum, proves to be so complicated that
no approximate solution of verifiable accuracy has been conceived yet, althoughAmsiitye

have to be and are employed in practical attempts. In these circumstances, the main theoretical
approach to bound states of quarks (mainly heavy ones that move slowly) is basedatticene
version of QCD and great progress has been achieved in numerical studies of the theory that
way [65-69]. Nevertheless, it appears that a quantitative explanation of how the constituent
picture with a simple Hamiltonian could be an approximate solution remains a conceptual and
guantitative mystery. No detailed constituent wave function picture for relativistic field quanta
in Minkowsky space has been theoretically identified or is expected to readily follow from the

These references are provided as examples of most cited literature on the subject.
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lattice approach alone. The question of convergence of the binding mechanism in the domain
of large relative momenta of constituent particles remains open.

This chapter provides some numerical arguments that the required constituent picture with
well-controlled large relative momentum domain may become in principle identifiable if one
provides a precise definition of the constituents as effective particles, in distinction from the
bare quanta of the local theory. Thus, the process of solving a theory is arranged in two steps,
which is typical inlattice approach[65] or sum rules[70]. In the first step, one derives an
effective dynamics, and, in the second step, one attempts to solve the effective theory instead of
dealing directly with the original degrees of freedom. Here, one derives the effective fermions
of sizeA~! using a suitable boost-invariant perturbative renormalization group procedure for
their Hamiltonians. The procedure is carried out up to second-order perturbation theory, and
the resulting dynamics is compared with the standard picture, where the finitehsisadd-
sent. In distinction from the diverging bare dynamics, the effective one comes out limited to the
momentum range given by, and this scale is reduced using differential equations to the scale
most suitable for description of bound-states properties in terms of a fixed number of the cor-
responding constituents. In the renormalized Hamiltonian picture, the pointlike bare particles
of the local theory correspond fo= « and their dynamics heavily involves large momenta,
and multiparticle states, for any finite value of the coupling constant. However, the situation is
completely changed whexis lowered to values comparable to the bound-state masses. The
binding is described by a new Schrodinger equatith|¥) = E|¥), where the Hamiltonian,

Hy, = Ho+ Hy |, is written in terms of creation and annihilation operators for the effective
particles,b{ andb, for fermions,d{ andd, for anti-fermions, andi{ anda, for bosons. This
effective particle picture is discussed in this thesis, and in this chapter in the context of bound
states.

Bound states in QED (small coupling constant), nuclear theory (form factors), and QCD

The key physical reasons for the hope thateffective constituent picturedoes emerge from
QFT can be understood by recalling what happens in the well-known cases of atoms (or positro-
nium) and nuclei (or deuteron). These systems can be understood in terms of constituents for
guite different reasons. The explanation of the difference is limited below to the positronium
and deuteron, but the two examples are sufficient to make the point that concerns all bound sys-
tems of fermions in QFT. In the Schrddinger quantum-mechanical picture of positronium, the
coupling constant that appears in the Coulomb potential is very small in comparison to 1, i.e.,
€? /4= a ~ 1/137. Therefore, the interaction produces quite small binding energy, of order
a?p/2, and theet e~ bound-state mass is dominated g2 The relative-motion wave function
is proportional to(a?p? + ||%)~2, independently of the fermion spins. When one extends this
picture by embedding it in QED, one finds out that the initial wave function is so small for large
momentap, that no significant correction is able to emerge from that region and alter the origi-
nal picture with the Coulomb potential. This is found by expanding the theory term by term in
powers ofa around the initial Schrédinger picture. The interaction linear (€oulomb force)
is sufficient to describe the main features of fermionic bound states in QED, and higher powers
of a are not important for theoretical understanding of the bulk of the bound state structure. Al-
though the integrals in the corrections run over the momentum range that formally extends far
beyondy, the coupling constant is too small for the relativistic fermion spin factors and particle
creation processes to produce any major modifications of the leading approximation.

In the meson-exchange models of the deuteron binding mechanism, the analogplirsy
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constantis three orders of magnitudarger than in QED. If one attempted to use QFT to
derive the Yukawa potential using the same strategy as in QED, and to calculate corrections, the
perturbative procedure would fail. The interactions would accelerate nucleons to the speed of
light almost immediately on the bound-state formation time-scale, many new particles would be
created, and the large momentum relativistic “corrections” would dominate the “leading” non-
relativistic terms. One could then ask why the famous one-boson-exchange (OBE) potentials,
such as the Yukawa potential with a core, could still be used in phenomenology of relativistic
nuclear physics and work self-consistently in the nuclear bound-state equations anyway. What
saves the picture of a fixed number of relatively slow nucleons interacting through exchange of
mesons from serious inconsistency when one includes the elements of QFT, is that the interac-
tions responsible for emission and absorption of mesons by nucleons contain form factors that
limit momentum transfers to values so small that the interactions are effectively weak, much
weaker than a change afin QED by the factor 1000 would imply. Consequently, the binding
energy is much smaller than the sum of two nucleon masses, e.g., about 2.2 MeV for deuteron.
The wave functions of such relativistic nuclear physics picture are not overwhelmingly extend-
ing into the large-relative-momentum domain because the form factors eliminate coupling to
that region, and the nonrelativistic Yukawa potential with a repulsive core is not invalidated
by huge corrections. It could not be so with bare pointlike fermions in local QFT, but it does
work in the phenomenological picture of effective particles with the form factors. Incidentally,
this example is not intended to suggest that nucleon dynamics should be completely derivable
directly from a local QFT that ignores the existence of quarks. A scenario for how to derive
the effective nuclear physics picture from QCD is discusse@]in{levertheless, the nuclear
physics picture does indicate that an effective particle dynamics may involve large coupling
constants in potentials that resemble perturbative second-order interactions with form factors.
In QCD, neither of the schemes can apply separately. On the one hand, the effective cou-
pling constant in the constituent QCD picture cannot be as small as in QED, because QCD is
characterized by asymptotic freedom, or infrared slavery. This meanththaftfective cou-
pling strength is expected to growwhen the scale of relevant momentum transfers decreases.
The coupling constant is already on the order of 0.1 at transfers on the order of 100 GeV and
it may be much larger for transfers on the order of nucleon masses. Therefore, the effects that
have marginal size in the eigenvalue problem for approxiHatep, such as spin splittings, are
expected to be much larger and more important for understanding eigenstetgsofind the
initial approximation is not as simple as in QED. On the other hand,cannot freely insert
form factors into the local Lagrangian for quark and gluon fields because it would spoil the
local gauge symmetry structure. The contact with QCD would be irreversibly lost.

Similarity renormalization group procedure and RGPEP

The situation is changed when QFT is approached using the idsandérity renormaliza-

tion group procedurdor Hamiltonians ], especially in the case of QCLL}|, and when one
combines the similarity idea with the concept of form factors in the Hamiltonian interaction
vertices for effective particlesip, 46]. Initially, the coupling constant is small due to asymp-
totic freedom and one can think of using the small coupling constant in canonical QFT to solve
the renormalization-group equations f& using a perturbative expansion. The method avoids
small energy denominators in the perturbative calculation entirely and the nonperturbative part
of the dynamics remains untouched in the perturbative calculatiot, of That way one de-

rives effective-particle Hamiltonians that involve vertex form factors of small width the
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interaction terms. One can have sizable coupling&hinwith smallA, as required by infrared
slavery, without losing control over the size of corrections to the leading constituent picture

in diagonalizing#, . The spectrum of such Hamiltonians can be sought numerically because
the form factors limit the range of momenta strongly enough for a discrete computer code to
cover the pertinent region, as in the nuclear physics case discussed above. This idea has al-
ready been studied qualitatively in a simple numerical matrix modglysing Wegner'’s flow
equation {2,73] (and its generalizations) and in7] using RGPEP. The more detailed effective
particle calculus used in the present work in the case of Yukawa theory, is already known to
produce asymptotic freedom jH, for QCD [74]. The new approach has been also extended to

the whole Poincaré algebraq] in QFT.

Scope of discussion

This chapter describes numerical estimates of the orders of magnitude of the interactions that
appear in QFT in the bound-state dynamics of two effective fermions ofsizeOur discus-
sion is based on and quoted.[ Yukawa theory is used to avoid complications related to gauge
symmetry (see, for example, problems described/) 76] and their resolutionq7]) while
one still preserves some of the singular large-momentum components in the spinor factors that
characterize fermions. The well-known issue of triviality in Yukawa theory is irrelevant here
since our goal is to estimate the size of corrections in the bound-state dynamics in an effective
theory, rather than in the ultraviolet (UV) dynamics of the initial QFT. The Yukawa example
serves only as a source of typical UV factors that QFTs provide anyway, no matter if the theory
is trivial, asymptotically free, or otherwise.

The key qualitative question is by how much the Hamiltorignderived in QFT might dif-
fer from familiar models, especially from the nonrelativistic Schrédinger picture with a Yukawa
potential (or a Coulomb potential in the case of exchange of massless mesons), for given values
of a andA. Another question is related to the fact that the exact solution of renormalization
group equations fof#f, and subsequent exact diagonalizatiof should lead to spectra that
are independent of. However, when one calculatgg, in perturbation theory of low order,
such as the second order that characterizes the Coulomb and Yukawa potentials, the depen-
dence om must appear. Bound-state energies may deperdwhenA is made too small or
o is made too large. The question is how large is the residwd@pendence of second-order
corrections to the Coulomb-like picture. Another question is how large is a range of values of
o andA that can be self-consistently (i.e., without significardependence) reached in lowest
orders of perturbation theory. The second question concerns two cases of perturbation theory.
One perturbation theory is fa#, itself in the renormalization-group part of the calculation.
The other perturbation theory is for the eigenvalues and wave functions in the bound-state prob-
lem expanded around the Coulomb-likasatz Both questions are addressed in the following
sections by describing estimates (foundai) [of the size of those corrections which are most
important for large momenta, and which would lead to divergences in the absehcelbé
results imply that the most dangerous corrections that might diverge in the absarcerobut
to be quite small even for sizable coupling constants.
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4.3 Distinction between the Tamm-Dancoff approach and
effective-particle approach

This section describes two light-front Hamiltonian approaches to the bound-state dynamics
that were considered ir?], the renormalized Tamm-Dancoff approach (approach 1), and the
effective-particle approach (approach 2).

4.3.1 Renormalized Tamm-Dancoff approach

This approach is represented by the following diagram,

£ 2 Hean: 5 iHA X2 D solve . (4.1)

(0) The initial step on the left denotes a canonical derivation of a field theory Hamiltonian
from its Lagrangian, quantization, and normal ordering with respect to the bare vacuum state,
and dropping all diverging terms on the basis of hindsight that the normal ordered Hamiltonian
will eventually contain counterterms of the same structure.

(i) The next step is regularization. To remove the artificial dependence of observables on
regularization, one has to add new terms to the Hamiltonian (called counterterms and denoted
X2) that also depend on the regularization. The regularized Hamiltor&p : +X~ is denoted
by H2.

(i) The last arrow indicates solving of the eigenvalue equatiofifor A two-step procedure
is used.

Step (a). First one finds eigenstatesHf whose dominant component for vanishingly
small coupling constants is equal to one bare fermion. These states represent what one could
call a physical fermion. The solution is found from the eigenvalue equation for the wHole
by reducing this equation with the help of operat®mo an equivalent equation for the Fock
component with one bare fermion. If one requires the eigenvalue to be finite, one has to include
in X2 a mass counterterm of a calculable form.

Step (b). Then, one makes a reduct®of the eigenvalue problem fdi2 to a two-bare-
fermion subspace, to find an eigenstate of the Hamiltoki4rthat is dominated by a pair of
bare fermions for infinitesimally small coupling constants. The parameters in the resulting two-
fermion eigenvalue problem are expressed in terms of the physical fermion mass found in step
(a) above. It turns out that the calculated eigenvalues still depend on the cutoff (some diverge if
A — o), although the individual matrix elements of the reduced two body Hamiltonian do not
depend on the cutoffs once one includes mass counterterms calculated in step (a). Therefore,
there is a problem of how to construct counterterms that would remove-tlependence from
physical results7g].

4.3.2 Renormalized effective particle approach
The procedure consists of three steps that can be represented by the diagram:
£ % Hean: 5t HA x5 W solve (4.2)

The steps (0) and (i) are the same as before except that one works with the bare creation and
annihilation operators for efficient bookkeeping for Hamiltonian terms at all times, instead of
storing a huge number of selected matrix elements‘f
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(i) This step, marked withJ, in the diagram, is made using RGPEM,[46, 74]. Hamil-
tonians#, are expressed in terms of the effective-particle creation and annihilation operators
that depend on the “width” parameferA ranges fromwo in H2 to a finite value on the order of
bound-state masses in the effective constituent dynamics. The Hamilt&giaannot change
invariant masses of effective-particle Fock states by more than abiou single interaction.

Thus, the emission of effective bosons by effective fermions is possible only if the associated
kinetic energy change of relative motion of the particles does not excgednsequently, when

is A small, Fock sectors with different numbers of effective particles are coupled weakly even
for sizable coupling constants, as in the nuclear physics example discussed &f.page

(i) This step is analogous to step (ii) in approach 1 and amounts to solving the eigenvalue
problem for effective Hamiltoniart4, . The key difference, however, is that when one works
using the basis of effective particles in the Fock space, states with two effective fermions couple
only to states with similar relative momenta. Therefore, the large relative momentum remains
suppressed, and it can be described using perturbation theory without assuming that the cou-
pling constant is very small. Thus, when one solves the eigenvalue equati®h fane can
introduce a new perturbation theory for the reduction opefdt@xpanded in powers off |.

This gives an equivalent Hamiltonian that acts only in the dominant Fock space sectors. There
are two steps to do, as in approach 1.

In step (a), one first considers eigenstates dominated by one effective fermion, which de-
fines a physical mass of a physical fermion in approach 2. Next, in step (b) , one finds an
equation describing bound states of two effective particlée parameter A is the key to the
procedure. Its value determines whether derivation of the effective Hamiltorfignand its
reduction by the operatioR to a model subspace Hamiltonian, denotedHy, is possible in
perturbation theory. The small@r the simpler the approximate solutions for bound states of
effective fermions, in the sense that they tend to reduce to the dominant effective Fock sector.
But if A is too small, step (ii) of the derivation ¢ in perturbation theory loses accuracy (the
perturbative integration of renormalization-group equations begins to significantly cut into the
bound-state dynamics). Thereforecannot be lowered too far using perturbation theory for
H, . The optimal choice ok is the one that combines the simplest perturbative expansion for
H, with the least complicated computer diagonalizatio®f The main criterion for choos-
ing the right range fok is that the calculated observables are not sensitive to variativowdr
that range (see alsdT)).

The final comment concerns Refs/982], where a different a bound-state calculus has
been developed using coupling coherence in second-order perturbation theory for Hamiltonian
matrix elements, also in the similarity scheme but without the constraint to a boost-invariant
unitary rotation of creation and annihilation operators (see &3e¥§]). In distinction from
these works, approach 2 is not based on the coupling coherence because no coherent structure
is knowna priori in the region of smalk, far from the initial canonical structure. Instead, one
uses a perturbative expansion for the effective-particle renormalization-group flow in terms of
a suitably defined coupling constant and tries to find out the relevant structures in a prescribed
basis, in which the expansion in powers of the coupling constant may be extrapolated to its
physical values. One should stress, however, that the renormalized Tamm-Dancoff approach in
Ref. [4], enriched with similarity and coupling coheren&J80,81], still remains an alternative
for nonperturbative studies.
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4.3.3 Reduction procedure

The following scenario occurs several times in the next sections. There is an eigenvalue equation
for a HamiltonianH = Hgo + H,

HW)=Ely) , (4.3)

which is too large to solve exactly on a computer in the sense that the numbeprajri
important basis states is infinite. One looks then for an equivalent Hamiltonian that acts only in
a limited subspace of states. One way of constructing the model subspace dynamics is to use
the transformatioiir [49, 44] (detalls of the transformation are given in Appendif).

The general idea is that one denotes the projection operator on the chosen subspace of the
whole Fock spac€& by P, and the projector on the complementary spacePlby O. If the
interaction HamiltoniarH, is small (in the sense that it only weakly couples states from the
subspac®F to states in the subspaG¥), then one can calculate an opera®that produces
eigenstates dfl from eigenstates of a new Hamiltoniklg that has eigenstates contained in the
subspacdF. The transformatiorR leads to the following expression for the Hamiltonida
acting in the subspadeF, expanded in powers of the interaction Hamiltoni&r(cf. Eq. (.7)).

. . o fa o a 14 ~ 1A
Heli) = (| (BHP+ ZPH P+ ZBH
<I‘ R|J> <I|( +2 lEj_HO I +2 IEi_HO

H|I5+...>|j>. (4.4)

Note that the Hamiltoniailr does not depend on the eigenvaluesipbut only on the eigen-
valuesE; of Ho, Ho|i) = Ej |i). In particular, one can defirtéy in conjunction with the subspace
PF so thatH, = H — Hg is as weak as one can get, whilst simultaneously retaining control over
the spectrum oHo.

4.4 Canonical light-front Yukawa theory

In this section, | present the derivation of the canonical light-front Hamiltonian of fermions
of two kinds interacting through a Yukawa coupling with scalar bosons. This is the common
starting point for both approaches (see Séc3.1and4.3.2 to a two-fermion bound-state
dynamics. | present here only key steps, stressing the places where this theory differs from the
scalarg® theory introduced in Chapté details are given in Appendi®.

4.4.1 Classical Lagrangian density

The starting point is the classical field theory with Lagrangian density:

. 1
L=T1; ('ﬂ—m—g(Pf)llJeri(au(Pfa“(Pf) , (4.5)

wheres is a doublet of fieldsp; = (P;,P,). My aim in Sectionst.5and4.6is to analyze
the bound state of two different fermions. | introduce the doublet of fermion fields to avoid
anti-symmetrization of expressions, and thus to simplify the model.

The Lagrangian consists of the kinetic term for two fermion fields of nmasthe kinetic
term for massless scalar boson figld and a pointlike Yukawa interaction of fermions with
bosons. Note that this interaction has a Yukawa form, in the sense that it involves the scalar
field @ and a product of fermion field§; ¢ . But, because the scalar field is massless, one
can expect that, if interaction of fermions can be described by some kind of nonrelativistic
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potential, it would be a Coulomb rather than a Yukawa potential. The first parenthesis)iis
diagonal in fermion indexes, 2. This means that this Lagrangian does not couple two families
of fermions directly: in perturbation theory they are coupled only in orders equal to or higher
than 2, for example, through boson exchanges.

Euler-Lagrange equations are:

(i0—m—ges)P; = O, (4.6)
oMoupr = —gPys . (4.7)

Using projection matriceA. = %yoyi, one can obtain fieldg s+ = ALY, and:

0 Wi = (i0ta’ +mB) b, + Bogpw . (4.8)

This is a constraint equation and has to be explicitly fulfilled. Accordingly, the full figld
does not have a simple, unconstrained Fourier expansion.

One can introduce free fields These fields consist of arbitragy, components and af_
components fulfilling the free constraint condition:

1
o =r-(g=0) = - (i0*a” +mB) y, (4.9)
The full free fieldy is?:
P=y_+y. (4.10)
The energy momentum tensor can be re-expressed using the relation

The part of this expression with the inverse of the longitudinal derivativeleads to the so
called “sea-gull” terms below, Eg4(15.
One can now state the canonical Yukawa Hamiltonian in terms of the free fields:

H = Ho+Hy+H+, (4.12)
12

Ho = & [axco(-02) @i ipy 0y (4.13)

Hy = g/d3x:EDL|J(p:, (4.14)

He = ¢ [ wcpmqw (4.15)

:: indicates normal-ordering.

4.4.2 Bare Hamiltonian; regularization.

One can now substitute for each of the fields its Fourier expansion, thereby introducing bare
creation and annihilation operators (cf. AppenBix | list below only the terms that re-occur
in later sections.

2 Note, however, that the mass parameter enters the free Euler-Lagrange equations, and so ¢renfiejds
depend on the mass.
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All the interaction terms require an ultraviolet cutdf In normal ordering, the three-
particle creation and three-particle annihilation terms (similar to those indg8p)) are dropped.
This can be seen as introducing a small cutoff onghenomentum of each particle. However,
for the Yukawa theory, a smak-cutoff is also needed after these terms have been dropped,
irrespective of whether the fermions are massive or not. This is due to two reasonsHy-irst,
involves spinor factorsiu. On the light-front these involve™ momentum of a fermion in the
denominator (cf. Eq. §.60) in AppendixB.4), and this leads to divergences in integrations
over the fermionp*. Second, the seagull term involves the exchangeanomentum in the
denominator, because of tA& in Eq. 4.15.

The full canonical regulated Hamiltonian for this theory is thus:

HA:HO+HYA+H_%+XA7 (4.16)

whereX?2 is an unknown counterterm to be calculated from RGPEP equations.
The free Hamiltonian is

Ho = /[ k+akak+z/[p

Here,i indicates the kind (or “flavor”) of fermion (1 or 2 is the fermion polarization; araf,
b" andd" are boson, fermion and anti-fermion creation operators, respectively.
The Yukawa interaction tern#(14) is

J_2
+ me
( ol + déc),*dé,c),) (4.17)

Hy = 92/ pkl]2 2T[ pcreated_ Pannihilated) X

onl
(i -
< [albpo' bl H)Upouln + aldgc)rbfh)vpcu akdln dpoVpoVin +
D). — Dt )T, T
+be bir aipotin + by ) alipevin — ot ddapovin|ras . (4.18)
This expression contains terms that can cause the following transitions: fermion into fermion+bosor
(boson emission from a fermion), fermion+boson into fermion (boson absorption on a fermion),
analogous transitions with for anti-fermions, fermion-anti-fermion annihilation into a boson and
boson decay into fermion-anti-fermion pair.
r'as IS @an ultraviolet and smak-regulator:

2
ras = exp( ) rs(x1)rs(x2) - (4.19)

In this expressionk" indicates the relative transverse momentum of the two particles created
or annihilated, andc indicates the relative longitudinal momentum. | leave xheegulator
unspecified, requiring only that it cuts off smoothly angmaller thard. The seagull term does

not contribute to the bound-state calculation described below.

4.5 Tamm-Dancoff approach — bound states of two bare
fermions

This section reviews the renormalized Tamm-Dancoff procedure for two-fermion bound states.
| begin by examining the single-fermion eigenvalue problem, and then proceed to the two-
fermion case.

MAREK WIECKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. ..



58 Resolution of overlapping divergence problem in bound-state dynamics of fermions

4.5.1 One-fermion eigenstates

The one-fermion eigenvalue equation is obtained by assuming that the coupling constant in the
theory is infinitesimally small and the dominant part of the eigenstate is provided by a single
bare-fermion Fock state. The quantum numbers of the lowest-mass eigenstate correspond by
definition to one physical fermion associated with the fermion field in the initial Lagrangian.
When the coupling constant is no longer infinitesimally small — it is made finite and grows — the
eigenvalue equation cannot be solved exactly with currently known mathematical methods, and
one has to investigate results that follow from various attempts to find approximate solutions.
One such attempt is made by reducing a cutoff dynamics to the one-bare fermion Fock sector
for finite coupling constants also. Here, the projection operator in the op&étee Secs.3.3

and Appendix).2 has the fornP = ch[p]bfoly()jT |0) (O b&()j. For finite cutoffs and sufficiently

small coupling constantg, one uses expansion in powersgfo evaluate the corresponding
HamiltonianHg. Up to orderg?, this leads to an equatidir |K) = P~ |K), with

k-2 4+ m3 k24 m?
P_=g+xff =! k—+f,

o (4.20)

Wheremi results from emission and re-absorption of bosons Ydndis contributed by the
counterterm proportional t'b. Sincem? is a diverging function of\, X+ has to be adjusted
to remove this effect. Note that should not, and does not, depend on the fermion momentum

component&™ andk’ even in the presence of regularization (cf. discussion in 8.
The result 4.20 for mﬁ requires a counterterm of the forim:

T (i)
Z / pcr pcr p+ 16T[2 [ /dX—r5+4m2|Ogm2—|—C (4.21)

where the constar@ is a finite part of dimension?. This condition removeA-dependence
from the physical fermion mags; in the limit A — oo,

45.2 Two-fermion bound states

The reduction procedure described in Sectidh3can be used to reduce the eigenvalue equa-
tion for H2 to a two-bare-fermion Fock sector. This employs a projection operator:

P= 5 [ Iprpeloi”"o5"|0) (0]070i (4.2

0102

Note that the two fermions are selected to be of different kinds. This leads to an equation for an
eigenstate oHg, which can be written as:

Po) = [ [p1pelP* (210°8°(P — p1— Po)o(pr PR b 10, (4.23)

3In this thesis | include a regulating factor for each created particle. This introduces regularization in terms with
different number of particles in a unified way. For example, in each Yukawa vertex there is a fa¢toReX\?).
However, in the original pape] on which this chapter is based, corresponding regularization factors were chosen
to be exg—«k2/A?). Therefore, for example, the quadratically divergent partda?1) differs by a factor 2 from
the one shown inZ].
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(a (b)

Figure 4.1. Two kinds of terms in one-boson exchange potentials. Followijgthe initial
(rightmost), intermediate, and final (leftmost), states are denotez] lpyanda, respectively.
For example, in diagranta), pi, = p{, Pi. = P4, ba= M3, —n?, bc= M3, —n?, and
q-=ps.

The eigenvalue equation can be then written in terms of the two-body wave fupegtion p2) =
@y (K) (whereo denotes spin quantum numbers of both fermions {01, 05}; for a definition
of ks that formsk together withk-, see AppendiB.2.1):

K K+ d Vose(0,0,k,K) (R’)—M (K) (4.24)
mf(po ;(2")3 \/TEK’ OBE\U,0 , K, (Po’ — 4mf (Pcr 3 .

whereky = (E2+ mz)l/2 and the potential kernebgg corresponds to the terms shown in Figure
4.1 (discussed below?.

Note the massns in Eq. @.24) is the physical fermion mass obtained from the earlier
reduction to one-bare-fermion space, E4,2(0). Expanding the bare massin the integration
measure facto(ElEg)_l/ 2 and potentialoge in a series of powers aj aroundm, leads to
an equation featuring only the physical mass In this way the bound-state dynamics for
two bare fermions is related to a physical fermion mass parameter. This step connects the bare
fermions in the two-body problem with the physical fermion obtained in the one-body reduction
discussed in Sectiof5.1

In the discussion of the two-fermion eigenvalue equation below, | denote the single-fermion
mass eigenvalum; by m (i.e. | drop the subscript) for the purpose of simplification. The
two-fermion bound-state masé:, can be rewritten ab¢,; = 2m— Eg. WhenEg < m, the
eigenvalue takes the fortM?,, — 4n?)/4m= —Eg + E3/4m~ —Eg. Thus, the eigenvalue on
the right-hand side of Eqi(24) can be thought of as the binding eneigy.

Since the regulator function, respects the kinematical boost invariance of the light-front
scheme, this equation is independent of the total momentum of the two fermions. There is also
no explicitA-dependence in the matrix elements of the potemgigk in the limit A — oco:

_ O Urlalus (Pp, | P N
2 q+ ba bc Fig.4.1a
+the sam@ig.4.1p , (4.25)

lim VOBE(O'10'20304kk/) =
NA—o00

wherea = g?/4m (see caption to Figt.1and AppendixA.3). The spinor matrix elements are:

4 Choosing two different fermions eliminateshannel terms, that could occur in the bound state equation for

a fermion and an anti-fermion of the same kind. However, even her?,t’hé term would be less important,
because of a denominator of order of fermion masses.
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N T 3 Lol ol
iUy = mxl[m(lerxz) 0°0— (x1ky — X2k )]X2, (4.26)
wherex = [1,0] or [0, 1], depending on the fermion-spin projection on #axis (see Appendix

B.4).

The potential 4.25 is a complicated, nonlocal function of fermion momenta. However, in
the region with both momentak’ < m, it simplifies to the well-known Coulomb potential (see
AppendixJ.]),

1
(k—k)2
Unfortunately, this heuristic result is not meaningful as the region of the large relative mo-
menta of the fermions introduces important corrections. In BRY one can see that, when
one of the relative momenté 6r k') is much bigger than the other, and much bigger than the
fermion mass, the spinor factors become proportional to the larger of the two momenta. For
example, ifk' > k,m, one obtaingiu ~ k', and two such factors compensate the denominator
that grows ak’? [87]. The potential becomes a functionf andxy, being a constant in the
transverse momentum directions. A constant potential in the transverse momentum space is a
two-dimensionab-function potential in configuration space. Such potentials with a negative
coefficient lead to bound states of infinite negative energies in the nonrelativistic Schrédinger
equation; the light-front transverse dynamics is of this type. One could try to rely on the reg-
ulatorsra with a finite A to resolve the problem: this would correspond to smearing odthe
potential in position space. The eigenvalues of the equation would then depAn@®oe could
naturally try to make the coupling constantlepend o. However, the interaction is specific
to the Fock sector under consideration, and is much more complicated &ametion itself,
due to the presence of the additioxaliependent factors. It is unlikely that a changegdb
a function ofA can remove the cutoff dependence from all eigenvalues. Seeking subtractions
cannot be based on exact solutions, because we do not know them.

The two-body equation as it stands is not convergent in the large-relative-momentum do-
main, and the cutoff dependence invalidates the nonrelativistic approximation as a means for
seeking a conceptually satisfying solution of the divergence problem, especially for sizable
coupling constants.

The calculation described below illustrates how the overlapping divergence problem arises
in approach 1 in a quantitative way. The potential in the nonrelativistic regi@ranflk’ small
in comparison tan has the Coulombic form. One can ask therefore with what accuracy Eq.
(4.24) can be approximated by a Schrodinger equation with the Coulomb potential (given in
AppendixJ.]). The potential can be rewritten in the form:

VCoulomb= —4TM (4.27)

VOBE = Vcoulomb+ AV (4.28)

and corrections induced Iy estimated in perturbation theory. The Coulomb potential does not
depend on spins of the interacting fermions. Thus, in zeroth order of the bound-state perturba-
tion theory, there are four degenerate states with the lowest Mhassl identical momentum-
space wave functions: a triplet of spin-1 states, and a singlet of spin 0. For details of the
degenerate perturbation theory for this case see Appdé&hdix

To estimate the first-order energy correction, one has to find eigenvalues ot thendtrix
of matrix elementgygi| AV \quJ-}, wherei and | refer to the different spin configurations. The
eigenstates of this matrix have the spin structgte:+ |1), (T/ — |1), 17 and||. The lowest
mass eigenstate {§| — |7). The fist-order correction to the Coulomb energy for this state
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varies between numbers of the order-e6 x 10~°E, for a = 0.01 to —0.1E, for a = 0.6°.

Note thata is also present in the wave functiagy and the results are not connected by a
straightforward multiplication by the ratio of the coupling constants, although both results are,
indeed, small. For anm greater then ®, the first-order correction would remain relatively
small, but the second-order corrections would become unacceptably large. Accordingly, an
significantly larger then @ is not discussed here.

In the second order, a convergence problem in the domain of large relative momenta of
fermions destroys consistency of the naive perturbative procedure around a nonrelativistic ap-
proximation. To make it transparent, one can introduce a number of simplifications and isolate
the origin of corrections that grow with without worrying about details of secondary impor-
tance. Importantly, the Coulomb basis functions have quickly falling-off tails in momentum
space. The tails are still small but greatly enhanced by first-order corrections, and the second-
order correction already involves matrix elements that diverge with the atoff

To see the origin of the overlapping large-relative-momentum divergence in the second-
order energy correction, one needs to analyze matrix elements of the type:

Eo—Ho— VCoqumbAV|(po> ‘ (4.29)
Such elements involve integration over four relative momenta of fermions: the leftmost wave
function argument denoted iy, the momentum of states between the fefiand 1/ (Eg — Hp —
Vcoulomb» denoted bypj; the momentum between the operatd(By — Ho — Vicoulomn and right
Av, denoted byp,; and the argument of the right wave function, denotedkbyThe matrix
element can be split into a sum of garts, with each part distinguished by indicating whether
each of the four integrated momenta is greater or smaller than the fermionmass,

Since the Coulomb wave functions strongly limit their arguments, a partigvehdk, large
makes a very small contribution compared to the part Witgmdk, small. Therefore, one looks
for important contributions, assuming thatandk; lie within several widths of the Coulomb
wave functions. Arad hocnumber used in Ref2] was 4xm.

Moreover, there is no bound-state wave function limiting the intermediate morpeatal
pr, and integrals over them extend up to the cutbff> . Eq. @.26 shows that, for large
momenta, the spin-flip part of the potential dominates other parts. This dominating part is
selected here and denotedMy;; the fermions have opposite spin orientations and both have
their spins flipped in the interaction. For the purpose of estimating the order of magnitude of
the large-momentum spin-flip contributiop, and p; are considered larger tham and(Ep —
Ho —VCoume*l is replaced by-1/Hp, neglecting terms that would vanish when— 0. The
resolvent then becomes diagonal in momentum spacepaadp, are commonly denoted by
ko. Details of how the cutoffh was initially introduced are not important for the estimate of
the order of magnitude. Accordingly, the cutoff function was slightly changed to simplify the
integration: the initiakp limits changes of invariant masses in each of the vertices @i,
producing a complex shape of tkgintegration boundary with details that depend on the small
momentak; andk,, irrelevant to the divergence issue at hand. The main role of the cutoff in
AE® is to provide an upper limit on the range of integration oker One can estimate the
size of the large-momentum range contribution by introducing a new dkggff equal to the
maximum value thak, can take, and lelkmax — «© whenA — «. Dependence okmax Will
indicate dependence d@dn

5The numbers given here are slightly larger then given in Rgbécause in the meantime we have improved
accuracy of our numerics.
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Figure 4.2: The shaded area represents the range of integratioh?ﬂmd|ﬁz| in Eq.@.30
with the potential matrixav,; (k, k). In the lower right-hand corner, both momenta are equal
to zero.

To summarize, the large relative-momentum part of the second-order energy correction can
be estimated using the following expression (the tilde indicates the simplifications made in
AE2):

4°‘md3k1 kmaXd3k2 4oxmd3k3 1 - o
_AEE n12/ ky)Avr | (K, Ko)—Avs | (Ko, Ka) o (k
5 \/— @o(ka)Avy | (ka Z)HO 11 (K2, ks)@o(ks)
(4.30)

The range of integration ovép in this expression is shown in Fig.2. Since the potentidlv;
approaches a constant for>> m, one can expect a logarithmic dependencAB® on kmax

kmaxd‘?’k
/ E—zAv”(kl,kz) Av; | (Ko, Ks) ~ |og@ (4.31)

m

A numerical evaluation of the 12-dimensional integral produces an estimate of the actual size
of the logarithmically diverging correction. The results for different values of the coupling
constant are given in Figure3; the error bars indicate the standard deviation of a Monte Carlo
routine used in the computation. No other parts of the second-order two-fermion bound-state
mass correction (parts with external momenta bigger ttoam, 4nternal momenta smaller than

m, or parts without change of the fermion spins) can compensate this divergence. Note that the
corrections can quickly reach the order of 10% for coupling constants of the size expected in
qguark physics when the cutoffs are made larger than 100 quark masses and they continue to
grow.

4.6 Effective particle approach — bound states of two effec-

tive fermions
This section briefly reviews the RGPEP for deriving Hamiltoniafysfor effective particles of
sizeA~ L. It then appliesH, in the Yukawa theory to a bound state of two effective fermions. In

the presentation | refer to certain steps described in the previous section, and apply them now
to the bound-state problem. | point out the key differences between the bare particles and the
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Figure 4.3: Dependence of the most singular part of the second-order correctiod.@)).dn
the cutoffkmax. This correction diverges logarithmically for larggax even for small coupling
constantsi, though the matrix elements of the two-body Hamiltonian do not depenig,gn
for momenta smaller thakinax.

In the bare Tamm-Dancoff approach, physical results should be obtainedsirrg 4, in the
limit A — oo.

effective particles, that lead to the two-effective fermion dynamics that converges in the region
of large relative momenta.

4.6.1 Renormalization group for effective particles

The RGPEP is defined by means of a unitary rotation for creation and annihilation operators
[45,46]
bl =U,b'U; . (4.32)

The Hamiltonian can be expressed in terms of both sets of operhtors, b!, and each has
different matrix elements in the Fock space basis built using the operators of each kind. There
is no change in the physical content of the theory. The idea of the rotati8) (s that the
Hamiltonian expressed in termslof (i.e., the effective Hamiltonian of widtk, #4, ) contains

vertex form factorsf, of width A in all interaction terms. The choice made here for estimating
the large-momentum contributions to bound-state dynamics of effective fermions, is:

M2 . M2 . 2
fba:exp<—< created )\4ann|hllated> > , (4_33)

whereMcreatediS the total free mass of all particles created by a given terff imndMannihilated

is the total free mass of particles annihilated by the term. This choice is based on the results
obtained so far for asymptotic freedom ) ocp [15] and Poincaré algebra in scalar theory
[39].

If the unitary transformatiold, were known exactly, there would be ha@lependence in the
spectrum of#, . But whenU, (and#, ) are calculated in perturbation theory, the approximation
leads to some residualdependence of theoretical predictions for observaflbe.sensitivity
of the results to variation of A is a simple test of how large the errors are in the perturbative
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expansion for # , on top of the error margin resulting from the approximations used to solve
the Schrodinger equation with H . On the one hand, one triggetalown to as smallA as
possible so that the nonperturbative diagonalization will require the smallest possible range of
energy scales to handle explicitly, using a computer. On the other hand, one expects that the
errors arising from the use of perturbation theory in evaluafiQgwill grow asA is reduced,

and so\ should not be too small The reason for this is that,Af— 0, the Hamiltonian becomes
almost diagonal, which is equivalent to solving the nonperturbative dynamics of bound states,
and a perturbative calculus fg#, must fail at some point beforebecomes equal to the scale

of the nonperturbative phenomena.

4.6.2 Effective Hamiltonian for Yukawa theory
Effective Hamiltonian — Zeroth and First order

When one evaluates the Hamiltonian for effective fermions, the only change in the zeroth-order
Hamiltonian (free part, ordey®) is that the bare operators suchtéb are replaced bp{bA. In

orderg!, the effective Hamiltonian has the form:

X
p1 A

2 _ K2 M2 . — P 2
ﬂm&“”zg_;mzcz / [plpzq]53(p1—pz—q)e><p< A'Zz’q)ra()(ﬁ)eXp - Mg 7). ]

[aq)\ bE)z)sz b(piclkup?l@uplcl %dpzczxdél)cl)\valvpzcz +he } - (4.34)

Note that expressinig's by b, ’s has induced the form factdy, in #, (expression4.34) comes
both from first-order unitary rotatiod, of Hp and zeroth-order rotation dfly; this is not a
rotatedH, only). This form factor means that the regularization facipodepending o\ is
equivalent to 1 whe /A — oo; it can therefore be omitted from this expression.

Effective Hamiltonian — Second order: Mass term

When one calculates the term ##, of orderg? that containsb{b;\, one finds that it contains

a mass-squared-like term with a diverg@ntlependence. A counterterm must be added to the
initial Hamiltonian that has exactly the same forthq1) as in approach 1. The form of the
effective mass term ity is then (in the limitA — oo):

o]
Hhn= [ 10]n (4.3
where
© 1 et 2(z—mP)?
e = 161'[2 dz; (1+—+ ) p[—%} + const (4.36)

Note that the renormalization is carried out now at the level of full theory in the whole Fock
space, not after reduction to a specific Fock sector (accordingly, there are no sector-dependent
mass counterterms). Since the regulators did not violate any kinematical light-front symmetries,
the calculated mass term does not depend on particle momentum. In other words, the relativistic
form of the dispersion relation does not change, and there is only a change in the value of the
effective fermion mass.
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Effective Hamiltonian — Second order: Potential term

Second-order terms i, that contain two creation and two annihilation operators for effective
fermions do not contain any dependencedomhenA — o, and no counterterms are needed of
such form. Therefore, the complete answer for these potential terms is:

(2 D212 () T
Howtoy = Y / [pP2papalb s b2 b2 b &3 (py + ps — P2 — pa)
01020304
XV;Z)(IOL P2, P3, P4,01,02,03,04) , (4.37)
where
—g?UquolsU
V§\2)(p1 ...P4,01...04) = % facF2(a,b,C)|Fig.4.1a +the samiiga1n,  (4.38)

and %(a,b,c) = [(xba-+ (1-y)b)/ (be +b)] (foafoc— 1), with x = py /(p} + p§) andy =

p3 /(P53 + P3 ). The notation used is that of Fig.1, as for approach 1. However, the poterftial
vy, is quite different from the OBE potential of Eg4.25: for example, the denominators are
different and there are key form factofg.. Other term in the effective Hamiltonian do not
matter in further discussion.

4.6.3 Solving the eigenvalue problem with#,

In the case of bound states of two effective fermions, the reduction procedure is based on the
same rules as in the approach 1, except that the effective particles interact with vertex form
factors of widthA and the large-relative-momentum convergence is improved. The change of
particle number is also severely limited in strength, since massive particles cease to be pro-
duced wherh is lowered below their mass. Even the emission of massless scalar particles is
severely limited. As in approach 1, the departure point in solving the bound state dynamics is
the eigenvalue equation for a single fermion.

Reduction to one-effective-fermion subspace
This step produces an equatidg|k) = P~ |k), where

G

(4.39)

andm? is the physical fermion mass of the same value as in the approach 1, by definition. It
comes out independent &by virtue of adjusting once and for all the mass-squared counterterm
in H2. The same adjustment involves fixing the free finite constant in EQ6(so that, for

a certain value oh = Ag, the physical fermion mass eigenvalog equals the value found
experimentally. Interestingly, the same eigenvalue is subsequently obtained for all values of
A automatically and the physical dispersion relation satisfies all the requirements of special
relativity. This is the simplest manifestation of the general rule that physical results should be
independent oA.

6Note thatv denotes here a potential, not a single spinor of an antiparticle.
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Figure 4.4: The reduction of effective QFT (a) to relativistic quantum mechanics in a model
subspace (b) is possible in approach 2 due to the form factors in the effective interaction vertices.

Reduction to two-effective fermions

Using the transformatioR to reduce#, to the two-effective-particle subspace without restric-
tions on the relative momenta, one obtains a quantum mechanical interaction that can change
the invariant mass of the two particles by a certaiif, and only if, the interaction acts more
than/A /A times. Thus, approach 2 produces an effective Hamiltonian that is free from the over-
lapping divergence problem discussed &8][ and in Sectiort.5in approach 1. However, in
order to make a connection with the nonrelativistic two-particle Schrodinger quantum mechan-
ics that was not available in approach 1, one now needs to limit the relative momenta in the
effective two-particle Fock sector to< z (wherez is a new parameter required for defining
the new operatiolR that enables one to define the procedure of introducing the nonrelativistic
limit).

Accordingly, we define a new transformatiBthat leads to a model Hamiltoni&i#g. This
Hr acts only in the subspace of the two-effective-particles Fock sector with limited invariant
masses (Fig4.4). Not only the number of effective particles is limited, but also the range
of their relative momenta. It is required thidk has the same spectrum of low-lying energy
levels asH, has in the whole space. This step is no longer related in any way with the infinite
renormalization problem as in the approach 1. The existence of such reduction is plausible only
because#, has a small width.

The projection operator used here in construckig

P=2 / [papeJoly b5 [0) (0] by by 9<Z—!R\) , (4.40)

0102

wherek is the relative momentum of effective particles of momeptaand p,. Although
introducingz is useful from a conceptual point of view, the form factdgsimply that z is
not important in practice, see Fig.4.

The effective Schrddinger equation has the form of E4424), with voge replaced by a
new potential, denotewk, , the sum of two terms (Figt.4b). The first term is the projection of

}&Aé%bb, cf. Eq. @.37), on the two-body space restricted hyThe second term comes from
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OpplAv, [T Eq

A

Figure 4.5: First-order correction to the ground-state binding energy as a functirioof

z= oo, which shows the magnitude of corrections to the well-known Schrddinger equation with
a Coulomb potential expected in the approach 2 in QFT. AHagis of the plot starts at =
0.01mg¢, and not zero, because the computational method used here is not applicabie@or

the one-effective boson exchange (OEBE), and has a form simildrag (

VOEBa(01020304RR’) L f\UrUp fmgu41,i (p—g"" + p_grc) +the sam@:ig.4.1p
2n¥ qt\ba  bc/rga1a s
(4.41)
except for the form factors, in vertices and the overall limitation of the momentabjnot

indicated explicitly in Eq 4.41)]. Both of these terms (i.e., the projection jb&Aé%bb and
voese) behave foik, k' < mlike the Coulomb potential4(27), with form factorsf, that limit
the changes of the fermion kinetic energies.

One can approximate the Schroédinger equation with this QFT potential by the equation with
a Coulomb potential plus a correction, and one may estimate the size of the correction using
bound-state perturbation theory. For this purpose, the difference between potegtiatsd

Vcoulomb IS denoted byAv,. The first-order correctiomEil) = (@] AV, |@0), is a function of

the parameters andz. A numerical calculation confirms that far> A there is no noticeable
z-dependence of this matrix element. Figdr® shows how the matrix element depends on

A for z= . As expected in Sectiod.6.1for small A, there is some\-dependence in the
result. It appears because, when lambdas are too small, the similarity fgcstast to limit the
Hamiltonian in the momentum region that is important for the bound-state formation, and the
derivation of #, cannot be carried out precisely using the perturbative renormalization group

procedure down to so small lambdas. Wheandz are large enough, the correctimEA(l)
tends to a finite value that depends @n This happens because the wave functprhas a
width a = ap (see Appendix].]) and limits the integration over both momenta in the matrix
element(@| Av), |@0). As shown already in Sectioh5.2 the first-order correction is small for
small coupling constants due to the fast fall-off of the Coulomb wave function at large momenta,
independently of the details div that one obtains in the approaches 1 or 2. The correction is
small even for a divergent potential such asfanction.

We now look at the second order of the bound-state perturbation theory to check the self-
consistency of the effective-particle picture and to compare it to approach 1. To demonstrate

MAREK WIECKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. ..



68  Resolution of overlapping divergence problem in bound-state dynamics of fermions

AE,@ 1 E,
0.06 —

0.05
0.04
0.03
0.02 -

001+ £

0 &8 .
0 20 my 40 m¢ 60 mg 80 my 100 m
A

Figure 4.6: Dependence of the large-relative-momentum contribution to the second-order
bound-state mass correction sdnfor the cutoffA (or kmay sent too. When one works with
effective fermions, cutoffs can be senttdor any given value ok. This feature is not available

in the approach 1 for bare fermions, as shown in&R).

In the effective-particle approach, physical results for a two-fermion bound state should be ob-
tained using\ on the order ofns, or other momentum scale physically relevant for the binding
mechanism.

that the effective theory does not exhibit the consistency problems faced by approach 1 (see
Fig. 4.3), one can follow closely the derivation of Eq4.80), but now with the OBE potential
Voge replaced byg,. Again, one may investigate whether there is a logarithmically divergent
dependence okmax

It turns out that, for finite values of, there is no such divergent dependence. One can
safely take the limikmax — o0, sinceA itself already cuts off sums over intermediate states in
the correction,

—AE (R)(kl)AVN)\(kLKZ) AVw\(kzaka)(PO(kﬂ '

(4.42)

Here,Av; |, is defined similarly taAv; |, but with voge replaced byg,. Numerical results for
this matrix element for different values af(and for the cutoffmax~ A — ), are shown in
Fig. 4.6.

Two important points should be noted. First, the results in4igcan be considered a good
approximation to the whole second-order correction onlyMor m (i.e. in the right part of
the figure). IfA is comparable tan, the similarity factorsf, limit the potentialvg, and the
high-low and low-high corners of the potential matrix (FMg2) are practically eliminated. The
correction coming from the large momentum region selected in the integration i EBg) i€
therefore also reduced and the other of thea&rts of the whole correction can contribute more
significantly than they do for large lambdas. Hence, for small lambdas, the results given in
Fig. 4.6 are not necessarily a good approximation of the whole second-order energy correction.

Second, in practical work, one needs to loweas far down as possible, possibly below
Thus, Fig.4.6 provides only evidence for the consistency of the effective fermion dynamics in
which the convergence in the large-relative momentum region is secured by the presence of
and the original QFT cutoffs can be safely sent to infinity. Additional analysis can be found

/4amd3k1/ d3k2 4O(md3k3
0 VE3
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in Ref. [2].

4.7 Summary of the mechanism of removal of divergences by
RGPEP form factors

Let me summarize the two approaches to bound states of fermions. | used the example of the
bound states of two fermions in the Yukawa theory.

Approach 1 starts from the sector of two bare fermions. This approach leads to overlapping
divergences in the light-front Hamiltonian dynamics and lacks consistency in its handling of the
large-relative-momentum region, when one attempts to send the bare cutoff to infinity without
including infinitely many bare particles. It is possible to remove this defect through sector-
dependent counterterms, but the required construction of the full renormalization group triangle
with growing numbers of bare particles is both highly complex and not fully understood. The
basic ultraviolet problem arises from short distances in the transverse directions, and no prac-
tical tool yet exists for handling huge numbers of bare particles with the precision required by
the rotational, parity, and other symmetries of the initial Lagrangian.

Approach 2 is free of the difficulties connected with the large-relative-momentum conver-
gence. In this approach description of the bound state starts from two effective fermions. The
decisive convergence factor is introduced by solving renormalization-group equations for ef-
fective particles. This solution includes form factors of widtin the interaction vertices, and
these form factors suppress the large-momentum domain. This can be verified by numerical
estimates. The well-known one boson exchange (OBE) potentials that are deduced from the
on-shell S-matrix elements are replaced by new one-effective-boson exchange (OEBE) and ad-
ditional interactions that are derived in the Hamiltonian. One can also take advantage of a sub-
sequent S-matrix calculation in choosing free finite parts of the counterterms (this is discussed
in Chapters).

The accuracy of this approximate treatment can be estimated by inspecting the variation in
results if one changes the renormalization group parametén exact theory would exhibit
no dependence ok; in the approximate treatment, the variation depends on the size of the
coupling constants.

For a smaller than about.B, there is a wide range of lambdas in the Yukawa theory with
massless bosons, in which the results for the two-fermion bound-state mass are stable and do
not differ significantly from the results of a nonrelativistic Schrédinger equation with Coulomb
potential. These values aof can be called nonrelativistic. Faor larger than about.3, one
has to allowA to grow to the size of the order af; to achieveA-independence of the cor-
rections to the bound-state mass. This means that relativistic momenta do, in fact, matter, and
the nonrelativistic Schrodinger equation is not a good approximation of the effective dynamics.
Still, the effective theory is well contained in the range determined,land one may look for
solutions of the eigenvalue problem without making a nonrelativistic approximation. For the
first-order bound-state perturbation theory, corrections to the nonrelativistic approximation are
quite considerable, while the large-relative-momentum region in second-order corrections con-
tributes only about 10%. Being limited By it does not introduce any diverging contributions
and one does not — and should not — attempt sendtognfinity, in contrast to the cutofh — oo
in approach 1.

The light-front form of Hamiltonian dynamics enables us to separate the relativistic motion
of bound states from their internal constituent dynamics. Thanks to this separation, one can
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reduce the description of the binding mechanism to the Schrédinger equation for internal motion
of the constituents without choosing a specific frame of reference. All eigenvalue equations
derived here, in both approaches, are independent of the total momentum of the states they
describe. Thus, the boost symmetry allows us to understand moving bound states in arbitrary
motion as soon as we understand them at rest. This is not possible in the standard form of
Hamiltonian dynamics.
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Chapter 5

Covariance of scattering amplitudes
calculated with an effective Hamiltonian

5.1 Introduction

Scattering experiments play an important role in the development of the theory of particles.
These experiments provide the only way to probe directly the inside of hadrons and perhaps
even leptons and gauge bosons. The main tool for describing scattering processes in pertur-
bation theory is Feynman diagrams, whose invention, renormalization, and application in the
standard model is one of the greatest triumphs of the theory of particles — a quantum approach
that satisfies the principles of special relativity as long as interactions are weak and bound-state
dynamics is of secondary importance. Therefore, any attempt to construct a Hamiltonian ap-
proach that aims to naturally include the bound-state eigenvalue problem must also match the
success of Feynman diagrams in the perturbative domain of scattering phenomena. The analy-
sis of Hamiltonian approach presented here does not fully rise to the challenge of verifying if
the Hamiltonian approach can produce covariant results to all orders, because this analysis is
limited to calculations of order not higher than the third. It is analogous to one-loop level in
Feynman’s approach. I also limit my calculations to the simplest asymptotically free theory that
could be considered. Nevertheless, even the challenge of the third-order calculations — to obtain
the covariant results with non-covariant Hamiltonians for effective particles that have form fac-
tors of small widths in three-dimensional kinematical momentum space in interaction vertices
— turns out to require extensive studies in an entirely new calculational scheme for Hamiltoni-
ans. | should stress that the loops one obtains in the calculation of a Hamiltonian operator itself
are different from the loops that occur in Feynman diagrams for scattering amplitudes. The
difference originates from the choice of light-front kinematical momentum variables and spe-
cial non-covariant regularization factors specific to RGPEP. Moreover, the initial Hamiltonian

is regularized once and for all of its vertices. The effective Hamiltonidns$have vertex form
factorsf, that cannot be freely changed or adjusted, and the only freedom left is hidden in the
counterterms itd? that have to repair the damage to explicit covariance introduced by regular-
ization of the Hamiltonian operator. In fact, it was not clear when | began this research whether
any Hamiltonian approach could actually produce covariant results in a similar procedure as the
one outlined in the simple model of ChapfrBut the principles of RGPEP appeared conser-
vative enough so that one might ask the question: Can one regulate a canonical Hamiltonian of
any theory (even a ridiculously simple one, treated only perturbatively, but preferably asymptot-
ically free), apply the principles of RGPEP, and obtain a covariant answer for an amplitude that
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even remotely resembles standard Feynman results for amplitudes sidTas hadron®

The answer to this question turns out to be positive, as described in this chapter. But the
description that follows cannot, unfortunately, be brief, and must start with rather basic de-
tails, since it was necessary to regulate the entire theory in its Hamiltoniaratminitio, and
the loop integrals obtained could not be regulated in a way that was as convenient for mak-
ing Wick rotation as dimensional regularization is. | never encounter Wick rotation, because
the unregulated integrals ki are not the same as integralskh! It was necessary to step
back to the Lehmann-Symanzik-Zimmermann reduction formalism and carry out all steps of
the LSZ formalism with explicit control over all regularization effects, keeping track of Hamil-
tonian counterterms and tracing how many terms combine and how they combine in the RGPEP
scheme for Hamiltonians to a covariant answer.

| will begin by listing the issues that the calculation presented here involves.

Scattering processes in QFT

The most important complexities relate to the fact that the scattering of strongly interacting
particles in fact involves bound states rather than the free particles. This means that one cannot
limit the calculation to perturbation theory alone. While in the first approximation most prob-
lems with high-energy scattering may be avoided by noting that QCD is an asymptotically free
theory B9, 90] (and therefore quark interactions become weak in high-energy scattering), one
expects complications wherever the nonperturbative structure of the bound states is involved.

In all circumstances where the bound-state formation matters, it is crucial to have a formu-
lation that applies both to bound states and scattering in order to obtain a description based on
first principles. It is natural to try to define a Hamiltonian description, since the basic connec-
tion between the Green functions and scattering is based on the LSZ formula that involves an
assumption that a Hamiltonian of the theory exists, while the bound states must be described
by an eigenvalue equation for the same Hamiltonian (see the discussion of divergences in the
bound-state eigenvalue problem in Chagler

However, the standard approach to scattering in QFT is based on Feynman diagrams and
covariant regularization such as dimensional regularization. It is thoGgsjt fhat the Hamil-
tonian approach cannot produce covariant answers because of its intrinsically non-covariant
nature, due to the distinguishing of the time axis and non-covariant regularization.

In other words, the basic issue with Hamiltonians is: can one renormalize the Hamilto-
nian calculation and obtain covariant results? The prospects of applying all known methods of
Hamiltonian quantum mechanics (linear algebra of eigenvalue equations, variational methods,
and explicitly unitary evolution of states) are exciting, but divergent QFTs need regularization,
and there is the question of whether one can define non-covariant regulated Hamiltonians in the
Fock space, renormalize them and obtain covariant results for scattering. It turns out that when
one switches from the standard-time evolution to Dirac’s front form of Hamiltonian dynamics
an important change takes place: kinematical rotational invariance is turned into kinematical
boost invariance and it is much easier to regulate rotations that involve angles between 0 and
than boosts that involve imaginary angles between 0 and infinity. In other words, it is hard to
regulate boost operators in the equal-time formulation and control states of moving particles.
Light-front dynamics provides an opportunity to treat boosts like in a free theory, and the cal-

Iperhaps, higher-order analysis of the Hamiltonian approach may take advantage of the connection between
k=, kt, K% andk®, and employ analytic continuation k¥ in the amplitudes after they are shown to be finite and
independent of regularization.
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culations outlined here suggest that rotational symmetry — even if dynamical — may be brought
under control in perturbation theory.

The standard approach is to derive a formal expression for the S matrix using an unregu-
larized Hamiltonian, and to learn how to regulate the expressions that result from the formal
procedure later, i.e., when calculating physical observables using Feynman diagrams. This ap-
proach proved extremely fruitful. It leads to simple, yet powerful renormalization group equa-
tions which describe the behavior of the Green functions. The most powerful regularization is
the dimensional regularizatio®]], which leads to covariant and gauge-invariant expressions
at each order of perturbative S-matrix calculations (see a3&J)).

The main difficulty of a loop-by-loop (i.e., perturbative) regularization procedure for the
Green functions is that it is not clear how to apply it to nonperturbative bound-state problems,
where powers of the coupling constant are mixed up in a way non-expandable into a power se-
ries. In asymptotically free theories, one faces the additional problem that the coupling constant
is large in the domain of momenta where the binding mechanism is most active, and remains
unknown. This problem occurs, for example, in the context of the Bethe-Salpeter equation. To
use such an equation in a controlled fashion, one would have to design a reliable regularization
and renormalization procedures that would apply in the the region of the binding mechanism.

Given the above, asymptotically free QFT can be used to describe high-energy scattering,
but bound states have to be described using more or less phenomenological constituent models.
There remains the problem of how to construct a single formalism that would incorporate both
aspects of the theorp§).

Hamiltonian description of scattering

There are several reasons why the Hamiltonian description may be hard to develop, even for
perturbative scattering processes in the femtounive¥dg where there are no bound states
involved.

1. Interference with the ground state: The light-front Hamiltonian theory considered here is
designed to avoid the following problems: (1) In equal-time theory old-fashioned pertur-
bation theory is affected by a (complicated) vacuum structure through Z-diagrams (Fig.
3.2b). There are no such diagrams in the formalism considered here, which means that
both the vacuum itself and the old-fashioned perturbation theory are simpler than in the
equal-time approach. (2) In equal-time perturbation theory regularized corrections to
energies of one-physical-particle states do not automatically have the form required by
special relativity (cf. Sectio3.2.9. In the light-front approach one does not face the
difficulty with different denominators that must be somehow combined in equal-time ap-
proach to produce relativistic expressions, and how they combine should not be destroyed
by regularization. | don’t know how to solve this problem in equal-time approach.

2. Non-covariant regularization: The question here is how to describe scattering processes
involving particles moving with arbitrary velocities, in particular, velocities close to the
speed of light. It must be investigated whether some proper choice of finite parts of
counterterms can lead to a covariant scattering matrix, even when the Hamiltonian is
formulated using non-covariant cutoffs.

3. The need for going beyond cancellations such as those of the Ward identities: Feynman
calculus uses Ward identities, and the scattering ampliéiide — hadronsis finite in
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QCD coupled to QED in one loop: namely, the ultraviolet divergence of wave function
renormalization factorg corresponding to the external quark lines cancels the divergence

in they — qq vertex. In the asymptotically free scalar theory considered in this chapter,
such Ward identities are absent. The Hamiltonian approach to scalar theories has to solve
the ultraviolet problems independently of Ward identities.

It should be noted, however, that in Hamiltonian dynamics of gauge theories one has to
choose a gauge (for example, the light-front gadde= 0 (E.19). Therefore, there is

no explicit local gauge symmetry in the Hamiltonian, and it is not immediately apparent
how, in such a theory, analogs of Ward identities emerge: in particular, any extra terms
added to the Hamiltonian (e.qg., the required counterterms) may depend on the choice of
gauge and regularization. In fact, the structure of the Hamiltonians of gauge theories
is complicated and the ultraviolet renormalization problem is plagued with singularities
related to the choice of gauge. On this point, it is instructive to study some divergent
terms in Hamiltonians in gauge theories and observe the structure of their ultraviolet
divergences. Examples of such divergent terms are given in Appéndilk these terms,
despite their additional complexities, share some common divergence structure with a
plain ¢ theory when treated perturbatively. The results for counterterms in QED and
QCD shown in Appendi¥ explain why | had to restrict this initial study to scalar theories
that are less singular than gauge theories (they do not contain sdialirgences). Since
gauge theories are more complicated than scalar theories, one first has to show that a
Hamiltonian formulation can lead to covariant answers in an asymptotically free scalar
theory.

The aim of this chapter is thus to understand the ultraviolet (high-energy) Hamiltonian
renormalization procedure in a theory that describes particles analogous to electrons, photons,
quarks, and gluons, in the presence of interactions that resemble in their ultraviolet structure
the structure of QED and QCD. The idea of simplifying a complex theory in order to address
basic issues goes far back in time, and the key example regarding old-fashioned perturbation
rules in the infinite momentum frame (isomorphic to the light-front scheme) was provided by
Weinberg pP5].

One of key features of any theory, determining how complicated the UV problem is, is the
degree of divergence of the loop diagrams appearing in perturbative calculation of the S matrix.
In the case of QED and QCD, these are quadratic and logarithmic divergences. The main part
of this chapter deals with scalar theory in six space-time dimensions (five space dimensions
and one time), where there is the same degree of divergence. This means, for example, that
the wave-function renormalization factafsare logarithmically divergent. | trace below which
counterterms remove this and all other divergences from physical results, and how this happens.

The most important feature of the scaf@itheory considered here is that it is asymptotically
free. This means that the effective coupling constant gets small when the momentum transfers
in a process grow, and this enables us to believe in a consistent description of the high energy
structure of the theory based on the perturbative approa®it every coin has two sides: in
this case, the flip side is that the coupling constant becomes large for small energies, and this

°Note, however, that although the motivation of the renormalization program does not apply strictly to theories
that are not asymptotically free, one usually expects that a similar program of ultraviolet renormalization would
work in this case too, with few modifications. The prime example is QED, which is not asymptotically free, yet
it is analyzed (e.g. when scattering amplitudes are derived by Feynman diagrams) by means of a standard UV
renormalization using smallness of the coupling constant and the fact that it varies only logarithmically.
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includes the critical domain of the formation of bound states. In this domain, it is essential that a
perturbative calculation of a Hamiltonian may still be justified while the perturbative treatment
of scattering is entirely inappropriate.

The plan of this chapter

The main results for scattering are presented in the following order in this chapter.

In Section5.2, | review the derivation of Feynman diagrams in the case of a light-front
Hamiltonian, which from the very beginning is regulated. Thus, all steps of the derivation
are mathematically well-defined. This leads to an analogue of LSZ formula for the scattering
matrix, and its perturbative expansion leads to an analogue of Feynman diagrams, but with
regularization coming directly from the Hamiltonian that includes counterterms. Details are
given in AppendixG.

In Section5.3, | describe a change of basis in the Fock space and in the space of oper-
ators that act in the Fock space, and show that effective particles described by an effective
Hamiltonian#4, can be used for obtaining the same scattering amplitude as the bare canoni-
cal particles can. This has two important consequences. First, it means that one and the same
Hamiltonian can be employed in a scattering formalism and for description of bound states:
our regularization and renormalization for the effective Hamiltonian produces an operator that
has all properties that we found necessary for description of bound states in Chdibter
binding is described in terms of low-energy effective particles). The second consequence is
that the physical scattering amplitude is totally independent of the ultraviolet dutofthe
initial canonical Hamiltonian, and also independent of the effective Hamiltonian widih
perturbation theory).

All calculations are carried out in a scalar theory similangfoscalar theory in 5+1 di-
mensions. In SectioB.6, | present RGPEP for this theory and the resulting counterterms (see
Section3.4 for details of RGPEP). In fact, | consider two ways of constructing the same coun-
terterms. One of them is much simpler than the other, and both are sufficient for the description
of a scalar analogue @ e~ — hadronsscattering amplitude up to ordefg?. In Section5.7,
| show that the RGPEP counterterms remove divergences from the amplitude.

Another issue is the finite dependence of the Hamiltonian on regularization, and the con-
straints on that finite dependence that follow from the Poincaré symmetry of the physical scat-
tering amplitude. In particular, the S matrix is not automatically covariant unless one makes
sure that there exist finite counterterms in the Hamiltonian that remove finite violation of co-
variance due to regularization. | provide explicit expressions for the Hamiltonian terms that
assure covariance of the scattering amplitude. As a result, the scattering amplitude depends on
momenta of scattered particles as in the Feynman diagrams. This is how the rigorous Hamilto-
nian approach justifies the formal procedure that leads to the Feynman diagrams for my model
of the amplitudee™e~ — hadrons Overall, therefore, this section implies that the heuristic
model of Chapte? is useful in providing patterns that one can attempt to reproduce in QFT.
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5.2 Calculation of S-matrix elements using regularized light-
front Hamiltonians for bare particles

The perturbative formula for the S matrix in terms of covariant Feynman diagrams is derived
in the standard QFT textbooks such 86-p8] and many others. However, the derivation pre-
sented in these works does not take into account the divergences of the QFT from the very
beginning. Instead of introducing regulators explicitly, formal expressions for physical observ-
ables are derived first, and only then useful loop-by-loop regularizations of the final expressions
are introduced (see als®q] in the context of infinite-momentum-frame calculations of an S
matrix).

Such an approach is not directly useful if one wants to use the same Hamiltonian for de-
scribing both bound states and scattering processes. The ultimate goal is to determine the coun-
terterms including their finite parts, using symmetries of the S matrix (this might concern only
bound states in the case of confinement) and fixing values of all free parameters using data for
selected scattering experiments or some selected bound states, and then use the Hamiltonian
without free parameters to describe all other processes and states. The entire procedure of the
S-matrix calculation using regularized Hamiltonians is described in Appeéhdix

The key differences between the the standard Lagrangian procedure and the Hamiltonian
procedure are as follows:

e The canonical Hamiltonian is regularized: All terms are regulated, but different regulating
factors appear in differently ordered terms, for example:

N 7

~ and - (5.2)

N Ve

The regularization factors that we introduce do not have to solve problems with the cre-
ation of particles from the vacuum (see Sectiod.3.

e The Hamiltonian is not a local product of pointlike fields: This happens due to the regu-
larization. Instead of local fields we deal with the creation and annihilation parts of the
fields in apparently separate ways. However, | make sure that all vertices are regulated
without reference to variables that depend on spectators, and our regulators depend only
on the kinematical momenta of the particles involved. This is why the demonstration of
the covariance of the resulting amplitude is a challenge — it does not refer to mathematical
operations that are only formally valid, and would be invalidated if a regularization was
taken into account.

¢ An entire family of different Hamiltoniansl,, is calculated: The family of Hamiltonians
is parametrized by a renormalization-group paramatand, in the RGPEP approach,
the parametex is also a width of the momentum-space form factors that appear in inter-
action vertices. The Hamiltonia#, is expressed in terms of creation and annihilation
operatorsaI anda,, that create or annihilate effective particles whose size in configu-
ration space can be thought equal t&\1 When one switches to the effective-particle
picture, one faces the challenge of showing that it is possible to develop scattering theory
using the effective particles and corresponding Hamiltonians and obtain the same results
as in the initial canonical theory, independently of the valuk.dofhe most critical test is
whether one obtains Poincaré symmetry for scattering amplitudes.
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e Light-front Hamiltonian dynamics: The evolution operator is chosen tbéibe P, as
was advocated by Dirac in 194054]. Therefore, analysis is carried out in terms of the
evolution parametert instead of the usua’, and | do not have energy denominators in
my S-matrix calculus, but rathgr- denominators.

The standard derivation of Feynman diagrams consists of three main steps:

1. Matrix elements of interacting fields are assumed to evolve in the far future or far past in
the same way as the matrix elements of properly chosen free fields.

2. S-matrix elements are expressed in terms of vacuum expectation values of the time-
ordered products of fields (the LSZ formula).

3. These vacuum expectation values are expanded in a perturbative series in the interaction
Hamiltonian.

| review these three steps below very briefly for the purpose of our light-front analysis; details
are presented in Append&. In Section5.3, | show how different auxiliary fields, all unitarily
equivalent, can be used for the calculation (epg= Qo Or @o = @) ). For a different choice

of @, one has a different perturbation theory for the same physical quaggitpay be chosen
differently, but the interaction Hamiltoniasd, and the wavefunction renormalization fact@drs

will change accordingly, and the result for the S matrix will not change.

5.2.1 In andoutfields and states

Section3.3introduced the construction of free and interacting fields in our approach (see also
AppendixG.1). Let us consider the scattering of two particles in the initial state, well separated
from each other; this is ensured by using proper wave packets. Final particles emerging from
the interaction region are assumed not to interact with each other; this is also ensured by using
proper wave packets.

The group velocity of a packet made of massive particles is smaller than the speed of light,
Massive particles propagate within the light cone of past and future and, for them, the conditions
X0 — —o0 andxt — —oo, or X0 — 400 andx™ — +oo are equivalent (Fig5.1). For massless
particles — not considered here — these two conditions are not strictly equivalent, as they differ
in the case of propagation along the direction where the light cone touches the fseetFig.

5.2.

It is assumed that matrix elements of packets made of figidg between any normalizable
states|a), |B) behave for the tim&™ — —c as matrix elements of similar packets of certain
free fields@n

im (@@ @) = VZ_lim (Bl @n(x") o) (52)

Thus, the creation operatcn% create states that have an interpretation of physical states for the
timex™ approaching-«. The statement thag, is a free field means that the creation operators
a;rn evolve only by a change of a phase [s€e7)].

30ne would expect that the quantum effects wash out the line singularity and make it less severe through the
uncertainty principle than in the classical theory of partial differential equations.

4For a definition of the smeared fields see, el§(. The specific definition does not matter for the following
considerations; to simplify the notation, the smearing is not indicated in the equations.
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XO—>—oo

Figure 5.1: A qualitative picture of a wave packet (the stripe) moving with a group velocity
smaller than the speed of light. For massive particles (which cannot move with the speed of
light), the limitsx? — —c0 andxt — —oo are equivalent. Thus, when defining scattering theory,

xt ordering may be used (instead of time ordering), andnd out states and fields may be
defined by the limits<t — Fo. This figure does not take into account the expected spreading

of the wave packet in time.

p? = 0 (mass shell)

Figure 5.2: For particles of zero mass, only one direction in the space-time corresponds to the
zero value ofp™ momentum.
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The asymptotic condition5(2) defines not only the fieldg@,, but also the physical mass:
a wave-packet describing a single, well-separated particle, which evolveswith a packet
of free states, each of its Fourier components evolving with a factof-ekpx*/2). The

physical massn;, is defined by the conditiok™ = (kLZ + mf)hys> /k*. Likewise, the physical
outgoing states and fietg,: are introduced by considering the limit — +oo.

5.2.2 One-particle states

Let us consider the equatiof.p) in the case ofa) = |0) and|B) = |p);,>:

lim in(plo(x*)|0) =VvZ lim €&Pm*, (5.3)
Xt ——o0 X+ — —o00

where | usedn(p|@n(x*) |0) = €P™. Thex™ dependence cancels on both sides because:

in(PlO(x) [0) = in(ple"m* /2%, x" = 0)e P /2|0) = (5.4)
in(plePm /2%, x* = 0) |0), (5.5)
and this leads to: _
in{PlOX,x" =0)[0) = vVZe . (5.6)
| use the notatioX := — 3 p™x~ + p*x*.

The matrix element on the left-hand side can be looked at in two ways. The equatipn (
says that the probability of finding a one physical particle stpfe in a state created by
(namely,@(x*) |0)) for a large timex* is Z. This way of looking at the equation will provide a
straightforward connection to the spectral representafiéyilp1, 102, andZ will be equal to
a residue of a pole of a propagator.

However, one can also look at the equatibr) from a different angle. The creation opera-
tors in the Fourier transform of the fie@X, x™ = 0) are the bare creation operators in terms of
which the Hamiltonian is initially expressed. Therefopé¥,x™ = 0) |0) is a superposition of
one- and more-bare-particle states. One can look at this expression in terms of the Fock basis
of the bare particles. If the physical state is expressed as a superposition

IP)in =N {|p> +/[p1, P2l3(p— p1— P2)@p(P1, P2) [P1P2) + - } , (5.7)

where the second term denotes two-bare particles compongnt.of/Z is equal to the amount
of one-bare particle content of the physical stgle,:

VZ=N. (5.8)

5.2.3 The reduction formula for scalar fields

We can imagine a situation in which in the distant past there were particles forming.cSeth
a situation is described by a stage,,. If, for example, there were two particles of momepia
and py, this state would be:

[P1, P2)in = 8 indpzin 0 - (5.9)

SStateg p);, are considered limits of wave-packets whose momentum widths tend to zero.
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Due to interactions, this state has a complicated structure in the future. The probability that
the state contains asymptotic outgoing particles of #§ sethe distant future is measured by a
square of a matrix elemes :

S0 = outB | A)ip - (5.10)

This defines the scattering matfor this process. In Appendi®.2it is shown that for a set of
di,02, ... incoming particles angy, py, ... outgoing, and for alp; # g, the S matrix element
is:

out{P1---Pm | d1...0n ( >m+n T /d4xI /d4y g idimX; (DX|+m2>
+) [@y1) - <P(yn) @(x1) ... @(Xm)][0) x
x (Dyj +mz) dPmivi (5.11)

(cf. (G.39). In this equation tk = dx™dx, d’x" = dxTdx~d?x /2. This is a light-front version
of the Lehmann-Symanzik-Zimmermann (LSZ) formul@8§ 104]. This equation directly cor-
responds to equation (16.81) of the Bjorken and Drell textb®6k fith x™ ordering instead
of X2 ordering and a different Fourier expansion of the fields.
Based on the spectral representation, one expects that the Green fyacTiono. . . ¢/ |0)
has poles corresponding to each of the external particles. | will review in S&Si(page92)
how this kind of pole structure emerges in perturbation theory, but the spectral representation
argument (seedp, 99]) is more general, and shows this independently of perturbation theory.
For each external particle, there appears a factor

Z
p?—ng

phys

(5.12)

+i€

— the denominator is exactly canceled with thé+ mf,hys) of the LSZ formula, and the wave-

function renormalization factdt partially cancels with the //Z of (5.11).

In fact, this structure is universal, and one can calculate the full propadat@y (two-point
Green function) first, and use it to determine Ehfactor and the position of the pole.

Note, also, that the equatioB.( 1) substitutes for the momenta of particles their physical
values (for example, ap™ > 0).

5.2.4 Perturbative expansion of the tau functions and the S matrix

One can assume that the operatyi™) and some complete set of free operatygx™) are
(unitarily) equivalent, that is, that there exists an operatoc™) such that

ay(x") =U"H(xMag(x U (x") (5.13)

and the same fa'. Note that this is consistent with the fact that, for a given ticheoperators
ag(x") andag(x™) fulfill the same commutation relations. Also, they carry the same quantum

numbers (for the scalar theory the only quantum number of a particle represermédtstiys
three-momentum).
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In fact, rather than looking for thg transformation it is easier to look for a product:
U((x",X1) :=ux"Hu (). (5.14)
(cf. G.50. This leads to the following expression for the Green function of the LSZ equation:
T= (0] T4 [0(xa) - .. @(xn)] [0) =
= 00T a0 exp( i [ i) 3087 )] 10 (835)
(cf. Eq.G.69), where

H(x") := Ho(ag) —H(ao), (5.16)

andHp involves physical eigenvalu®:

Ho(ao) = [ Kinalag (5.17)

Equation b.15 is a light-front analog of the equation (17.22) in the Bjorken and Drell text-
book [96]. It is interesting to notice that its derivation (see Appen@ixremains valid for a
regularized Hamiltonian which is not an integral of a local product of fields.

5.2.5 Feynman diagrams with Hamiltonian regularization

The standard derivation of the Feynman diagrams uses Wick theorem at this point to reduce
the matrix elements5(15 to products of the two-point Green functions (i.e., the propaga-
tors) and interaction vertices. The Feynman propagators emerging this way have two poles at
kO:i< R2+mz—ia).

In our case, however, the situation is slightly different. In the light-front Hamiltonian all
particles have positiv@™ momenta, and for each value pf there is only one pole ip~.
Nevertheless, the structure of the expressions is very similar to the casual Feynman propagator
obtained formally using the equal-time form.

For some quantities, limiting gb* to positive values does not matter at all. For example,
when one calculates a propagators for the incoming or outgoing particles as a part of an S-matrix
calculation, the physical values of three-momenta are substituted through the LSZ formula, and
only the physical pole of the propagator contributes (this is true both for the equal-time and
light-front calculations). Thus, thefunction presented here can agree with one defined by the
standard Feynman diagrams.

The situation is slightly different for internal lines. For example, diagram$) (n the
Hamiltonian formalism presented here are two separate expressions (especially if there is regu-
larization, which does depend on an ordering of the interaction terms). However, the relation of
such diagrams to the corresponding (not regulated) Feynman diagram is simpler in light-front
coordinates, because the form of the Feynman propagator appears for each of these lines sepa-
rately (rather than as a result of summing two diagrams that occur in the equal time case). One
thus obtains Feynman propagators in a standard form, but with momenta limited by Hamiltonian
regularization factors in vertices.

The old-fashioned rules in scalgf theory were considered by Weinberg in 19608]]

See also an article by Bardakci and Halpet®]] An entire study for scalar, Yukawa and
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vector-gluon theories in light-front formalism was considered by Yan and collaborators in 1970s
[20-23]. Yan and his collaborators developed a theory in which the Hamiltonians were not
regularized, but the formal expression for the S matrix could be manipulated and eventually
shown to be the same as in the Feynman approach. The main difficulty Yan and collaborators
were dealing with was that the standard time-ordering of interactions is different than light-
front timex*-ordering, and the Coulomb term in equal-time Hamiltonian is very much different
from an analogous Coulomb-like term in light-front Hamiltonians. But Yan and collaborators
have shown that the different orderings and different interactions combine formally to the same
scattering amplitude. Examples of recent discussions that follow up on these works can be found
in [105 10¢. As far as | know, nobody has ever considered a complete calculation with fully
regulated Hamiltonians, and nowhere in the literature | have found evaluation of Hamiltonians
for effective particles, like#), , except from referenceg(), 74] which however did not consider
scattering amplitude. Here, | discuss what happens when the Hamiltonian is regularized before
developing perturbation theory for the S matrix. It is necessary to follow this procedure if one
wants the Hamiltonians to produce well-defined eigenvalue equations for bound states. In the
formation of bound states, the perturbative S-matrix calculus of asymptotically free theories is
not directly applicable.

The procedure that | effectively employ in the one-loop calculation described here consists
of the following steps:

1. Renormalized Hamiltonians are used in perturbative expression for the Fourier transform
of thet-function 6.15.

2. Theta functions ok™-ordering are replaced by integrals4j with i€ in denominators.
3. Integrals ovex™ lead tod(Ak™) in vertices.

4. Every denominator introduced in (2) is multiplied by correspondihgand the product
is the same as in a standard Feynman propagator for each ordering.

5. Self-interaction loops on external lines lead to a geometric series, which may be summed
up. This leads to propagators with poles at physical masses, and with modified r&sidues

6. In the case of external lines, the resulting physical propagator is exactly canceled by the
factors(CJ+ nP) in the LSZ equation [cf.§.11)]. What is left is the factox/Z.

In the case of scalar theories -2 dimension$ (such as %.77), these rules obtained
using 6.11) may be summarized as follows:

e For each internal line there is an integral
/ d"k-dktdk—8(kt) i
2(2m)2 k2 —m2+ig’

wheremis the physical mass. The fact{k™) means, in particular, that | am considering
each of the orderings irb(1) separately.

(5.18)

e For each external line ending at a paHt

dkldktdk~ i -
St 1
/ 2(2m)2 Ke_metic ’ (5-19)

6nis the number of transverse dimensions.
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e For each interaction vertex

(—ig)2(2T[)(n+2) O(Kere — k;nn)é(kgre - k;nn) 5" (kche - kaLnn) ] (5.20)

where the regularization factorg (coming from the regularized Hamiltonian) depend
only on perpendicular and plus momenta. These regularization factors are key to the
following calculation and they distinguish the Hamiltonian diagrams from the Feynman
diagrams. They are the same for all loops, because they originate from one interaction
term in the Hamiltonian operator.

The necessary combinatorial factors can be figured out by inspecting the way creation and
annihilation operators are commuted. Also, depending on the vertex considered, the coupling
constang in (5.20 is replaced by, eq or one half of these coupling constants (&.77)).

In the case of vertices other than the regularized bare vertex comingH®ifsuch as
in (5.77), for example for the terms coming from the counterterms or terms in the effective
Hamiltonian,g in (5.20 is replaced by a corresponding factor form the Hamiltonian term with
appropriate 21 d(Kere — Kop)-

In the the regulated Feynman diagrams derived here, the regulators do not degdend on
momentum. This in turn allows us to reduce them to an old-fashioned perturbation theory for
the S matrix by replacing the integral over by the sum over residues at polekin

Finally, one should note that a similar correspondence between the Hamiltonian expressions
and the Feynman diagrams does not seem possible if one uses an equal-time Hamiltonian.
When regularization is needed, one could introduce a cutoff either on each particle momentum
independently (which leads to a theory that cannot be boosted to an arbitrary frame) or on
momentum differences in the vertex (which means different regularization in each of the two
diagrams in Figureg.2b and thus with such regularization these diagrams do not add up to a
Feynman-propagator form). Compared to this, the situation with a light-front Hamiltonian is
much simpler.

5.3 Calculation of S-matrix elements using light-front Hamil-
tonians for effective particles

5.3.1 Smatrix in terms of H,

RGPEP equation$(76) define effective-particle creation operators as operators unitarily equiv-
alent to the bare-particle creation operators:

8w = U a\Uy, . (5.21)

The effective Hamiltonians are the same Hamiltonian operator expressed in terms of effective-
particle operators, instead of the bare-particle operators:

H (8)) = Heo () = U Heo (@)U (5.22)

The basis of the scattering theory is another unitary equivalence: namely, the equivalence
of bare creation operatoas, and the physicad, operators§.13:

8 ,(X") =UTH(x")ag (x U (xT) , (5.23)
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where the index = «o was added to indicate the bare-particle annihilation operator. Substituting
into this equation expressioh.@1), one has:

8, () = Wi (X )ag (XD )WA (xF) (5.24)

with”
WA (xH) = U (xH)U; . (5.25)

Equation b.24) for operatorsay, means, that the physical external one-particle state (or a
matrix element of a corresponding field) can be represented not only using a one-bare-patrticle
state (as in Appendi.3), but also as a one-effective-particle state. However, the proportion-
ality coefficient of the spectral representation changes if one changes the set of representing
operators from the bare ones,j to the effective one9{). Thus, not only is the perturbative
expansion changed (see below), but also the LSZ formula must be modified accordingly.

It is now possible to repeat the steps shown in Appert@li® usingW (x") instead of
U (xt): differentiate Eq. %.24) overx™; introduceW (x™,x*+) := W(xH)W~1(x*+); and so on.

This leads to exactly the same expression forShaatrix, but with an interaction Hamiltonian:

Hy 1 = H (a0) —Ho(ao) - (5.26)

The details of this calculation are presented in Appemtix he results can be summarized as
the following theorem:
Theorem: The same S matrix describing scattering of physical particles can be obtained using:

1. A bare HamiltonianH?, and representing the incoming/outgoing particles by bare-
particle creation and annihilation operatess

2. Or using an effective Hamiltonia, and effective particles,.

In each order of perturbation theory, the result for 8matrix is the same, provided the con-
nection between,, anday, (H2 and#, ) is fulfilled up to this order.
In both cases, the perturbation is done in powers of a difference between the full Hamiltonian
H2 = 4, (with creation operators), or a;r respectively, replaced by free operatag} and a

free HamiltoniarHp with physical spectrum.

5.3.2 Example: tree amplitude forete~ — hadrons

The bare Hamiltonian presented below in Sectioh1leads toete~ — hadronsS-matrix of

ordereg:
Pab
$>< . (5.27)

"Note that expressiorb(21) can be written at any™, which means '[hattl):r also depends oxr" (it is a fixed
function of creation and annihilation operators, but these depend on thectindhe dependence dn‘):r onx"
is not marked explicitly here to make it easier for the reader to distinguist tkie) (scattering theory) from the
U, (x") (RGPEP).
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| review below briefly how the same result emerges when one uses the effective Hamilto-
nian #, . #, has three terms that may contribute: the orgleertices with form factors

Hy . = f)\>—7 (5.28)
Moo = fA~<, (5.29)

}[)\ >< = facfafgg>< . (5.30)

When#, - contributes to the scattering matrix, due to energy conservéiios 1 and Ta(sg
simplifies to:

and ane? term

Pt
Faoa = 1o (fa—1). (5.31)

(cf. (3.118). There are thus two contributions: one froify acting twice:

1 1
- =f\H..——++—f\H 5.32
)‘}Eo—Holes}[)"{ MW e P (5.32)
and the other fron#, - _:
H, -2t h 5.33
)\><|ac=0_( - ab)Eo—Ho > ( )

The fA2 term cancels th&, v #, v, and the rest reproduces tBenatrix obtained from the bare
Hamiltonian, 6.27).

The above example also shows that the analytic structure of the amplitude is not changed:
if one goes close to thie-regularized poleab goes to zero (andy, =~ 1). Thus the whole
contribution to the pole comes frorb.G2), and the result for the residue in the pole is the same
as that calculated using the bare Hamiltonia27).

5.3.3 Consequences of the theorem

| now turn to the two questions posed in the introduction to this chapter: (1) do counterterms
found through the RGPEP procedure lead to a divergence-free S matrix; and (2) is the S matrix
calculated using the effective Hamiltonidf, independent ok?

RGPEP fixes the counterterms in the initial bare Hamiltortnby requiring that coef-
ficients of #, be independent ah. This is not the same as requiring that the S matrix be
independent ofA, hence the question (1).

The theorem states, that ba#j, andH? produce the same S-matrix elements. Because
of form factors in interaction terms aff, , when one calculates scattering amplitude using
this Hamiltonian the results do not depend®m corresponding order of perturbation theory
whenA — . These two statements, taken together, prove that the scattering amplitude can
be obtained using the bare renormalized Hamiltortidn and that the RGPEP counterterms
in H2 lead to result which is not divergent. This is not a trivial result, as the counterterms
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were found based on different conditions, and because the ultraviolet cutoff dependence of the
S matrix comes from different expressions. For example, the fagtoappearing both in the

LSZ formula and in the full propagator can be a divergent functiofh. dased on the theorem,
however, one would expect thAtdependence will vanish. It is interesting to see how this
happens in practice, at least at low orders — which parts of the counterterms remove which
parts of the divergences. | investigate this in Sectibrisand5.7 for a scalar theory in 5+1
dimensions in one loop.

The theorem also predicts that, when usitég to calculate the S matrix, the result will be
independent oA. The argument here is as follows: if one calculates a scattering amplitude
usingH?, the result does not depend arsince there is no such parameteHf. However,
the same result can be obtained usfifg This means that the effective Hamiltoniah leads
to A-independent results for the scattering matrix in a given order of perturbation theory in
appropriately defined coupling constajt whose dependence anis calculated to the same
order. This, again, is not obvious without the theorem. For example, wave-function renormal-
ization factors for effective particled, depend o\, and there are many terms in the effective
Hamiltonian that do not appear in the bare Hamiltonian.

The example in SectioB.3.2demonstrates in the lowest order that the scattering matrix
calculated using, is indeed independent af This particular calculation was simple, because
energy conservation meant that, in this order, the fat{pwas equal to 1. In higher orders,
however, corresponding form factdy is no longer equal to 1. The structure fifis related
to the renormalization group flow. In particular, the particle mass used to defmedariant
mass difference has to be the same as that used in the denominators of RGPEREE). (

i.e., the free mass frorhlp. If it is not the same f, would not fulfill one of its main tasks:

to prevent the appearance of small energy denominators in the perturbative calculation of the
renormalization group flow of4y (cf. Eq. 3.119). At the same time, in the denominators

of the S matrix, there are differences of energies that are defined using physical particle mass.
The real, physical energy af andout states (defined using physical masses of particles) is
conserved, and so the energy defined using free masses is not consekd;: is no longer

zero, andf,c is not equal to 1. Calculating the S matrix using effective Hamiltonians will thus
not be as simple in higher orders as it is in the low-order case presented in Se8tbn

5.4 Simplest canonical exampleg® in 1+1 dimensions

Perturbativep® theory is the simplest example of QFT that one can usefully analyzeg®No
theory exists beyond perturbation theory due to the fact that the ground state collapses. How-
ever, before confronting more difficult theories, such as QCD, it is helpful to examine some
questions using? theory. Theg? theories in 1+1 and 5+1 dimensions presented below can thus
help us understand the perturbative structure of the S matrix, while ignoring the nonperturba-
tive problems of these theories will not lead to inconsistencies within the purely perturbative
analysis.

¢ theory in 1+1 dimensions does not lead to any ultraviolet divergences in perturbation
theory, so no ultraviolet cutoff is required. The scattering amplitude can be calculated using the
canonical Hamiltonian without any modifications. Thus, in 1+1 dimension the Hamiltonian cal-
culation presented here is exactly the same as standard, finite and covariant Feynman diagrams.
Massive theory considered here is also infrared finite.

1+1 dimensional theory allows me to outline the calculation for the scattering amplitude,
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(@)

(b)

Figure 5.3: In the scalar theor$.B4), scalar gluons and scalar photons mix in perturbation
theory through terms such as (a). Moreover, in 3+1 or more dimensions, such terms are diver-
gent and require counterterms such as (b). Such terms are not found in QCD coupled to QED
because of color conservation, and do not need to be discussed in this thesis.

even before the complexities of regularization and renormalization are introduced. This pro-
vides explicit examples of the general properties mentioned in previous sections. An example
is the connection between, on the one hand, the physical mass and normalization of the Hamil-
tonian eigenstate and, on the other hand, the position of the pole and value of the residue of a
full propagator. The 1+1 dimensional model also allows me to show all the steps that will be
later subject to alteration when the regularized and renormalized Hamiltonian vertices enter in
5+1 dimensions. In this way the description of the divergent 5+1 case5(6end5.7) can

focus on how counterterms fit in this general picture.

5.4.1 Hamiltonian

As a starting point | take the Lagrangian density:
1 1 e g
L= (Z 2 (00 0"9; — P@?) + 5 (Oup ey — et ) — ~ ey %(pé(py— S (5.34)
je{eag

Theory defined this way describes four types of real scalar fields, mimicking an interaction of
electrons, quarks, photons and gluons. | will refer to these scalar fields by the names of the
particles they mimic (i.e.“scalar electrons”, “scalar quarks” etc.); the subscripts in5&2y) (
correspond to these names. In 1+1 dimensional thedrgs dimension afas$ (this changes

in higher dimensions — see Appendixb).

In the Lagrangian above, the masgcommon to scalar electrons, quarks and gluons), and
the scalar photon mass, are different from zero. Having three particles of the same mmass
simplifies the calculation considerably, without affecting issues of finiteness and covariance of
the S matrix. Note, also, that even though the same mass is chosen for scalar electrons, quarks
and gluons, their physical masses will differ because of the different interactions they are subject
to. The photon mass is chosen so that it is different from the gluon mass, in order to avoid
irrelevant complication of degenerate perturbation theory for physical masses (Bf3Fig.

The Lagrangian contains three interaction terms:

¢ Electronsyp. interact with photong,; the coupling constant of this interactiongs
o Quarksgy, interact with photong, with coupling constang,
o Quarksy interact with gluonspy with coupling constang.

In each interaction there is one boson-like field (photon or gluon) and two fermion-like fields
(electrons or quarks). In the real world, for low-energy processes, the QED coupling constant
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analogous t@ is much smaller than the QCD coupling constant analogogswile electrons
and quarks have electric charges of similar value. Therefore | choose for this model

e~ eg<g. (5.35)

A canonical Hamiltonian derived from the Lagrangi&n3{), according to the rules described
in Section3.3.3 is:

Here,Hp denotes the free Hamiltonian (kinetic energy):

P P P
Ho = / Kb Do+ / Ko g+ / [k]kﬁcge%ﬁ / Kiral Ao (537)

where[k] = dk+8(k*)/ (4rk*t). Despite the different notation, all the creation operatafsgdr
gluons,b' for electronsc’ for photons, andj™ for photons) are bosonic operators in this model.
In 1+1 dimensions there are no perpendicular directions and the free energies [e.8.4B){. (
simplify to mass squared ovkr. Note thatkk™ ranges from 0 toro only.

All the interaction parts have two creation operators and one annihilation operator, or their
hermitian conjugation. They can thus be split into two types: those mimicking interactions that
involve creation or annihilation of a fermion-anti-fermion pair:

~ e
Hys= / [1233(1+2-3) [5 (lbics + clbiby) + % (alajes+clande) +
+ g (qugas - agqlch) ] , (5.38)

and those mimicking an emission or absorption of bosons by a fermion:

Hy( — / 1233(1+ 2 3) e (blc]bs + bibrco) + e (alcias + afancs ) +
+9(alafos + dlmae) | - (5:39)

The factor of one-half by which the terril sandHy differ is a standard difference.

5.4.2 Properties of the state of one physical particle

Using the above Hamiltonian in perturbation theory, one can calculate the energy and structure
(i.e., Fock-space components) of a state of one physical particle. Although the eigenvalues of
Ho for scalar quarks, gluons and electrons are the same, one can use non-degenerate perturba-
tion theory, as the interactions do not mix corresponding one-particle degenerate states. For
example, a matrix of any powerof the interaction Hamiltonian vanishes between one-quark

and one-electron states:

(el (H)"|a) = O. (5.40)

Since we are dealing with perturbation theory only, we can consider quarks as physical
particles in the femto-universé4], and look for the energy of one physical quark of momentum
k™ and the Fock-space structure of this state. A similar calculation can also be done for other

MAREK WIECKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. ..



5.4 Simplest canonical exampleg?® in 1+1 dimensions 89

particles. The general structure of the physical state of one quark expanded in perturbation
theory, beginning the perturbative expansion with the sfai@), is as follows:

0
M**%Ws==P%(M**%&yﬂqkﬂﬁQﬁW%W>ﬁw+

+ ‘CI, k+>phys+ }q’ k+> phys+ {q’ k+> phys ) (5'41)

where superscripts indicate the order of the calculationNiid the normalization factor. The
results for successive orders are:

gk ) s = o) (5.42)
1 1
}q’k+>(pr3ys = Eo O 10 = {H=}o 0. [0 (5.43)
where superscrifl) refers toe or g, and(2) to €, egor g?>. The normalization condition:
phy<q7k ‘qa +>phys <q7 k+ | q,p +> (545)
reduces to:
|Nk\2<1+6N(k+)> =1 (5.46)
(k) = —(KH <#)2H<g>|p> . (5.47)
Cokip T TNEO@-H) T

Here, on the assumption that < g, | have kept only the most important terms — those of order
2
g-.

+ 1 o V3
B (k™) 4nm4/0 A% s )}2 18\@m]4 (3va-m) (549
X(1—x
1 1

The physical energy (i.e., the eigenvalue of the full Hamiltonian) is also expanded in a power
series:

€
Eger = EQH+ES +ES, +EL) +ES 1) 1 ... (5.50)
Up to orderg? this reads:
m 4 1 1
_phys._ =(0) @ (2 ) g g

=E E E = — — (k|H?. ———HZ? |k 51
k+ qk++ k++ k++o+<k’k><| —<EI£0)_HO >—‘> (55)

@ _ . B
D = 5 {4 2/0 dxxz_XJrJ = [6@ }(5.52)

2

M, — o3 5.53
phys 6\/§m2 ( )

Note that this equation applies only for smglland one thus avoids the problem th%tnysis
less than zero for a sufficiently large
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5.5 Scalar model of the processte™ — hadrons

I now proceed to the calculation of a scattering amplitude that is analogetisto— hadrons
| use the equation5(11) and the perturbative expansion of théunction appearing in this
expression.

Up to the ordeg?g?, the scattering amplitude has the following terms:

weiga[ > DB ]

The last of these terms comes from:

m(2) rﬂ%hys

Hom = / [Klaax e (5.55)

which is an interaction term due to the fact thtatin (5.16) is a difference of® and arHg with
the physical mass (rather than the initial mass paranmeferTo simplify notation, henceforth
in this chapter | denote the physical massraand use a symbaoiy to refer to the initial mass
parameter ing.37).

In this model amplitude for the processe™ — hadronsl do not include the diagram:

>m<>< (5.56)

because there are no similar terms in the case of QCD coupled to QED. This term is connected
to mixing of the scalar gluons and scalar photons in this model. Because of the structure of the
color SU(3) factors there are no terms of this type in QCD coupled to QED.

Tree diagram of order €?

P2 ko
The tree diagran>< in momentum space is:
P1 ke

2
~ i

T((a,eeqi)qq(ply D27k1,k2)=4'(?) %92(2")252(&11‘1‘ ph— Ky — k) 02

pT

i i )

—mP+iekd —m2 +ie k1+k2 — Mg +ie o1

i [
— P +ig p%—mz-i-is><

8(p3)8(k{)B(k3) . (5.57)
Using equationg.11), one obtains the matrix element:

(5.58)

_(eq) _ 252 H H
outl P1, P2 | K1, K2)ip ieqe - 2(2m)°6 (pl + p2 ki — k) (k1 +ko)?2 m$+|e

The6 factors automatically equal 1 when the physical momenta of the initial and final particles
are substituted fops, p2, k1 andkp, (5.11). Thep superscripts are- or — in this expression.
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Tree diagram of oder e’g
P1
Ps

ky

& ke The S-matrix element obtained in an analogous way in cetigis:

out{ P1, P2, P3 | k17k2>i(r?qeg) = 4 (- )Seq 92(2n)252(p‘11+ ph+p5— Ky — k) x
" i N [ "
(P—p1)2—ml+ie  (P—p2)2—nmP+ie
i

XPZ—n‘eJris

For the calculation of the total cross-section, it is convenient to introduce Feynpaaameters,
defined as

(5.59)

.
X o= 2P P (5.60)
S
In this way:
e
oul P1. P2, P3 | ki, k)0 = %] 2278 (ph 4Py + Py K k)
1 1 1
x <(1—x1) +ie * (1—x2) +ie) S—ng +ie (5:61)

The same expression emerges from the old-fashioned light-front Hamiltonian perturbation the-
ory (i.e., with thek™ integrated over residues).

Triangle €?g? diagrams

p1
ky

P2 & The part of the scattering amplitude corresponding to this diagraim is

out 1. P2, P3 | ke ko) @) —4. (i)t €825 2020780+ - P ph)

|n]> 2 2 +k2 n‘%+|s
dk+dk— i . N i i B
2022 KZ— 2+ ie [B(kT)y—+6(K")—] (k+ p2)2—nP+ie (pr—k)2—mP+ie
1 .
— eqg’ 2(2m)%8%(ky + ko — p1 — pg)m(—l)A(s). (5.62)
[ dktdke 1 1 1
Als) =1- 2(2m)? k2 —mP +ie (p1 — k)2 —mP+ie (k— pp)? —mP +ie (5.63)

8 In this expressiore(k+)>_ ande(k+)>_ denote alB-factors corresponding to a given ordering.
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The functionA(s) can be calculated by introducing Feynman parameters or by first replacing
integral overk™ by a sum of residues. The result is:
1 o 1-2d
Im(A = — .64
MAS) anf 1—45 1- 3 (5.64)
2
— 1+v1-40
ReA) — L O [2zm . 12, [0+ V| (s65)
4t 1-30 (33 V1-4d 40

whered := n?/s< 1/4.

Diagrams with loops on external lines
P1

ky \/\

<
+
p2 ko

When one adds these diagrams to the tree diagram, the latter can be factorized:
H+M+% -

1 (EDr0)

(5.66)

The sum in the square brackets can be treated as the two first terms of a geometric series.
Summing such a series and multiplying the result by the propagator of the external line gives:

1+ -(MJrQ) ! |

B  pPP_mPrie
1- <M+O> p2—r’|r\2+ie

= | (5.67)

P2 — M+ ig+ (—i) <@%+Q)

o= (—i)<&+0>. (5.68)

Note that, again, the functiofigk™ ) for each of the momenta do not prevent factorization. This
is because only one physical valuekof > 0 appears in this expression when it is inserted into
the LSZ formula $.117).
The result is a scattering amplitude with a modified (“physical”) propag&téi’{ on the ex-
ternal lines. Loops on other external lines can be summed out in the same way. The propagator
(5.67) is analyzed in Sectiof.5.1

MAREK WIECKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. . .



5.5 Scalar model of the process™ e~ — hadrons 93

5.5.1 Relationship between quark eigenstates and properties of the prop-
agator

The loops on external line$.67 sum up to exactly what one would get if one simply con-
sidered a two-point Green’s functigi®| T, ,(x)@(x’) |0), independently of the full S-matrix

calculation. The detailed calculation of this two-point Green’s function for a light-fggnt
Hamiltonian is presented in Appendid. Below, | analyze the result of this calculation.

Position of the pole

The full propagator is:

2 -
0+¢?) _ [ &P ipa) !
T (Xl,Xz) = /(2]'[)26 1—X2 p2_mz_|_ig-|—f(p2) (5.69)
2 .. & 8 1 _
f(p?) pr marctanﬁJr(mz mg) (5.70)

whered := 4n?/p? is assumed to be in the regidre (1,). The value of functiorf atn? is
zero. Therefore the pole of this propagator remains unchanged, namely the pope igjnal
to the physical scalar quark mass.

There is another way of writing the perturbation series. Namely, one coultigiséth
the initial massm% for denoting the leading term in the evolution of asymptotic fields, and the
physical mass emerges when corrections are included. The only difference will be, that the
mass in denominator of Egs.69 will be the initial massmy, and there would be no terms such

as:
N
H (5.71)

in Eq. (6.54. Accordingly, f(p?) would not have the ternfm? —mg). Still the pole of the
propagator will be at:

e = M- f(mR)=mg- & L _pp (5.72)
pole ’ .

which is exactly equal to the physical mass calculated from the Hamiltonian eigenvalue equa-
tion (5.53. Since this second way of writing the perturbation series is shorter (due to absence
of terms like 6.71)), this is the way how the expressions will be written in the 5+1 dimensional
case in Sectiob.7.

Residue

In the vicinity of the pole, functiorf can be expanded into the Taylor series:

df
f(s) = f(mP)+ (E(mz)) (s—mP)+... (5.73)
From this, the denominator of the full propagatbr69 can be approximated near its zero by
. 2P df
P2—mPiiet f(p?) " ~ (p? —n?) {1+£m2] . (5.74)
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The derivative can be calculated using the explicit form of the fundtigat), Eq. 6.70. Thus,
in the vicinity of the polep® — n?,

Z

2(0+¢?) - =
T (p) -

(5.75)

with

ﬁ:l-%(sﬁ—n) : (5.76)

which agrees with the normalization factor of the physical sta#d, as expected in(8).

5.6 One-loop calculation of a renormalized Hamiltonian for
effective particles in asymptotically free theory: ¢ in 5+1
dimensions

5.6.1 Canonical Hamiltonian

| consider here @ QFT in 5+1 space-time dimensions defined by a Hamiltonian:

H = Ho+HE+HS +HS+XA (5.77)
kJ‘Z + I’n2 + kJ‘2 + m2 +
Ho — / K= b} by o+ / K -af g+ (5.78)
kJ_Z + kLZ + m2
T T
+ e Gt [ al e (5.79)

HA — g / 1238(1+ 2~ 3)[Ta] (bibjcs + Cjbrby + 2b]cbs + 2bibrc ) (5.80)
HE = % / 1238(1+ 2 3)[7a] (ajajcs + clondz + 20]clas + 2aianc;)  (5.81)
HA — g / 1238(1+ 2 3)[Ta] (alafes + alaae + 2aalds + 2a}cha) , (5.82)

where[k] = d*k*dk™ /2(2m)°k*. Asin the 1+1 dimensional moded, couples scalar analogs of
electrons to scalar photoridg, couples scalar quarks to scalar photons, ldgdouples scalar
qguarks to scalar gluons. This is the simplest theory with asymptotic freedom and the structure
of diagrams that resembles realistic cases of QCD coupled to QED.

In comparison to the 1+1-dimensional case [6f30)], we have here integrations over four
additional perpendicular directioks. This leads to ultraviolet-divergent integrals and requires
regularization. The form of the regularization factogsis quite arbitrary. | choose a simple
regularization, depending on perpendicular momenta only, namely a factor:

ra(x,K) | = exp(—2k?/A?) (5.83)

in each vertex.80-(5.82), creating or annihilating a pair of particles of relative perpendicular
momentunk .. The same regularization was used earlier for the bound-state problem discussed
in Chapter.

| present here two different definitions of the effective Hamiltonians, and thus two ways
to perform the renormalizationThe first approach, described in Sectioh.6.2 is based on
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a simplified RGPEP transformation. | construct the effective scalar-quark basis based on the
strong-interaction Hamiltoniaklg only, and express the full Hamiltonid#® in terms of this

basis. This approach defines the effective scalar quarks on the basis of their strong interactions
alone, neglecting dressing due to electromagnetic interactions; it does not introduce effective
scalar photons or scalar electrons. This is a very natural approach, especially for the description
of the scattering of bound states: to describe the bound states of quarks itself one naturally looks
first at their strong interactions. These interactions define the degrees of freedom natural for a
strong bound-states description; the electromagnetic interactions are less important.

Theete™ — hadronsscattering amplitude up to ordetg? is unusual, in that all the diver-
gences that appear in it are due to strong corrections to electromagnetic interactions. The coun-
terterms from the simplified RGPEP, based on the strong interactions only, are thus sufficient
to make the amplitude finite up to the ordBg?. This would not be true if the electromagnetic
interactions of quarks (e.qg., in the ord#) were included. Furthermore, the calculation is con-
siderably simpler, for example, it is enough to calculatdthéransformation of RGPEP in the
second order (i.eg?). The drawback of this simplified approach is that the resulting Hamilto-
nian is applicable to only a limited set of processes. Details of the formulae for this approach
are given in AppendixC.3.

In the second approachdescribed in sectiof.6.3 the RGPEP is based on the entire
Hamiltonian. It defines counterterms and the effective Hamiltonian applicable to all processes
at a given order of perturbation theory. To calculate all the counterterms needed for a description
of theete~ — hadronsscattering amplitude to ordefg?, it is now necessary to apply RGPEP
to the third order, rather than just the second. Although this approach is more complicated,
it turns out that it leads to exactly the same counterterms contributing " #ve— hadrons
amplitude in the ordez?g?. Other counterterms would only be needed if one wanted to perform
higher-order calculations (e.g., teecorrection to this amplitude) or to describe processes other
thane™ e~ — hadrons such counterterms could only be found using the full RGPEP.

Both approaches are presented below up to orders that allow one to calculate counterterms
of the orderg? andeg?, since this is sufficient for calculating thee e~ — hadronsamplitude
up to the order?g?. It should be stressed that | calculate here counterterm operators in a
Hamiltonian, which in general are not the same as counterterms for a specific term in an S
matrix (cf. Sec5.3.2showing a simple example of the difference between an S-matrix element
and a full off-shell operator).

5.6.2 RGPEP based on strong interactions only, up to ordeg?
Interactions of scalar quarks and scalar gluons

In the simplified approach, RGPEP is based on the strong-interaction Hamiltonian. Thus, the
resulting strong part of the effective Hamiltonian (i.e., org®ris similar in its structure to the
effective Hamiltonian for Yukawa theory, as described in ChapteBelow, | list the corre-
sponding terms (see Sectioh$ and3.4 for details).

The zeroth order Hamiltonian for quarks and gluons does not change:

T, 0,q9 = Hoqg - (5.84)

In the first order, @), the effective Hamiltoniaﬂ&(g) is simply the sum of all strong vertices
(Eq. (6.82) with similarity form factorsf, . ;&
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In the second ordergf), there are two kinds of terms that contribute to the scattering am-
plitude in question: The first kind is an effective “potential” term, that is, the term with two

creation operators and two annihilation operato@ (not divergent and not requiring any

counterterms). The second kind is an effective scalar-quark mass term . This term is
quadratically divergent id:

o
Ham = I ]b*blp’)“%
b

— & -

H R

2 4
g dxd*k P
5 = S I 1y ba e 1| rF]+omE + o2y, (5.86)

where the last two terms come from the counterterm. The rule for constructing counterterms is
that they should remove regularization dependence from the effective Hamiltonian. The part of
the integral $.86 with the form factorf, is not sensitive to the cutoffy, but the part without

f is quadratically divergent. The counterterm required in the canonical Hamiltbtftais
therefore:

£y +xA (5.85)

-,

4._.__..

A phys
X5 =

m

X
|

Mg + 32
LS
a b i

- L & + o (5.87)

HE R

2

. g 4
S — S / / d* +1 Jr3]= (5.88)

gZ AZ
(4Tr) { 4

n12 n2 +finite term% . (5.89)

The finite part of the counterternﬁmﬁhyg has the following physical interpretation: the energy
of one physical scalar quark in perturbation theory usiigs:

12 HE
+m? 1 -
@ _ P + v 4 & ~ (5.90
pt <p!p><p| el P =" (5.90)
12
PP PR (5.91)
N p* oot '
Hence, the finite part of the countertelﬁmf)hyS shifts the scalar-quark mass from the initial
valuen? to the physical value:
SMEpys= Mopys— NP . (5.92)

The same value of the physical mass is obtained if one calculates it using the effective Hamilto-
nian 74, : the lambda dependent part of the effective mass term (the part &.&§.with 3)
cancels with the effective verticdgHy, and the result for the physical one-particle Hamiltonian
eigenvalue is agairb(91]).
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Interactions of scalar electrons and scalar photons

The effective Hamiltoniar#4, is calculated by expressing bare-particle creation and annihila-
tion operators in terms of effective-particle creation and annihilation operators. However, in the
simplified RGPEP considered here, only the scalar-quark and scalar-gluon degrees of freedom
change. Thus, the interaction of the scalar photons that do not involve scalar quarks, and the
interactions of the scalar electrons in the canonical Hamiltonian, are the same in the simplified
effective Hamiltonian.

As a consequence, th interactions of scalar electrons are not renormalized. The theory
defined in this simplified way is thus sufficient to describe quantities such as the scattering
amplitude similar t&"e~ — hadronsup to the ordeg?g?, but not sufficient for other purposes.

Interactions of scalar quarks with scalar photons

effective #),
Hcan no change ‘ U1Hcan ‘ UHHHcan

S

The above ternfsemerge in the effective Hamiltonian in the following way: the effective
Hamiltonian expressed in terms of the effective particles is simply equal to the canonical Hamil-
tonian expressed in terms of the bare particles. The forms of both Hamiltonians differ, because
the same operator expressed in terms of two different operator bases has two different forms.

Having derived the bare creation operators expressed in terms of the effective ones (see
AppendixC.3), one can simply insert this expression into all terms of the canonical Hamiltonian
to get the effective Hamiltonian. The table above shows all the terms that appear in the effective
Hamiltonian when the bare scalar quarks are re-expressed in terms of the effective scalar quarks
and gluons.

One might also expect terms corresponding to the following diag% (coming from

the mass counterterm contributionﬁfﬁ? He), because they would be of the ordge, which is
included in#, . However, because of the structure of the RGPEP transfornmidfiothere are
no such terms i, . Both terms markedyyHcan in the above table are divergent, and they
require counterterms.

HE = Fapng =g / 123ala}asd(1+2— 3)[Ta]x

1 ~ B 1 (py)? e 2.2
xpf/[45]6(4+5 1)( 2) —(Mgs—mZ)z(l foa)? 2] (5.93)

There is also another term, witl < 2), leading to exactly the same contribution. The tilde
over ¥ indicates that it refers to the simplified RGPEP transformatibrwithout a tilde will

be used to refer to the full RGPEP in Seg.6.3. In this term, — g thK?/A? (dy = 4 for
regulators .83, but this is arbitrary; finitel,-dependence should also in principle be removed

9 A similar table of terms for QCD coupled to QED is given in the Apperfdix 2
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98 Covariance of scattering amplitudes calculated with an effective Hamiltonian

from the result). The regularization-dependent part of this expression has the following form:

5{;§"+>NA - / 123alalad7a B(1+2-3) (y>w R A) (5.94)
1
Yo atYe ) = 2((92?1)36 {an_G/o dx x(1—x)Indy +const} (5.95)

This requires a counterterm%, of exactly the same form and opposite sign. This is an

example of aterm it , which in the simplified RGPEP does not feature the overall formfactor
fy In electromagnetic vertices. This term contains a regularization f@that cannot be
replaced by 1 (i.e., by its limit foA — c whenA is finite).

The second divergent part is the triangle term:

HE = Fabeo (5.96)

The ¥ function is given explicitly in Eq. €.72). Its divergent part is:

ﬂ;%hA = /[123q1q§q38(1+2—3)y>,’A (5.97)
_ gt
R x/ dz—2 z+m2) (5.98)

denotes here the product of three regulators corresponding to the three Hamiltonian vertices
of the triangle term%.96), in the effective Hamiltonian. For the choice of regulat@&s30
in this expression is:

z
Ta]=exp(—tr75) - (5.99)
with
X2
Ch = (2+ X—;) . (5.100)

Although the specific value af, changes the result only in a finite way, is arbitrary and all
ch-dependent parts off, should be removed by counterterms. After adding contributions of
both orderings of the scalar-gluon emission and absorption verticeand > —, one obtains:

o%ey A2 1 1
)e T w{'”ﬁ‘le_z/xldxﬂ‘x“”cﬂ(xl)*
+X1 dx(l x)Inc, (xz)} +const} : (5.101)
1

A countertermX;_ of opposite sign is required iHA.

5.6.3 RGPEP based on entire Hamiltonian, up to orderse and gée?

Section5.6.2described the construction of the effective Hamiltonian based on the introduction
of effective scalar quarks as required by the strong coupling Hamiltonian.
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5.6 One-loop calculation of a renormalized Hamiltonian for effective particles in 5+1... 99

In a fully renormalized theory, however, it is necessary to define the effective interactions
in such a way that they all contain form factors (cf. Sef). This requires the introduction
of effective particles of each type — not only quarks and gluons, but also effective photons
and electrons. Moreover, when constructing effective quarks one has to take into account both
their strong and their electromagnetic interactions. Below, | show only the terms needed for the
comparison it with the simplified approach above, and in order to calculaée ¢he— hadrons
scattering amplitude up to the ordeg?.

In this full approach, botk? andU, now involve all the interactions, and thus the effective

Hamiltonian has more terms coming from more sources. For example, %Pt??rﬁ‘ comes
from: (1) H2 of orderg, andu(€9; (2) H2 of orderg, u@ andu’®; (3) H2 of order O (the free

part) ancu(gze); and so on. This can be compared to the previous case, %ecame from
only one sourceH © andu(@®),

All the terms of the effective Hamiltonian given below are derived from the general formulae
of the AppendixC.2

In the zeroth order one gets the sum of free Hamiltonians.

In the first order one gets all thdy, vertices with form factord, .

In the second order there are three terms which are not divergent:

}[;ez) = a2 HEOHO = £ (5.102)
H = oD HOHO = £, 72 (5.103)
HE = facFil) HIHO | = focF o2 (5.104)

and one term that is divergent, namely the term which shifts the effective mass of the scalar-
quark:

2 _ 7
Hsm = Fapp —E (5.105)
(I do not list here divergent terms which do not contribute todgfe® S matrix, for example
terms changing effective mass of scalar electrons). The scalar-quark ma%ﬂs exactly
the same as the term described in the previous section (cf. =§9) This means that a
counterterm is needed, which has the form:

a b

- -

o, =i & + o . (5.106)

10A term % means a term i, ~ q'q'a, coming from two interactions of ordgrand one of ordee, and
with momentum configuration corresponding to this form of the diagram, enforced by correspdsidimaions.
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100 Covariance of scattering amplitudes calculated with an effective Hamiltonian

In the third order (i.e., terms witlf (%)), there is one term that does not diverge. It is of
orderé?q:

9 = faaFumd . (5.107)

There are also two divergent terms of ordée — the triangle term:

HEL = faaFanie , (5.108)

and the scalar-quark self-interaction term:

HE = fa 72 . (5.109)

In the first of theseﬂf%ﬁ, the divergence comes from the parts?(jﬁgd (C.59-(C.60 that
do not have any, factors. These are:

T(S) = [y d{T[abd -1 + 1 +
LB ¢ ab? + b2 +cd2+bd?2  ab?+ bd?

) ~1 1
+an (b +-cd) [ab2+bc2+cd2+ab2+b02+cd2+bd2} }+

-1 1
—f-nabc{nacd {ab2+b02+cd2+ac2 + a02+cd2} +

2 —1 1
+Lac (baf +bc?) {ab2+bcz+cd2+ab2+bcz+cd2+ca2

} 1 ,(5.110)

where the subscrigt in T;’1+>WA indicates that only the divergent part is listed. Definitions

of the momenta combinationdl, mand{, are given in Egs. .49-(C.51). | denote the
momenta in the triangle term as shown in the figures:

o

ab c

(x—x1)P+ (k! —Kp5) (5.111)

I ———
[ GO

xoP — Kf}
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5.6 One-loop calculation of a renormalized Hamiltonian for effective particles in 5+1... 101

In Eq. 6.110, the following combinations of momenta appear:

K2+

2 . _ a2
M? = x(l—x)_MC (5.112)
2
K—l;XK12> +mP 2
_ 2( X2 2 SR g2

ba = x5 X—x)1—¥%) —x—le (5.113)
cd = M>—ng— M? (5.114)
ca = M?—M5— M? (5.115)
e XE=Xxig0 (5.116)

(X—X1)
bd — 22 g2 (5.117)

X—X1
ad = Mp—ng (fixed), (5.118)

where the limits in each case mean the ultraviolet limit of the intermediate montefftas-
m?.s. M2 Substituting these limiting values "> Eqg. 6.110, leads to:
) 12 g g %‘4»%’ q (5 Q’

x—xq (P+)?

(3) B
T%,A,M2>>m2,s T X M4 (5.119)

Using this limit, the divergent part @(3) corresponding to the triangle diagrams can be written
as:

G = / [1238(1+2 - X188y, (5.120)
. 2 1 dXd4K 3)

Vo = 9 (3(42(21'[)5PJr / X(l—X)(X—Xl)P+T>',A N
B 92eq Q4 1 1 B 00 d_Z - i
= 2(2“)5?)(—2/)(l dx(1 x)/a . exp( anz) ) (5.121)

Above expressions, and in particular definitions of momental(l), referred to only one term,

E . In fact, there is another term with different ordering of the interaction vert?t%s—,.
Adding the effective Hamiltonian terms coming from both orderings leads to:

gZGq AZ 1 1
y<%+>,>7A = W{an—Z{X—Z . dX(l—X)InCn(X1)+

+£ 1dx(l— x)Inc, (xz)} + Const} (5.122)

Xl X2

whereconst denotes a constant independent of regularization. The choice of regularization
(5.83 means that

2
G (X0) = <2+ %) (5.123)

but this choice is arbitrary, and properly chosen counterterms should also remove the finite
dependence on regularization (see at&d)[
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102 Covariance of scattering amplitudes calculated with an effective Hamiltonian

The second divergent third-order contribution corresponds to the following diagram:
o (1_X)ﬂ_KJ_ I

I S N

[ SRR [

(r?ot: th;l repeatgd indey. The divergent part of the correspondiﬁégd ¥
Fasatn = ”bad{"abd [Zabz +;;2+ b " al? i bdZ} *
Zap (baf +-ack) [Zabz_j a? " 2a? + a1d2 n bdz} } *
+ZpaPyd a% + {paPyd am (5.124)

The underlined term could lead to quadratic divergence, but there is another contribufipn to
coming from the mass counterter%

fga—1
= PJadagT(—l) =

faa—1 P faa—1
=P}, dga (1)ﬁ§_+pd+a dga (1)>—— (5.125)

The first part of this expression cancels exactly the underlined part inBEi4. The second
part does not depend dn Substituting the ultraviolet limits:

3)
g}

2
> . KPP 9
M — m — b,loop (5126)
K2 4P 5
ba = X(l_x)—mZHM (5.127)
2
B K12+m2_ _
ad = oo mg (fixed) (5.128)
2
bd — P22 .4 M (5.129)
X1 X1

to all the remaining parts of Eq5(1249) leads to the following form of the part gf; which

leads to the divergence:
g _ NP
%,A 2M4 ’
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which in turn leads to a logarithmic divergence in the effective Hamiltonian term. As a result,
the divergent part of this term i, takes the following form:

ggqu = / [1235(1+ 2~ quqzaam Yoy (5.131)
Q dz
Voo y Vo, = 92:15 &3 2/ o x(1— x/ Zexp(~th ;) = (5132)
2
= 2?4?3 {(13 s}z /dxxl x)Indn+const} (5.133)

Again, const denotes the parts that do not depend on the regularization. In the case of the
regulators considered hew, = 4, but since regularization is arbitragy could be different —
it introduces a finite dependence on regularization and must thus be removed by counterterms.

5.6.4 Summary of counterterms

The complete renormalized canonical Hamiltonian is given in B¢, with a mass countert-
erm of orderg? and vertex counterterms of ordg’feq. The mass counterterm is:

oirg
X = [ [Plbjop (5.134)

whereémi is given in Eg. 5.89. The vertex counterterms are:

2 2 2
X£9_ 6 _ xl@9, x99 (5.135)
x&@ — /[1235(1+ 2-3) q1q2a3< + (1< 2) +finite parts) (5.136)
x(o’®  _ /[12345(1+ 2—3) q1q2a3 < + (1 < 2) +finite parts) ,(5.137)

wherey.__ is givenin Eq. §.133 andy,.__is given in Eq. 6.129.11

n orderg?e there are also logarithmic counterterms corresponding to a term:

)=

This is not given here, as the corresponding terms in the S matrix are not analyzed in Sé&ttion
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104 Covariance of scattering amplitudes calculated with an effective Hamiltonian

5.7 Scalar model of the processte™ — hadrons

| calculate below a scattering matrix for a scalar analogue of a precess— hadronsus-
ing Hamiltonian 6.77) in 5+1 dimensions. This model amplitude looks similar to the 1+1
dimensional case, i.e. Eq5.64). However, there are some important differences related to
the fact that in 5+1 dimensions regulatoss33 were introduced into the Hamiltonian together
with counterterm operator$.(134-(5.137 constructed in the canonical Hamiltonian based on
RGPEP. The questions | address in this section are: (1) do the counterterms found using RGPEP
without referring to the S matrix lead to a finite S matrix? And (2) can finite parts of these coun-
terterms be chosen in such a way that the resulting S matrix is covariant? The answer to both
questions is found to be positive.

Up to ordere?g?, the scattering amplitude has the following terms:

=iz o 3
DLP L

where terms like those in Eq5.(71) were excluded, and external-line propagators have poles
in initial massesng.*? All terms with loops are divergent. They are defined using a regularized
Hamiltonian, and depend on the regularization in both a divergent and a finite way.

In the above model amplitude for the process™ — hadrons do not include the following

diagrams:
>vwo<+>ﬂme< (5.139)

because there are no similar terms in the case of QCD coupled to QEB.&8)) (

5.7.1 Triangle S-matrix terms and triangle Hamiltonian counterterms

| start with analyzing the triangle term and triangle Hamiltonian counterterm contribution to the

S matrix:
X
M + >5\< . (5.140)

In this section | show, that this sum is finite, and that a proper choice of finite parts of the triangle
2

countertermx'9® (Eg. 6.137) in the HamiltonianH? makes the part of S matrix shown in

(5.140 covariant.

plternatively, one may use the physical mass in all propagators, and include terms like those m7Hy. (
This leads to exactly the same result as presented in this section, when the result is expressed in the same set of
parameters in orderg?.
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5.7 Scalar model of the process™ e~ — hadrons 105

The first part of $.140 is:

(eqed?)
M ou(PL P2: Pa [ ki ke), 7=

1 .
— eQJQZ 2(2m)%8% (kg + ko — p1 — pz)m(—l)A( p;L, pI,L,) ., (5.141)

where the functiom(p; ", pf’l,) is:

[ d%
AR; P ) =i [ ey | [] alkp Rl ) a0g)|
(ZT[) vertexa internal lineb >

1 1 1
K22+t (pr+ K2 — P+ i€ (P2 —K)Z—me+ie |

raalk™t, P ) ” 9('&?)] x
internal lineb i

X

_|_

vertexa

1 1 1

d®k = dk*dk, d*k+ = dk*dk—d*k’/2, and sums go over three verticesonnected by three
linesb in the loop.

| shall review briefly how this expression is derived using regularized Hamiltonians. The
S-matrix triangle diagrams come from a term with the fourth powet,oih the expansion of

the exponentin Eq.5(15. The tvvoHI(g) which lead to the two leftmost vertices can be ordered
in two ways, corresponding to the two ternis1(44. For each of these terms separately, light-
front denominators combine withi"™ of a relevant line to a factor like in a Feynman propagator
(see also Fi.4). The regulators act differently for the two orderings. The orderings are distin-
guished even in the 6-dimensional forh 142 by the value of the three-momenta, namely by
whether thep™ momentum of the quark in the loop is smaller or larger tharpthenomentum
of the outgoing quarkg] — k' or pj + k™, respectively).

Inthe first part of §.142, one can change the signs of all components ahd the combined
expression reads:

[ d%
ApS ) =i | (2n>6{[ [ [raa(-k"" P pr) [] 8k +
vertexa internal lineb >
+| ] [ratk s tph) ] e<k§>] }
vertexa internal lineb e
! ! ! (5.143)

"k _mPrie(pL—K2_mPrie(pa K2 _mPtie’

The expression3(.143, derivable from a regularized Hamiltonian, can be analyzed in the
following way. There are three poles when integrating dver Depending on the value &f
compared tdP" and p;, these poles can all be on the same side ofRee&k axis (and the
result of the integration will be zero) or one of the poles can be on a different side than the other
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106 Covariance of scattering amplitudes calculated with an effective Hamiltonian

two. The contour of integration can be closed in the half-plane with one pole. The non-zero
contributions correspond to tiefunctions in £.143. Replacing each integral ov&r with
(2r1) times the residue with appropriate signs leads to a sum of two diagrams:

abc

1 1 (p+)2]i

* T

J 1
1

1

1

ab+ ic ac—+ie ab+ i ac+ig

1 1 (p+>2]§

(5.144)

where in both terms there are only five-dimensional (enand four L dimensions) integrals,
and the diagrams include regularization corresponding tdthenctions. The value ok™
determines which of the S-matrix diagrams 5f1(449 is obtained.

Note that integration ovek™— from —oo to +oo is carried out in the presence of regulators
[Ta], and the result is well defined only because the regulators are there. The six-dimensional
Feynman structure is in one-to-one correspondence with the Hamiltonian perturbation theory
because the regulators do not dependtoigcf. [107]).

Attempting a similar construction of regularized Hamiltonians and a corresponding S matrix
using equal-time Hamiltonians would lead to the following problem. The contributing Hamilto-
nian regularization depends on whether there are terms corresponding to the first or the second
diagram 6.144. But these diagrams in the equal-time formalism are not distinguished by the
three-momentum only. When using equal-time momenta, both orderings have to be summed up
to arrive at the standard form of the Feynman propagatokd — n? +ig), and this would not be
possible for ordering-dependent regularization (such as introduced by a regulated Hamiltonian).
In fact, in an equal-time calculation there would be many more orderings, arising from terms
that create or annihilate three particles. However, it is not clear how to keep track of different
orderings using three-momenta, although one can easily keep track of different orderings using
k™ in the light-front approach.

One can use the kinematics, Egs.1(12-(5.118, to obtain the leading ultraviolet (diver-
gent) part of $.144). For example, the first term irb (144 simplifies to:

(5.145)

1 1 (P2 X=X (P+)2
2 1 jg ac+ie XX MA

This is exactly equal to the dlvergent part®fd (cf. Eq. 6.119). Thus, when calculating the
S matrix, the RGPEP countertemﬁﬁ; gives a diverging contribution with exactly the same

value and the opposite sign, and it removes the divergence from the triangle diagransof the
matrix.

To summarize: When calculating the S matrix using the regularized Hamiltonian, one de-
rives the expression for the functidxt p+ l, pf -+ ). This function has imaginary and real
parts. The imaginary part comes from the pame: 0 in (5.1449. This means that the invariant
mass of the intermediate statg,is not large, and this part is not sensitive to the value and
form of the regulatora. However, the real part is divergent fAr— . The logarithmic di-
vergence §.149 comes from the same expression as in the corresponding term in the effective
Hamiltonian §£.119.
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5.7 Scalar model of the process™ e~ — hadrons 107

Note that the scattering amplitude. {44 and the effective Hamiltonian terns.L0§ con-
tain different functions of external momenta. For example, the scattering amplitude is a complex
function, with imaginary part coming from the polean = 0, avoided by an introduction of.
In the effective Hamiltonian, the corresponding term is real: the regta 0 does not con-
tribute because each such small denominator is accompanied by a factor of the-tyfpg 1
which vanishes in the limiac — O faster than the denominator. Also, for momenta other than
near the pole the Hamiltonian and S-matrix expressions are different. Neverttiele® 4nd
(5.119 show that the ultraviolet parts of both the S matrix and in a coefficierfjinare the
same. Because of this feature, the Hamiltonian counterterm which reyalegsendence from
H, , also removes such dependence from the S matrix.

2
| now turn to the question of choosing the finite part of the counter )

Using Feynman parameteys andys,, the triangle contribution to the S matrix can be writ-
ten as:

-y dbl
A(p3 Py [Ta) —|/dy1/ dyz/ e

{[ [, a0 " pi )] [ o0t b e+
vertexa internal lineb >
+ raa(l™, o ) 8(ly —y1p] +Y2p;) }x
vertexa internal lineb P
2

% —  (5.146)
(12+syyo — M2 [(Y1+Y2)2 — (Y1 +Y2) + 1] +i€)

where
M=K+ y1pl —yoph, (5.147)

andltjr = kg +y1p; —Yop4 for internal lineb. Note that this is not a covariant 6-dimensional
expression: it depends on the external momenta not only through the invarians maps +
p2)? in the denominator an@-functions, but also through the regulating factays), which
depend on the perpendicular and plus momenta of the outgoing scalar quarks.

The regulators in.143 depend ork**, p5, p; only, and not on the minus compo-
nents. Since the variable changel4? does not mix+ and L. components of momenta with
k—, the regulators in the forn5(146 depend ot andl- only, and not ori—. Note, however,
that one cannot integrate this expression dveover residues: this would suggest, that the re-
sultis zero, because there is only one triple pole iwith residue equal to zero. But one cannot
integrate ovel~ whenl* = 0. This feature of expressions of the tyel46 was analyzed by
Yan [23]. Yan and his collaborators obtained similar integrals, in the sense that they combined
the denominators in a similar way. However, their integrals did not involve regulator factors
such as these used here. Yan considered a formal expression for the S matrix, and discussed
loop-by-loop regularization and renormalization of the S-matrix diagrams only.

The triangle S-matrix diagranb(14]) is combined with the contribution to the S matrix
from the triangle counterterm in the Hamiltonian. The question is whether this counterterm can
produce a covariant answer with some choice of its finite part. The answer, as shown below, is
that indeed it can. The requirement is tb% contribution to the S matrix be equal to the

negative of $.146 for some fixed value o$. Accordingly, | choose the counterterm operator
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in H2 in the following form:

X = / 1235(1+2 - 3)afabas(—ya(py ™, 3, 0) - (5.148)
1 1-y1 del
+7J- +’J— J— 2 H [
VA(pl 7p2 7) - g eql/o dyl/o dy2/ (2T[)6X
X{[ [ |raal 070 ) ” O—(ly —xapl +Xp)l|  +
vertexa internal lineb P

+

rA,a<|+7la péhj-7 pi_hj_) ” e('g_ —lei_—Fsz—z'—)] } X
internal lineb P

vertexa

2
" 12+ oo — MR [ +0)— (a+30) + 1 +ie)°

wheresy < 4m?. For these values ab, ya(p; ™, p;L,) is real. 5 is a fixed parameter,
butyA(pI’L, p;“L,) continues to depend on momenta because of the regulating fagtors

I will show that the the above choice pfs in agreement with RGPEP.

When one calculates scattering amplitude using the counterterm, one gets an expression
similar to (6.1417), but with gzqu replaced by the sum:

2 +1 L +1 4L 20 i [ e —d6|

(5.149)

x{ [ [ |raal 05" p0) ﬂ 6(—(lg —y1P{ +Y2p3))
vertexa internal lineb

+
>
+ taall™, 030y ) ” 6(ly —y1p{ +yzp§)] }x
vertexa internal lineb P
X 2 -
(124 sy2 — M2 [(y1+Y2)2 = (ya+Y2) + 1] +ie)°
2
_ 5] . (5.150)

(1% +soy1y2 — P [(y1 +Y2)? — (Yo +Y2) + 1] +i€)
The two terms in the square brackets correspond to the two terrbslié). Both terms lead
to exactly the same logarithmic divergence and their difference is finite. One can take the
limit A — oo, that is,rp = 1. Then the result is finite and becomes covariant: the dependence

on the external momenta comes only throwsgh PR, in the denominator of the first term
in Eq. 6.150:

(0Peq)A(P3 . Py [Ta)) +Va(pL . p3 . [Ta)) = (GPeg)A(S) (5.151)
1 1y del
Als) = I/odyl/o dyz/wx
x| 2 —
(124 sy1y2 — MP[(y1 +Y2)2 — (Y1 +Y2) + 1] +ig)®
— 2 5] - (5.152)

(12 + soy1y2 — P [(y1+¥2)2 — (Y1 +Y2) + 1] +i€)
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As | have shown before, the first term &.{50 has both a real and an imaginary part. The
imaginary part is finite and independent of regularization. The real paﬁ(pj*, pf’L,)

is divergent. However, the fag((s) is finite, means that the counterterm contributionSri60
removed this divergence. The diverging part of the countertérng is exactly as predicted
by RGPEP.

To summarize: the choice of the Hamiltonian countertesm49 is in full agreement with
the RGPEP requirements, and its finite part is such that the contribution obBgL0(to the
scattering amplitude is fully covariant.

It is also interesting that Bardakci and Thofrdf] have provided a new formula for planar
diagrams in scalar theories, and recently Thorn argaéd that a small set of counterterms
(including ghosts) is sufficient to obtain covariant results. Here | show that light-front Hamilto-
nians provide covariance at one-loop level with explicitly constructed non-trivial finite parts of
the counterterms.

5.7.2 Contributions of loops on external lines

The remaining four contributions to the scattering matrix are:

><+§<+>—<+>x?:< (5.153)

Below, | give the expressions corresponding to loops and counterterms on one line only (the
second scalar-quark line contributes the same amount). | examine first three terms, as the fourth
has a different structure. These three terms can be summed up in a way analogous to the sum in
1+1 dimensional case. The second and the third term can be written as the tree diagram times a
propagator and a factor in square parenthesis:

, [M+(—i)xl >_< (5.154)

(in this expressionX denotes e(émﬁ + 6m%hys> factor in the mass-counterterm operat89).

Together with the first term, this can be written as the tree amplitude with a full propagator on
one of the scalar-quark lines (marked with a bold line):

><+§<+>—<::><. (5.155)

The full propagator is a result of summing a geometric series:

= ————— [+ (™t ()X)———] = (5.156)
i
T pP—mPtie+ () (5.157)

f(p%) = (—)&™n+(—)X], . (5.158)

This result has a similar form t& (69 in the non-divergent 1+1 dimensional case.
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A similar summation would not be possible in the case of a regularized equal-time Hamil-
tonian. Here, the regulating factors which depend on time orderings would lead to terms such

+...

(5.159)
(where regularization is marked by half-circles). These terms do not reduce to a simple factor
in front of the tree amplitude — one needs all the orderings summed up to reproduce Feynman
propagators on each line — and, because of the regularization, summation is not possible.

To return to the light-front approach, functidiip?), Eq.6.159, needs to be evaluated be-
cause it contributes to the scalar quark mass and normalization of external quark states. The
second term ing.159 does not depend on external momenta, but does depefidabn(5.89),
and the regularization is present. | illustrate below the type of integrals that app&gs?in
This shows, thaf (p?) is indeed a function of scalar-quapk = pHpy only, even where regular-
ization is present. The first term in Eds.{59 for f(p?) — the scalar quark-gluon loop without
external propagators — is:

F dle— 1L
(e = () [ s

rA(k+’L7 p+7J_ ) A)

— (5.160
Kk —kZ-mPrig) [(p k(P —k)—(p-KZ-mrig 0
ket B(kH)O(pt — K)o
® dk~ 1
x —  (5.161)
—o 2TT (k—_kl-ii-l‘rlz_i_is_:) <p__k—_ (p—pf_)izkin‘lz_i_m)
2
—i : B(p™ —k") 1
N 2/ - 5.162
e L e T (5.162)
1
— (-1 Z/kké—k—k 2
(—1)g” [ [kakald(p—ku 2)p e = |z:=k"?|
= L [l L e
= 20205 o %2 Jo Pamr o mexd—x —ie oxp|—th;| | (5.169)

For regularization%.83), dy, = 4 and this function depends on the external momentionly
throughp? (note that, herep? is the square root of one-particle momentum, and not the square
of the sum of the momenta of both scattered particles). The factor corresponding to the external

line can thus be written as: 1

—mP+ie+ f(p?,4)
This is similar to .69, but this timef depends on the regularization.
| now proceed as for the 1+1 dimensional case:

(5.164)
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1) The physical mass is obtained by investigating position of the polg.b64):
a b

-

s =P — £(mP) = P4 (p) T

N

m3

P

A S—

+ (3R +3mByye) . (5.165)

where, in the loop term, there is only a 5-dimensional integration and the terms in paren-
theses are defined in Eq5.89. This is exactly the same result for the physical mass
as was obtained from the Hamiltonian perturbation thebr91 in agreement with the
spectral-representation argument. This expression is fifsitedependent) and constant
(momentum-independent).

2) The residue at the pole 05(1649:

1 df
Z = — - 1 _(n? 5.166
1+%(n¢) d<p2>< ) ( )

The mass counterterm does not contribute to this expression.

df _ o ! Qa\ [® X(1—X) Z
m(mz) - 2(2")5/0 ™ (7>/0 Zdz[z+ m2(1—x+x2))? exp(—dnﬁ)
(5.167)

This expression is a momentum-independent constant, but it does have logarithmic de-
pendence oi.

Putting them together, the first three terms of E§.1%3 can be written as the tree term (the
first term of Eq. 5.153) whose one external propagator is replaced with a propagator whose
pole lies in the physical scalar-quark mass squared, and the residue at theole is

Z
p?—ng

phys

. 5.168
+ie ( )

5.7.3 Interplay betweenZ and part of the vertex counterterm

Taken together with the factor/{/Z of the LSZ formula §.11), the terms analyzed in Section
5.7.2in the vicinity of the polep? = m%hyslead to the following term in the S matrix:

p2 k2

VZ. : (5.169)

P1 k1

where®? in the tree diagram, there are physical masses in the external propagators, and the
wave-function renormalization factor is:

N S A AN ® 1 Z
vz =1- 22(2m? (7)/0 Bt - X)/O Zdz[z+ MR(1— x4 x2)]? exp(—dnﬁ>
(5.170)

13As explained above, | analyze here separately loops coming from corrections to one external scalar-quark line.
The full amplitude has a factqr/TqZJZZ.
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The logarithmic divergence of this expression is canceled bj{iependence of the only term
that was yet not analyzed in the previous section, namely the last term i6.E§3(

>%< : (5.171)

coming from the counterterm% given in Eq. 6.132.

Thus, all the terms5 153 give a finite contribution to the S matrix. The simplest choice
of the finite part of the counterterm (markednst in (5.132), which makes this contribution
covariant is a constant independent of momenta.

5.7.4 Summary of theS matrix calculations

The result of the scalar model for the scattering amplitude' ef — hadronshas the following
structure, up to ordes’g?:

e A triangle part (analyzed in Sectidn7.]), is divergent and depends on the invariant
masss of the scattered patrticles. This part also depends on the momenta of the produced
particles in a non-covariant way, through the regulator faatgrsHowever, there is a
contribution to the S matrix of the Hamiltonian counterterm operk(& calculated

using RGPEP. This counterterm removes the infiAgependence of the triangle term

in the S matrix. Moreover, the choice of the finite parts of the triangle counterterm, Eq.
(5.148, leads to a fully covariant result. Within this form of the counterterm, one is free

to choose one parameter, the renormalization poiaty. A different choice ofsy + 0y

will lead to a change in the S matrix, which has the form of the tree amplitude multiplied
by a constant, finite fact@c,:

3¢, - . (5.172)

e Terms with self-interaction loops and mass counterterms on external lines 35ed.
sum up to propagators with poles in physical particle masses and with residinch is
a logarithmically divergent constant. The divergence is canceled by a contribution from
thex% counterterm given in Eq5(1329. A different choice of the finite constant part

of the counterterm will shift the scattering amplitude by a finite constant féc@:

Sco - >—< . (5.173)

Taken together, the result for the S matrix is:

Sa = -[1+h(s) + ¢ (5.174)

P1 kq
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whereh(s) represents the-dependence from the triangle terf.140 andcy is a constant
depending on the finite parts of both logarithmic counterterms.

| now turn to the question of whether the covariant and finite result for the scattering ampli-
tude calculated in the model using the regularized and renormalized Hamiltonian is the same as
that predicted using Feynman diagrams. The tree amplitudes of eraade?g are the same
in both approaches. To discuss higher orders, | briefly review how the theoretical predictions
compare with the experiment. When one compares the result for the S matrix with experimen-
tal findings one cannot fit all the parameters of the theory independently. This is because they
appear in fixed combinations. For example, performing a scattering experiment for agiven
gives the value of

eq[1+h(so) + ¢ (5.175)

rather than the value of the electric charge paranggtiar quarks in the canonical Hamiltonian.
Theoretical predictions for a differestare changed by: (1) a changesih the tree amplitude
(which is the same in both approaches); (2) and by a change of the fuh¢tipim the factor
multiplying the tree amplitude.

Thus, to compare the Hamiltonian approach and Feynman diagrams it is enough to calcu-
late the derivative of the function(s) overs (which means d(s)/dsin (5.150). The result,
when expressed in terms of results of the experimerg fosy (Eq.(5.179), is the same in both
approaches. Note, however, that this can be done in the Hamiltonian approach discussed here
only because | have previously shown that the result is independent of regularization and co-
variant. If f depended in a non-covariant way ¢rand L. momenta components, the derivative
df (s)/dswould not make sense.

To summarize: the result for ti®matrix obtained using a canonical Hamiltonian with non-
covariant cutoffs and counterterms found using RGPEP is finite. For a proper choice of the
finite parts of the counterterms, it is also covariant, and the same as that obtained using the
Feynman diagrams. Thus, as | have shown above, the program outlined in Chipéevery
simple Hamiltonian model can be extendedtauantum field theory in 5+1 dimensions as far
as the scattering amplitude analogouste™ — hadronsis concerned, in orde¥g?.
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Chapter 6

Summary of key findings

One of the most important questions in the theory of hadrons is how to employ QCD to describe
the strong binding of quarks and gluons together with the weak-coupling phenomena of high-
energy scattering processes in one formalism. The key feature of QCD is asymptotic freedom.
At high energies, the effective charge of quarks and gluons is small, and decreases towards
higher energies. The difficulty with bound states is that, when the energy scale is lowered to-
wards the region where binding mechanism works, the coupling constant grows and becomes so
large that experience from QED does not directly apply. The weak-coupling part is analogous
to QED, but the strong binding with coupling constant on the order of 1 appears to be quite
different from the binding in QED that is characterizeddoy- 1/137. Lattice gauge theory

is the most advanced candidate for dealing with the issues of binding. On the other hand, the
phenomenology of hadrons, which speaks of quarks and gluons as almost pointlike partons in
high-energy processes and as complex constituent particles in low-energy processes, suggests
that there is a hope for a systematic approach based on the concept of effective particles. A nat-
ural candidate for connecting binding and scattering in one systematic description in terms of
particles is the Hamiltonian formulation of QFT. This expectation stems from the fact that the
theory of scattering is based on the time-evolution described by the oper&thrwhereH is

the Hamiltonian, and the eigenvalue problem for the same Hamiltdhidefines bound states

as its eigenstates. However, in the Hamiltonian formulation of QFT, renormalization is more
complicated than in calculations based on Feynman diagrams, there is a question of covariance
when one uses non-covariantly regulated Hamiltonians, and there is a need for a renormalization
prescription which applies also to the bound-state problem, where the perturbative renormaliz-
ability of scattering matrix is not enough because one needs to control the off-shell behavior of
the interaction.

In this thesis, | have attempted to find out how it is possible to describe bound states and
scattering of particles in QFT using a Hamiltonian approach. | have given examples of a per-
turbative construction of the effective Hamiltoniaf in QFT which (1) can describe bound
states of relativistic effective fermions in a meaningful way, and (2), in a theory with asymp-
totic freedom, can be used to describe scattering and lead to the same results as the Feynman
diagrams. In order to obtain this result, it has been necessary to resolve a number of issues
mentioned in the Introduction (see pabe The results are summarized below.

In all the models considered here, | have introduced a universal regularization of all terms
in the entire Hamiltonian operator (issue (1) in the Introduction). This means that the same
regularized operator produces all the perturbative scattering diagrams, and it is also used for
the nonperturbative description of bound states, although using different basis states than those

115



116 Summary of key findings

of bare particles. This also means that one set of counterterms removes ultraviolet divergences
from all physical quantities derived using the Hamiltonian. The counterterms are constructed
using a renormalization group procedure for effective particles (issue (2) from the Introduction).
This procedure determines in a systematic way the ultraviolet structure of required counterterm
operators in the Hamiltonian (which are not the same as counterterms in a Lagrangian approach,
determined by divergences in the scattering amplitude calculations).

A heuristic outline of the problem considered in my thesis, of finding out if a Hamiltonian
formulation of QFT can be used for relativistic description of bound states and scattering pro-
cesses, is presented in Chafersing an example of a Yukawa theory truncated to two sectors
of the Fock spacel]. The general form of counterterms in the cutoff Hamiltonian can be found
in a systematic way using a similarity transformation for Hamiltonian matrices. It follows that
the proper choice of finite constant parts of the required counterterms leads to a relativistic
S matrix. Further, for the same choice of counterterms, the bound-state equation reduces to
a relativistic Dirac equation for a physical fermion. With the proper choice of counterterm
parameters, the analytic structure of the scattering amplitude, including threshold behavior, is
in agreement with the Dirac eigenvalue equation for a physical fermion. Thus, this heuristic
model example suggests that it is possible to describe bound states and scattering processes
with a single relativistic Hamiltonian within a well-defined renormalization group procedure.

One of the key problems with defining a bound-state equation for fermions in QFT on the
light front — and we are bound to use light-front dynamics for a number of reasons, explained
earlier in Sectior3.3 — is that spin factors generate overlapping divergences. In particular,
spinors introduce powers of perpendicular momenta that lead to potentials similar to a two-
dimensionald-function. This problem is common to all theories involving fermions, and the
simplest example of such a theory is the Yukawa theory of fermions interacting with scalar
particles. This theory is considered in Chaptelt is shown that, when one assumes that there
is a bound state dominated by a two-bare-fermions Fock sector, the eigenvalue is unacceptably
sensitive to the ultraviolet cutoff due to the overlapping divergences. In the Tamm-Dancoff
approach there is no systematic procedure leading to counterterms in the Hamiltonian which
might remove this dependence, except perhaps for sector-dependent mass counterterms in a
low-energy theory based on coupling coherengle However, one cannot easily extend the
coupling-coherence approach to high orders, and it is thus useful to study straightforwardly
perturbative renormalization-group approach for effective particles.

Perturbative renormalization group procedure for effective particles (RGPEP) is useful not
only because it can, in principle, be extended to high orders, but also because it naturally de-
fines an alternative picture of bound states as being made of effective particles, and these are
unitarily equivalent to the bare particles. As a result, the bound state of two effective relativistic
fermions is well-defined and free from the overlapping divergences, since effective fermions
have form factors in interaction vertices. These form factors provide convergence in the eigen-
value equation for the effective Hamiltoniai, ; they are also responsible for the dominance
of Fock sectors with a low number of effective constituents in the lowest-mass bound states.

The RGPEP procedure allows one to accomplish a number of things. One can use it to
define counterterms in the Hamiltoni&t from canonical theory with an ultraviolet cutaf
One can calculate the effective Hamiltoni# , which is equal tdH2, but expressed in terms
of creation and annihilation operators for effective particles instead of the bare ones. Building
on this, | have shown that a bound state of two fermions, defined by the eigenvalue equation
for the Hamiltonian calculated to the ordg#; is well approximated by a Schrédinger equation
for a two-body wave function, and it is not sensitive to the value of the artificial ultraviolet
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cutoff A. Moreover, for reasonable values of the paramktef the renormalization group, the
energies of the bound states in question depenal weakly, even if the interaction is only of

the second order ig. Of course, the second order is a very low one as far as scattering matrices
are concerned. However, when working with Hamiltonians, it must be remembered that the
Coulomb potential that describes the entire chemistry of atomic bonds is only of the second
order in electric charge.

Thus, RGPEP appears to provide a method for evaluating interaction terms in Hamiltonians
for bound states (issue (3) in the Introduction). The eigenvalue equations for the resulting
effective Hamiltonians in QFT determine the wave functions of constituents. Because of the
RGPEP form factord,, there are no overlapping divergences in the derived equation (issue
(5) in the Introduction). Also, the Fock sectors of different numbers of effective particles are
coupled only weakly by the effective Hamiltonian. This happens even for sizable coupling
constants, because the form factors limit the range of exchanged momenta to less than about
A, andA can be small. This leads, in turn, to the approximation of the eigenstates by sectors
with only a small number of constituents (issue (4)). These constituents have a complicated,
but calculable structure when expressed in terms of bare particles. In this way, RGPEP allows
us to derive well-defined equations for bound states of fermions from a local QFT.

For a detailed investigation of scattering processes using a Hamiltonian approach it was
necessary to review the derivation of LSZ formula for S-matrix elements. An initial analysis
in scalar theory shows that light-front Hamiltonians with non-covariant cutoffs can produce
covariant answers. It is shown that the same amplitude for scattering of physical particles
can be calculated either in terms of bare particles using the Hamiltdiftaror in terms of
effective particles using the effective Hamiltoniaf) . Since the bound states are also described
naturally in terms of the effective particles usiffj , this last result for scattering amplitude
provides a stepping-stone towards a systematic relativistic Hamiltonian description of scattering
processes in which there are bound states in the initial or final states.

The scalar theory under consideration here is an asymptotically free mgésiveory in
5+1 dimensions, whose perturbative structure resembles in the lowest order QCD coupled to
QED. Because two couplings of different strengths are introducecmralogous to electric
charge, andy, analogous to the color coupling constant — one could define two procedures
based on the principles of RGPEP for evaluating the effective theory. These are (1) a simplified
procedure, in which the definition of effective particles is based on their strong interactions only,
and (2) a full procedure, in which RGPEP takes all the interactions into account on an equal
footing.

In the case of Hamiltonian terms that contribute to the scattering amplitude analogous to
ete~ — hadronsup to the ordee?g?, both procedures lead to the same form of the counterterms
in H2. However, | do not employ the S-matrix calculation in order to determine the divergent
parts of the counterterms. Only the finite parts are determined on the basis of the S-matrix
calculation. In the case of confinement, it is expected that similar conditions can be found
by considering scattering of bound states. Thus, this Hamiltonian approach seems not to be
limited to perturbation theory in the description of physical scattering processes in theories
with asymptotic freedom.

Nevertheless, in purely perturbative calculations up to one loop, one can also find finite
parts of counterterms that render fully covariant scattering amplitude, and both triangle terms
and wave-function renormalization terms have to be considered. The covariance is obtained
despite the non-covariant regularization of the Hamiltonian (issue (6) in the Introduction) and
intrinsically non-covariant nature of the Hamiltonian formulation. This non-covariant nature
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is exhibited in the regularization factorg which depend only on kinematical momenta and

do not involve the dynamical variables such as energy (I pisend p- for momenta, and

p~ for energy). It seems that the success of our procedure relies so heavily on the expression
p~ = (p-?+m?)/p* and the simplicity of the perturbative vacuuf®{ = |0)), combined with

a straightforward connection between energy denominators and Feynman denominators, that
it is highly questionable if any similar result can be achieved using dynamical schemes other
than the light-front scheme. It is also unclear how the unitary RGPEP procedure, which in the
light-front formulation is independent of the vacuum structure, can be applied in the standard
time-evolution theory, where the vacuum structure heavily mixes with the dynamics of particles.

Several problems that must be solved in gauge theories (especially QCD as a part of the
standard model, or other theories that go beyond the standard model) could not be even formu-
lated with the examples considered in this work. Two problems are particularly significant. The
first concerns the divergences at smallariable (analogous to Feynman and Bjorkein the
parton model). The second problem is that of spontaneous symmetry breaking. Both problems
go far beyond the perturbative analysis of RGPEP discussed here, and may be related to basic
problems with the concept of empty space. Spontaneous symmetry breaking can in principle be
described using light-front Hamiltonians with additional terms correspondirg-to [15]. For
example, such terms in Hamiltonian formalism can reproduce standard results in sigma models.
But the issue appears to be much more complicated in gauge theories in the presenceof small-
singularities.

One immediate limitation of this work is that is does not describe fourth- and higher-order
Hamiltonians. These may contain surprises, as the operators one calculates are explicitly known
in their off-shell behavior and this implies that they can describe binding effects that are not ac-
cessible in perturbation theory. Until fourth and higher order calculations are completed, it will
remain unclear how far the Hamiltonian approach can be relied on in physical studies. However,
it is also possible that Hamiltonian calculations will offer new insights into the description of
bound states and scattering processes in particle physics.
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Appendix A

The notation used in this thesis

In the equations= means “is defined as”. As in the Pascal programming language, the
guantity on the side of the colon sign is the one that is defined. Thusb is read asd is
defined as a quantity equaltd, while a=: b is read asb is defined as a quantity equaldo

Al ETvsLF

When referring to the equal-time (ET) formulation of QFT, a Hamiltonid) iheans energy
(zero component of four momenturRy. When referring to the light-front (LF) formulation of
QFT, a Hamiltoniankl) means minus component of four momentBm
Standard invariant integration measures and momentum-conservation delta functions have
different meaning in ET and LF expressions. These are summarized in the following table.

Notation Explicit meaning
| in ET | in LF
Hamiltonian ‘H PY P-
Integration measures K] K] := —d3k k] := —dszkor
- (2m)32k0 - (2m)32k*
3-momentum k k= (kL K2 Kk3) k= (kt,kLK?)
Space 3-vector X X = (x1,x%,x3) X = (x",x},x%)
Scalar product <K k=352 XK = [ k= —Ixkt +xk+x%K2 =
= Xl 0_g =l g
3-momentum conservatiahs : 8(k) || d(k) := (2383 (k) | d(k) := 2(2m)35?(k*)d(kT) =
—: 2(2m)333(k)

In dimensions other than 3+1, corresponding power@af and dimensions ob(k*) are
modified accordingly.

A.2 Special notation used for RGPEP

The curly brackets{ }0 denote the additional free energy denominator. For any opekator

A:/[kcrel...kanil...]A(kcrel...kanil...)a;rrel...aanil... (A1)
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128 The notation used in this thesis

{A}ols

{A}O:/[kCrel-..kanil...]<

1
Zieanika,i> - (Zj@rekj_
(A.2)

The same denominator with a differencelof is indicated in Hamiltonian diagrams by
dashed underlining, and a black arrow which indicates wkicks subtracted from which one.
For example,

>A(kcrel...kani1...)azrel...aanil...

{— (—1) (A3)

[P ——
[P ——
[P ——

1A=

Similar figures without the dashed underlining and without the black arrow (such as in Eq.
(5.119 on the pagel00) are used to label intermediate states, and do not indicate energy de-
nominators.

For the operatoA of Eq. (A.1) and function of moment#,, the symbolf, A means

A A
-« N

fAAz/[kcrel...kanil...]f;\(kc,el...kanil...)A(kcrel...kanil...)azrel...aanil.... (A.4)

Likewise, all momentum dependent factors written in front of an operator should be understood
as part of the integration kernel. For example, if the set of particles annihilataédsogenoted
b, and the set of created particleshen @.2) could also be written as

{A}O = Z_%Aba: CbaPba - (A-5)

When talking about canonical and effective theories, a plain léttelenotes the canonical
Hamiltonian, and a calligraphigf, the effective Hamiltonian (usually followed by a letter
denoting the width of the effective Hamiltonian). All terms of the effective Hamiltor#tgn
have a limiting form factoff,. Elements of#, without the common factor, fare denoted;:

H, = 1§ . (A.6)

A shorthand notation for momentum combinations appearing in the expressiogts fme
defined as follows:

Thoe = Pjba+ PR bc (A.7)
. Tlabc
Mabe = ba2 + b2 (A-8)
Pab
= = A.9
Zab ab ( )

A.3 Shorthand notation of momentum differences

For the introduction of similarity form factor§,, a notation of two letters (e.gab) mark-
ing invariant mass differences is used in the following wa¥j [(see also Figl.1). For each
interaction term with intermediate sta@andb:
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1. P;rb is the sum ofp™ momenta of all the particles of statethat were involved in any
interaction (due to three-momentum conservation, this is the same as a similar ptim of
for the stateb)

2. abis defined as
ab= (p&a—pab> Pl (A.10)

abdefined this way does not depend on spectator particles (because their epeicaesel
out in the difference op~ in (A.10) and do not contribute tB;b). Also, when one introduces
child-parent relative momenta as in AppenBiX.1, abdepends on these relative momenta only
and not on the total momentum.

For each interaction term built of connected Hamiltonian expressions, the intermediate
“states” are ordered: it is thus clear which is the leftmost, which is the next, and so on. These
states are labeled “a,b,c...” from left to right. See for exampletFig.

A.4 Other conventions

In Appendice< andF, color matricesl are used. They fulfill:

(T9i; ™ = %(5il5jk—%5ij5k|) (A.11)
(T (T = :‘igré” (A.12)

A.5 Dimensions of fields and couplings in various theories

The dimensions of quantities involved a Lagrangian density:

L= 0 St - 3¢ (A.13)
depend on number of space-time dimensions in the following way:
1+1 3+1 5+1
L| n? m’ m®
2| m | m | o
o 1 m m?
g| m m 1

MAREK WIECKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. ..



130 The notation used in this thesis

MAREK WIECKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. ..



Appendix B

Light-front coordinates

B.1 Coordinates; momenta; scalar product

| use the so-called Brodsky-Lepage convention for defining light-front coordinates. (This differs
from the Kogut-Soper convention in its numerical factors only; &) The light-front time
is defined as

xt=x0+x3 (B.1)

and the spatial coordinate is
x =x0—x3 (B.2)

Note, that the Jacobian of change of variables is:

N
o) ®3)

a(x9,x1, %2, x3)

Momentap—, p+, p- and the scalar product is given in Sect@B.2

B.2 Light-front momenta

B.2.1 Relative momenta

For two particles of momentg; andpp, the total momentur® and the relative momentak -
are defined as follows.

p; = xP", (B.4)
P = (1-x)P", (B.5)
pr = xPt 4kt (B.6)
py = (1-xPt—kt. (B.7)

When there are more than two particles, for any particle of momefgimp™) involved in
an interaction, one can define its moment{xx") relative to the total momentuiP*, P+):

pt = xP" (B.8)
pt = xP 4kt (B.9)
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132 Light-front coordinates

(in a shorthand notatiofi = xP + k-, where the vector sign denotés, 1,2) components and
kK™ := 0). Alternatively, one can look at the interaction vertex and define relative child-parent

momentum(Xe/p, Ke/p):
pE = X/pPp (B.10)
Pe = Xo/pPp +Kgp- (B.11)

(in shorthand notatiofe =: Xg/pPp + Ke/p):
For example, in a term

5. (B.12)

momentaxy, K13, X2, K24 relative to the total momentum are defined by:

P = X:P+Kis (B.13)
Pz = (1-x1)P—kKiz i.e.xg=1—x, K33 = —Ki3 (B.14)
B2 = XP+kKy (B.15)
Ps = (1—x)P—ky (B.16)
Bs = (u—x)P+ <Kf3—K2l4)- (B.17)

Note, that in each state with particlég:

XK% = 0. (B.19)

The positiveness of app™ momenta means that alles are positive.
For regularization, the child-parent relative momenta are used. For the diagrabhthey
are defined by:

X X
1 2 1 1 2, 1
X1 X1
. (B.20)
_ 1 _X1—X2 X 1
Ps =X5/1P1+K5)1 = Xg/1= A Kg/1 = X—1K13— K24 5

and in analogous way fof4, K§/4, Xp/4 andky 4. Note that for child particlegdi} in each
vertex:

qu/p =1 (B.21)

zxé/p = 0. (B.22)
G

An integration/ [p1p2]&(p1+ p2— p3) can be re-expressed in terms of the momenta relative
to the total momentum:

(B.23)

1 / d?k-dxB(x)8(x3 — X)

/ [P1LP2l3(p1+ P2 — Pa) -+ = S e
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or by the relative child-parent momenta:

1 / d?k-dx8(x)8(1 — x) (B.24)

/[plpz]g(pl+ P2—P3)--- = 2(2m3p X(1—x)

Note different integration range$-functions), different denominators in front of, and under
the integrals.

B.2.2 Relative pseudo-equal-time momenta

When describing relative motion of two particles of the same masme can introduce a dif-
ferent set of relative momental4], especially convenient when one looks at the nonrelativistic
region:

kt = kt (B.25)

k24 1

or, equivalently:

1 ks
X=5|1l+——] . (B.27)
2( \/k2+mZ>

The definition of momenturk® is chosen in such a way that the free invariant mass of the
pair can be written as:

_ KZn?

M=

4(w2+<wy+¢¥), (B.28)
and is equal to the equal-time expression for the invariant mass in CMS:
MZ = P22 [CMS = (26)2 =4 (R +n7) . (B.29)

When changing integration variables, the Jacobian is:

12,3 12
N
k2 + P
and the common denominator in the integration measte; x), is:
12
X(1—%) — Lk 2 gme (B.31)
4 K24me
Hence,
L 3
dxcPK _ o, &k (B.32)

1% Ve
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B.3 Free scalar fields

The Fourier expansion of a free scalar figlck) at the light-front timext = 0 is:

00 = [K(afeh +ae ), o (8.33)
Kooy = %wx——kix# (B.34)

Creation and annihilation operators fulfill the commutation relation:
[ap,aﬂ — 2213k 3 (k— p) . (B.35)

whered®(p) = &(p")3(p").
A state created bgg is denotedp):

p) = ajlo). (B.36)

B.4 Free fermion fields; notation of spinors

The fermion field operator fulfilling the free Euler-Lagrange equations (the Dirac equation),
Wm(X), is expanded for light-front “timeX™ = 0 in terms of creation and annihilation operators
as:

lJ-Jm(x)|x+:0 = Z/[p] [prUmme_ip“Xu+dgcvmmeipuxu] 0" (B.37)
& -
Creation and annihilation operators fulfill:
{bpo,bly} = 2(2mk* & (k- p)3on (B.38)
{dpody} = 223" 8% (k— p)3on (B.39)

The spinors of particles of zero velocity are equal:

) )
0 0 (B.40)
szm(),vlzm( )
X-1 —X1

where the two-component spingsare:

x1=(3> Cx1= (c1)> (B.41)

Spinors of particles at motion are obtained by acting on above particle-rest-frame spinors
with matrix representation of Lorentz transformations belonging to the small group (transfor-
mations which do not change tlké = 0 hyperplane). The result for fermions is:

1
Uny = ——= [P AL+ A (m+atph) o, (B.42)

Vo

MAREK WIECKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. ..



B.4 Free fermion fields; notation of spinors 135

and for anti-fermions:

1
— [p*/\+ +/\f(m+aLpL)] Vo . (B.43)

RN

Note that,/min the denominators of.40) and in B.42)-(B.43) cancels, and there is a well-
defined, finite limit limy_o Umps.
Equation B.42)-(B.43) use projection operators.. These are defined as follows:

L= %vo (V£y) = vovi 1ia (B.44)

They are indeed projection operators:

/\+/\+ - /\+ (845)
AN = 0. (B.46)
Using:
viyr = 0 (B.47)
vy = 4N (B.48)
Yoy = —vy' (B.49)
one sees that products Af. and Dirac matrices are:
Ayr =0 (B.50)
Ay = ¥V =y A (B.51)
Ayt = yEAL. (B.52)
In Dirac representation .. fulfill:
1+ad 1 1 o3
N, = 5 =3 1 (B.53)
1[ —o3ct crl
L — p—
A_a— = 5 crL o35l (B.54)

Products of spinorg or v for equal momentg are:

UpsY Uy = 2P dger (B.55)
\7ng+ Vpo-l = 2 p+ 60-0-/ (B . 5 6)

A sum over polarizations of intermediate fermion in a self-interaction loop

H= ==
\

' .
Nl gives:

_ P (14 x)? + K2

X

wherex is a relative child-parent momentum of the intermediate fermion.
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136 Light-front coordinates

In practice, it is convenient to express standard matrix elements of spinorterms of
relative momenta and two-component spingré&or two fermions of momentgy, ps:

Pr = X:P+Kq (B.58)
P2 = XP+ky, (B.59)

involved in a Yukawa vertex, the corresponding product of spinors can be written as:

Uy =

i [m(xl +x) —03ct (lef — fozﬂ X2 - (B.60)

1
v/ X1 X2

AppendixE presents similar products for QED and QCD vertices.

B.5 Free vector fields; polarization vectors

In the light-front gaugéA\t = 0, the vector potential is:

AM = <A+ 0,A Ai) (B.61)
The independent variables aké, while A~ in free theory is constrained to be:
A- = Zi?;f‘L . (B.62)
The Fourier transform at™ = 0 is:
z / Aol € 'kx+akosk“e'kx)x+zo . (B.63)
The creation operators fulfill:
[akc,/,a{,o} — 2(21)3k+ 8% (k — P)Buro (B.64)
(o denotes polarization) and polarization vectors have to be:
_ Zk:f (B.65)
et = 0 (B.66)

with £ being two independent parameters characterizing the polarization of the field. They can
be chosen as follows:

1
T = B.67
€1 (O) ( )
0
L _
€, = (1) . (B.68)
They are normalized as follows:
SI E*I/ — 60'0'/ 5 (869)

(with summation over repeated superscijpand sum over polarizations gives:

eyl = gl 4 g7l =3 B.70
o 1 1
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Appendix C
Detalls of RGPEP

C.1 Effective particles

C.1.1 Definition of the effective particles creation operators

Effective particles creation and annihilation operatqgsare defined as operators unitarily
equivalent to the initial, bare operatays:

Ooo = UATCIAU)\ (C.1)

U, is an operator acting in the Fock space. It can be expressed by any complete set of creation
and annihilation operatoigs. Functional dependence 0, on d. anda, could theoretically

have been different. It is interesting to notice that this is not, in fact, the case: the rotation
operator expressed in both bases has exactly the same fornlJ, Latd 74 be functional
dependencies of the same unitary-rotation operator expressed in a different operator basis:

Un(h) = Th(Gw) = Ay . (C.2)

But, A A
TA(Ge) = Up(th) = A-Up(a) - AT (C.3)
A can be, for example, written @ (g ), and canceled with the underlingd This leads to:
Up(Gs) - 1} (Gs) = 1 (C4)
Ur(Gw) = TA(0) (C.5)

which means that the form of dependence of this operatay,dfuenotedJ, ) is exactly the
same as dependence qn (denoted?) ):

U (dh) = Up(0o) (C.6)

Therefore, one does not have to indicate in terms of which of these opergi{ars @) U,
is expressed. Note, however, that this is true onlydpandd.: in terms of operators;,

corresponding to a different wid#p, U, would have a different forthAAZ:

Un(h) = Up(tho) = U2 (i) » (C.7)

WhereUQ2 is a function different that, .
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C.1.2 Consequences of unitarity obJ,

U, has to be unitary:

Uiy, = 1. (C.8)
Using perturbative expansion:
Uy = (1+ U@ u®@ 4 ) (C.9)
one gets:
(u(lyr + u(l)) -+ (u(Z)Jr +u@ 4 u(l)Tu(l)) +... = 0. (C.10)

Therefore, the first order has to be anti-hermitiad{ = —u).
The second order? is slightly more complicated. One can spii®) into a hermitian ()
and anti-hermitiang?)) parts:

u® = a?4h? (C.11)
where

a?@t = _a@ (C.12)

h@dt = K@, (C.13)

h? = Zubu®, (C.14)

while the anti-hermitian parg@ is arbitrary.
To summarize, iU, is expanded into perturbative series in coupling constapt= 1+
u® +u@ 4 .. then the following apply:

e The first order term has to be anti-hermitia® ™ = —u(®.

e The hermitian part of the second-order term has toBe= uMu(®.

C.1.3 RGPEP equations

The Hamiltonian operator can be expressed in terms of operators creating bare peliigttes,

form of the Hamiltonian in this basis is denoted H), or in terms of operators creating effective
particles,qi (denoted#, ). Thus, H and#, denote the same operator in terms of different
creation and annihilation operator basis.

Fh (o) = H(0) - (C.15)
In terms of one basisy,, one can write:
Hy (Ga) = Uy 74, (6)Un = Uy H(Go) Uy - (C.16)
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C.1 Effective particles 139

Henceforth, all operators are expressed in termg©fwhich will not be marked explicitly.
Differentiating C.16) overA leads to:

d

where
. d ¢ t+ d

Note, thatT (g = 0) = 0, and therefore its expansion in the coupling constant stagfs at
Let us denote:
Hy = f\G) (C.19)
and splitGy, = Ho+ Gi. SincefyHo = Hp and (1 — f))Ho = f;Ho = O, differentiating C.19
with respect to\ leads to:
f\G+0HG =[Ho, T]+[fGi, T] (C.20)

In RGPEP, this equation is split into two separate conditions, which is an arbitrary step (i.e. the
following equations make stronger requirements than the above):

G = HIhG,T]
’ c.21
Lmi 00 e (€20
If f) is non-zero for all arguments, the first equation can be written as:
G =[0aG,T], (C.22)
and using this the second equation can be simplified:
_ B /
{ T =y, ©.23)
ﬁg = [f)\gUT]

These are the RGPEP equations from which one can calculate the effective Hamiltonian in
perturbation theory. Both expansionsToaind G start aig'. The first of these equations enables
calculatingT based on a given order of the effective Hamiltonian. The second equation enables
an evaluation of the next order effective Hamiltoni%[ﬁ”) based ol ("1, %g\(”) can then be
used to evaluat& (", and so on.

Once one knowd, one can also extratty:

d
u{d—)\uA =T. (C.24)
By multiplying this equation by, on the left, this can be written as:
d
aUA =U,T (C.25)
Thus, in subsequent orders, one gets:
U = 1+u®D+u@ 4 (C.26)
d
—u® = 7O C.27
Y T (C.27)
d%u@ _ 0T T (C.28)
with boundary conditions:
Uo=1. (C.29)
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140 Details of RGPEP

C.2 The effective Hamiltonian

C.2.1 The zeroth and first orders
In the zeroth order:
d

9.0 _

5 0 (C.30)
GO = HO (C.31)
HO = HO. (C.32)

Since both the expansion of and of T start at the first order, the first oder of the right-
hand-side of the first of EQSC(23) is zero:

d
ag<1> =0 (C.33)
" = G =HW (C.34)
H = £, =fHD (C.35)
n _ ARV OR G (RS2 Y R G
T {(1 f,)H }0 { f/H }O u (C.36)
U@ = {(c—fA)H(l)}o (C.37)
ForA — o (i.e. f, — 1)U, — 1, soud — 0, and therefore = 1.
U@ = {(1—fA)H(1)}O, (C.38)

p+
which can also be written as;) = bi(:(l— fab)Hyg -

Note that, as an additional requireméehtannot have diagonal elememalak. However,
since forab— 0 the factor(1— f4) ~ ab? goes to zero faster than the denominators, not only do
the diagonal elements not get rotated, but also terms close to the diagonal change only infinitely.
One may consider the lack of rotation of the diagonal elements as a result of the limit of the
equation C.38), rather than as an additional requirement.

C.2.2 The second order

Formulae not based on specific form off,

G? = [fAHﬂ),T(U}:[fAHﬂ),u(l)'] (C.39)

g(z) =  GHH + GH2 (C.40)
A

GHH = Ldz[sz(l),ugl)’] = TabCH(l)H(l)’connected (C.41)

Gz = HP, (C.42)
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C.2 The effective Hamiltonian 141

which defines the second-order effective Hamiltorigf = f, G2
The second-order rotation operatd? is:

d roa
902 = 7@ Ly = L 1- 6@V L ZOy®y
! T 4+uHu {(1 fA) G }0+2(u u) +
U ) (C.43)
u@ = {(1—f;\)g(2)} —f—}U(l)U(l)—i—}/}\dZ[Ulz Uy, (C.44)
0o 2 2 Jo iz '

Thereforeu® has a hermitian pargu®u®, which is in agreement with unitarity condition.
What is morep(® has parts (the hermitian parts) that are products, and not commutators, of op-
erators. It thus has disconnected parts. Nevertheless, when calcuiatithgse parts together

with uUYHu@ become a commutator, and the effective Hamiltonian does not have unconnected
parts.

Formulae for fa, = exp(—ab?/A%)

fab = exp(—ab?/A%) is the similarity form factor used throughout Chaptégsand5s. The rest
of this Appendix is thus written for this choice of the similarity form factor.
Let:

1

ti= 33 (C.45)

ab?
flab = exp(—v) = exp(—ab’t) (C.46)

d dt
d_)\f)\’ab —ab2 f)\’abd_)\ . (C47)

This leads to:
Pt ba+ Pfbc
2

Fam = bgaszg (fapafabc—1) (C.48)

The characteristic combination of momenta will be also present in the following sections.
To simplify expressions | introduce notation:

Thhe = Pppa+Pbc (C.49)
. Tlabc
Nae = {2 b (C.50)
P
= == 51
Zab ab (C S )
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142 Details of RGPEP

C.2.3 The third order

2 2 _ @Y Loy
T( ) - {(1_ f)\)g( )}ogoa'l'a - ZC&((]-_ fca).{]:abc> : H( )H( )‘connected"loaTa(C'ss)
G = (66,71 = [HHY.TO| 4+ 6@, 1] (C.54)
There are three kinds of terms.

e Terms coming from threkl (M) without self-interaction loops; these will be denoted:
3 3
gr(lo)—O— = Ta(b():dH(l)H(l)H(l) ’noi} : (C-55)

e Terms coming from threkl () with a mass-kind loop on one of the external lines; these
will be denoted:

G = TEHOHOHD| o

>

(C.56)

for the loop on the left-hand-side lines and similarly for the right-hand-side loop; note the
repeated subscript of thef;t?;d.

e Terms coming from onkl () and oneH (?; for the scalar theory the only(? contributing
would be the mass counterterm, and therefore this term would be combineg@i@;
in other theories there are also seagull terms, for example. -

The term without self-interaction loops, ﬂfﬁgd

[y

It may be helpful to think of these effective Hamiltonian terms as being of a #jpe
/ /
Faoed = Tankan | (1= Toa) Fong| — Lea | (1~ fea Fgcp| fea+

+ fcafafg (—Zdcfde) + (Zpafba)’ ﬁff& fbd - (C.57)
| combine the first and the last term into a new symlﬁ(ﬁf)&d, while the second and the third
will be calledF.3) -

dA

Fa(li):d/ (_E) = Mped[(febfed — 1) fabfodTand+
+Zdb(Cb2 + Cdz)(l — fap) fabfcbfcd] . (C.58)

Thus:

3 fabfocfeafod —1  fapfoa—1
Fabed = “de{"abd {abz 1 bZ o+ b aP+bd |

fabfocfea— 1 fabfocfed foa — 1
2 ablbclcd . ab!bclcd !bd
+an (be” +-od) {ab2+bc2+cd2 ab2+bc2+cd2+bd21 } - (€59)
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C.2 The effective Hamiltonian 143

Likewise, the second contribution is:

fab fbc fcd fac -1 . fac fcd -1
a’+bc?+cd2+ac2  ac?+cd?

fabfb(:fcd -1 fab fbcfcd fca— 1
Hlac (ba +bc) [ab2+bc2+cd2 ab2+bc2+cd2+ca2] } - (C.60)

Féfz,a = I_]abc{'“élcd[

This agrees with40].

The term with a self-interaction loop on the Ieft-hand-side,f;sgd

It may be helpful to think of these effective Hamiltonian terms of being a .
There are two differences comparedﬂféfgd: the c state has exactly the same momenta as

(therefore, for examplegc = 0) and there is no contribution from(® that would be propor-
tional toa'a. This leads to:

/
Famd = fabZdb[(l_fbd)fb(azc)j} +0+ a2 (~Ldafda)’ + (Zpatba) Frgfod (C.61)

2
3 fapfadfbd—1  fapfoa—1
Fabaa = M bad{m"bd [Zabz +al+b?  aPLbd| "

f2 foq—1 f2 foqfpg— 1
2 ab'ad _ ab'ad Tbd
an (bet +-ac) [2ab2+ad2 2ab2+ad2+bd2] }*

faa—1 faaf3 —1 ] (C.62)

+ _
+Zbanada[ d&@  2a?+ad?

Mass-counterterm contribution to G®)

It may be helpful to think of these effective Hamiltonian terms of being atype
Again, the mass counterterm does not contribute directlj}'&. Therefore only the second
term of Eq. C.54) leads to this kind of terms, namely:

N
g> (d)\) _ Xg,m%dazfdachonnected (C.63)
G2 = (-1)Za(faa—1)- (C.64)
> a{lda _
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C.3 Other operators in terms of effective particles

The equation:

o = UlgU) = (C.65)
= gy —uBoy +qu® —uBguu® +u@Tgy +guu® (C.66)

expresses creation and annihilation operagrs terms ofqgy, (or the other way around). This
means, that if one has any operafoexpressed in terms of one type of the creation operators,
it can be re-expressed in terms of the other set.

One may take the example of changing the creation and annihilation operator basis of the
guarks, according to the formulae (i.&l)) based on strong interaction Hamiltonian. This
Hamiltonian will be denoted:

HQCD:H0q+HOg+H(g)+H(gz) (C.67)

Note that, in this thesis, | analyze scalar and Yukawa interactions only. Yet, the scalar theory of
Chapter5 is designed in such a way as to produce a scattering amplitude analogous to that of
QCD coupled to QED. | thus refer in this Appendix to a strongly coupled part of a Hamiltonian
asHgcp even for the scalar theory. In the case of the scalar Hamiltonian of CHaites”)

would just consist of quark and gluon mass counterterms; in the case of real QCD, it would be
more complicated (it would have the seagull terms, for example). Now, let us re-express full
Hamiltonian:

H = Hqcp + Hoe + Hoy+|-|(e)_|_|-|(62) (C.68)

in terms of effective quarks and gluons as defined by their strong interactions.

Interactions of effective quarks and gluons

Because the strong interaction Hamiltonian is defined in terms of quark and gluon creation and
annihilation operators only, when re-expressed in terms of the effective particles it is such an
effective Hamiltonian as defined in Appendix2.

In other words, if one rotates quark and gluon creation operators as required by the strong
Hamiltonian, its form in the new basis will be exactly as demanded by the RGPEP equations.
Note, that the free quark and gluon parts also contribute to the effective interaftidhrough
terms ofu®, i > 1.

Hx.oco = fAGr.ocp (C.69)
The question is, therefore, how changing of basis of quarks and gluons would affect the
electromagnetic part of the Hamiltonian.
Interactions of effective electrons and photons

By contrast, the parts of the Hamiltonian that did not have any quark or gluon creation or annihi-
lation operators will not notice the change of the basis. These parts of the effective Hamiltonian
are exactly equal to the corresponding terms in the bare Hamiltonian:

H)\’e7y = H(x)’e,y . (C.70)
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C.4 Notation used for the simple model 145

Interactions of effective quarks and gluons with photons

The electromagnetic interactions would thus only notice the change of the basis if they involved
guarks. Note that because the Hamiltonian is expressed in terms of the products of quark and
gluon creation operators, rather than rotating each creation operator separately one can perform
a unitary rotation of the whole term of the Hamiltonian.

Since the rotation is expressed in terms of commutators, only connected parts will appear.
As an example, | will consider hence a rotation of a term which creates two quarks from a
photon. There is a corresponding hermitian conjugated term that annihilates a pair of quarks,
terms with photon emission from a quark, etc., but neither of these contribute géetherder
scattering amplitude fog"e~ — hadronsanalyzed in Chaptes.

<1— u® + U(Z)T> Helcon = He — {(1— fA)"'((glc)D}OHE’con—

— {(1— f;\)Hg():D}OHE|con + (jjabcH((glc);DH((gl();D) Helcon (C.71)

(con means that there is only the connected part of corresponding expressions). Théfactor
in the last term is:

P~ Ptba+ P bc
—ﬁw fca(l— fbafbc) +
PP PuPa, PR

baca bcca " babc 2

A similar term forac = 0 has to be analyzed separately. The only contributions of this
type may come only from terms that come partially from two separate gna#ations of each
quark. This leads to

?'abc =

(C.72)

; 1 (P’ 2
Faa = 5 () (4 tfoal ©73)

This result is analyzed in details in Sectibré.2 and also used iR.

C.4 Notation used for the simple model

Below | give details of the notation and calculations used in Chaptdihis is based directly
on [1].

The simple model considered in ChapBeuses a slightly different notation from the rest
of the thesis since it is limited to a subspace of two sectors of the Fock space and uses an
algebraic version of the Hamiltonian similarity renormalization procedure with sharp similarity
form factorsf) (“diagonal proximum” operatorsg].

For any operatoA,

A= [11) 21, (C.74)
where|i) are eigenstates of a free Hamiltonidp, {A}o is defined as:
{a} = [l ane (C.75)
0 E>—E; ’
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whereE, andE; are eigenvalues dflp, corresponding to the right and left projection states
respectively. This means th@A}O has a form similar teA with a simple addition of an ex-
tra denominator, with difference of energid¥ { of all created and all annihilated particles.
{A}, is the solution of the equation:

[{A}O, Ho} —A. (C.76)

The action of the diagonal proximum operatgris defined as:

WA= [ 11 @ 2Aw. (C.77)

In the algebraic version of the similarity renormalization proced@te gne has to choose
sharpf,. For the calculation in Chapté the following was chosen:

fA(1,2) = O(N> — | MF — MZ]) (C.78)

where4/; is the free invariant mass of a statel'his means that, whefy acts on any operator,

it chops off all far off-diagonal terms (multiplying them by zeros) and leaves only terms which
do not change the free energy of a state excessively (i.e., by morg)thiote that, to simplify

the notation, | omit the tilde symbol in formulae such @s77) and C.78 and use the symbol

f, for both the operatof, and the functiorf,, except where this might cause confusion.

The functiona(s), B(s) andy(s) are defined as follows:

_ 1 2 2 a2 X

a(s) = 16nz/dM B0 =M (C.79)
. 1 2 2 2 1

B = —1z / A2 O(A% ~ M?) . (C.80)
. ) 2 a2y (L=X)M2— P+ (1—x)?

v(s) = / 2 dx 8(A2 — M?) e , (C.81)

wherex is integrated over the whole kinematically allowed region, kdéas to be between the
two solutionsxg of the equation:
m

M?=—+
XB 1—xg

, (C.82)

andM? ¢ ((m+ w>; oo). Also, a limite — O (after performing the integration il©(79-(C.81))
is implicit. a, B andy are divergent functions of the cutaf Their finite parts are defined as
follows:

T 1 N?

as(s) = AI[)nO0 a(s)+mlogﬁ} , (C.83)
T 1 0?

Bi(s) = A@m B(S)JFW'OQW]’ (C.84)
T 1, 1 o, D2

Vil = Jim |Y(s) - 382 5 —nr?—zmlogﬁ] | (C.85)
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Appendix D

Yukawa theory

D.1 Canonical theory

D.1.1 Hamiltonian in terms of the fields

The starting point for the procedures in Chaptés a Lagrangian:

L= (iﬁ—m—gcn)ww%(aucﬂa“cﬂ —2qf) | (D.1)

wherey; denotes a doublet of fieldg), = (J;,T,), and the fields with a subscriptare full
interacting fields fulfilling Euler-Lagrange equations for the above Lagrangian:

@"u+1)p = —ghiy (D.2)
(ig—m—g@)y = 0. (D.3)
Fields without subscript will denote free fields, fulfilling Euler-Lagrange equations for the

above Lagrangian witly = 0. Using projection operators.. (B.44), one can define the two
components of the fielg as:

Yy = Ay (D.4)
Yo = Ay . (D.5)
Multiplication of (D.3) by A, leads to:
1 /. 1
b = = (iotat+mB)w. + —Boay. . (D.6)

which is a constraints equation: when one provides initial conditions, this equation has to be
fulfilled explicitly. One introduces fieldg fulfilling free Euler-Lagrange equations as follows:

Y = lIJ_+L|J+ (D.7)
._ g L fialgl
b = 4 (9=0=— (.a a +mB> W, . (D.8)
The full interacting field can be expressed in terms of the free field by:
1
Y = UJ+m—+[39(ﬂllJ+- (D.9)
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148 Yukawa theory

Likewise, multiplication of D.3) by A_ leads to a dynamical equation:

o (o)
HaaB) B+ (107a" +mB) - (Bod ) +

1
2
SRR (D.10)

107y

The canonical Hamiltonian of this theory is:

1 — .
H = 5 [ & (v)owi+a (-0 +1¥)a, (D.11)

which, when expressed in terms of the free fiald$ecomes:

H = Ho+Hy+H: (D.12)
1 024+ m?

Ho = é/dsx: { 0L2+u )(p+llJy 6—+ } : (D.13)

Hy = g/d3x [ (D.14)

Hy = gz/d3x: {qjcpz\ll%qw} L (D.15)

D.1.2 Hamiltonian in terms of the creation/annihilation operators

Substituting the free fields Fourier expansion (see AppendicasndB.4) and normal-ordering
leads to the Hamiltonian expressed in terms of creation and annihilation operators. In this step,
one drops all terms that appear during normal-ordering due to delta functions.

HA = Ho + HS + HE + x4 (D.16)

The free part of the Hamiltonian is:

kL2+ LZ_i_rnZ . .
Ho — /[k] s akak+/ — (bbo'bpe +dp'de) . (©.17)

The part of ordeg is:

H$ =g /pkl 27[) 5 (Pcreated— Pannihilated) X

onl

x (albbo bm UpoUin + akdpcbfn)vpouln akdlr] dpoVpovin +

+b() bl(n) axUpoUin + b() dl(n) akUpaVin _dl(n) déc),akvpovm)r&r&. (D.18)

In this term, a regularization has been introduced. | choose a regularization on relative child-
parent momenta: namely, for each particle there is a term:

2,
Mg = exp(ﬁ) rs(Xe/p) - (D.19)
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D.2 Effective theory to the orderg? 149

A specific form of the smalk cutoff r5 will be left unspecified here, except from requiring that
it makes integrations like the one in ED.@8) finite. In each term of 55 there are two such
regulating factors, one for each of the child particles. However, the stnafjulatorr s will be
included only for fermions.

The seagull term is not involved in the calculation of Chagter

D.2 Effective theory to the orderg?

In this part the boson magss chosen to be zero.

D.2.1 General formulae to orderg?

Hyo = Ho (D.20)
HY = fiHy (D.21)
77 = HH A HXT 6 (ﬂfﬁé) HyHy |connected (D.22)
For:
fap= exp(—a;%z) (D.23)
F@is:
Fapd = %ﬁ%m (fabfoc—1) - (D.24)

D.2.2 Second order effective fermion mass term

For each family of fermions:

i\ F P HyHy|

> / [p) bz)obpop—iémi)\ . (D.25)

Using B.57), 8 , can be written as:

dxcdPk 1 _ _
o, = 16n3p+ Z/ (1—x) ba (féa— 1) (Upo,Up,0,Up,0oUpo;) Tas = (D.26)

(1+x)2+2z1 o 42072
B 16n2/ /d (1— x2mZ+zx<fba_1) 7 rs(x), (D.27)

wherex is the relative momentum of the fermion in the fermion-boson pair.
The part withoutfp, is divergent, and the specific form of divergence requires the second-
order counterterm to Be

1+X +Zl —4Z/A2

X = Z/ Plbpob IOcyp+ {16112/ /d (1- x2rr12+zxe +6m§<phy5}:
o

1\ A
— Z/ bpo o 16n2 K/ dxr§)—(> Z+4mzlogﬁ+const} : (D.28)

1Compared tof] the quadratically\-dependent part ofY.28) has an additional factor/2, because of different
choice of regularization. The choice of regularization made in this appendix is consistent with the rest of the thesis.
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150 Yukawa theory

where6m§< phys andconst are constants (independent &dfand momentunp) of dimension

mass.
Similarly, the effective boson mass and the boson mass counterterm can be calculated.

D.2.3 Second order effective fermion-fermion potential

In second order there are a number of termsl . Of these, only the effective verte® (21)
and mass correction presented above, and the fermion-fermion — fermion-fermion potential
shown below (denoted, /) are important for further calculation.

—_— —

Hy = facfgfgg HYHY’:E = facfa(sg < 7 + A ) (D.29)

—_—

These two orderings are referred to as a “slagh'a6d a “backslash”\() orderings.

D.3 Model subspace

The eigenvalue equation for a Hamiltonian in the full Fock-space can be reduced to an equation
in a smaller subspace by using tR®@peration presented in Append2 In Chapter reduc-

tions to one-particle and two-patrticles of limited energies spaces is described. The details of
this procedure are presented below.

Derivation of the Schrédinger equation in the case of reduction to bare-particles subspaces
and effective-particles subspaces follows the same path. However, the calculation for the effec-
tive particles is slightly more complicated, because of additional termis iffor example, in
H2 there are no terms like in EqD(29) for a term in#, ). Thus | give explicit expressions
for effective particles. The corresponding expressions for bare particles can be calculated by
following analogous steps, or by putting &llequal to 1 (i.eA — ) in the expressions for the
effective particles.

D.3.1 Projection operators

The operator projecting on one fermion space is:
Bo= 3 / Kb [0) (0] byo - (D.30)
o

The projection on a subspace with two fermions of different kinds and of limited relative mo-
menta is:

P2 = 3 / kplB(Q? ~ M?)bg T [0) (0] by bl (D.31)
&n

Note, that forP, to be a projection operator it is essential tBavould not be replaced by any
smooth function. If one defined a projection on a space with two fermions of the same kind,
there would be additional factor/2.
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D.3.2 One-fermion subspace

Reductions to one-effective-fermion subspace and one-bare-fermion subspace lead to subspace
Hamiltonians:

He = pz p“ysb*n|0><0|bpn, (032

with the physical fermion mass in the eigenvalue:
m%)hys mZ + mg( ,phys> (D-33)

Wheremi_‘physis a finite part of the mass counterterm (cf. E@.Z9)). m%hysis equal to the

value corresponding to the eigenvalue of the full Hamiltorith calculated in perturbation
theory.

For one-bare-particle subspace the divergedependence of the counterterm cancels with
A-dependenii_-H-_ loop. The result is finite, but depends on the finite part of the counterterm
nﬁ’ggf one-effective-particle subspadedependence already canceled out when one calcu-
lated the effective Hamiltonian. When projecting one one-effective-particle subspace, the
dependence of the effective mass (a telsrrﬁA2 in (D.27)) cancels withff in the fyH_ fH-_
loop, and the resulting physical mass does not deperid dtis is related to the fact that
was obtained by a unitary rotation and therefore the eigenvalugs @fre the same ad2 (in
particular, they do not depend ai.

D.3.3 Two-effective-fermions subspace

Free part

0 ») OAS
Hmodel= PZH( ) P =

n12 k-2 P
_Z/[kp M?)bie b 10) (0] bix, ()(p p+ kt ) (D.34)

Together with a projection 0£(? and a mass (i.e., loop) part BHQHPIn R, it gives:

P t
Hoodal = Z/ kpl8( bl(<o) bpn 10) {0l bpn ko)

12 12
+ e k2 4+ m?
X (p = phys | e phys) . (D.35)

wherenm?

IDhySis the eigenvalue of the one-particle equatibr3Q).

Projection of potential term

He = By yBy (D.36)
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where #, y is defined in Eq. 0.29). Two kinds of terms in this expression are distinguish-
able (i.e., do not mix), since the pair of fermions of different kinds is considered; for identical
fermions for each momentum, both diagrams would contribute for each value of external mo-
menta. Thus kinematics determines the kind of diagram (for examKe, of first fermion is

RN
bigger in the right than in the left state, one has the diagr.
N

Taken together, the potential term is:

Hy — / [12348(1+3— 2— 4) v(123480248013/13) (24 (D.37)
1;4

V(1234 = ¢ / (013 fac Ty UnUaU3UaT ast 5| —— + (D.38)

+g? / 013 Fac oy U UpUaUaT p5T 5| —— (D.39)

One Effective Boson Exchange (OEBE) term

1. 4 . 1. .
Hoepe — éF>2HQ{H}0F>2—EPZ{H}OQHPZ (D.40)

where, to geHogge in the lowest order (i.eg?), one ha#d = #, y and:
65— > / 12067 624 0) (0] agb{?biY (D.41)

(superscriptg1) and(2) denote kind of fermion and are fixed; subscripts 1 and 2 denote mo-

menta and polarizations and one sums and integrates over them). Each of these terms can be of
— S—
the kinde—— or —e- and one has each of these diagrams with energy denominators for the

left or right vertex.
The part ofHogge corresponding to the first diagram, with denominator in the right part is:

-5 / [12345(1+ 2~ 3— 4)80120034/12) (34)
1534

J’_

P
—g / 512~ ) anfs i focota (D.42)

Because of a minus sign before the term with the other denominator, it willdae= ab. All
terms ofHpoegg are thus:

Hoese = ; / [12343(1+ 2 — 3 — 4)0q1208034]12) (34| Voese(1234) (D.43)

Vorse(1234 = 1qTusiou [/[q]éf f <P++Pa+b> +
OEBE = 35 1u3uzug ablbc
2 b ab —

- P+ P+
+ /[Q]5fabfbc (_b + ait;))
=
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D.4 Eigenvalue equation in two-effective-fermions subspace

D.4.1 The equation

The model Hamiltonian resulting from operations presented above is:

2 2
k1l +m$)hys k2L +m$)hys +
K ky

Hmodel= %/[12]9912|12> (12 (

£y / 123442, 3(1+2— 3 4)80128034|12) (34| Vinoue( 1234 (D.45)
1234

(6]
/

. . Z 4 .
where, for momenta labeled according to the flg&re: @ , Vmodel(1234) is:

4me qt 20 cb ' ab

Uz UpUzU 1 11 Pt Pl
Vimode((1234) = g7 5= <[_ facT I nstas+ 5~ fanfoc (lc+it)) rAesrAf’] "
phys =

1 11 Pt Pt
+ {q—+ facf]:(z) rasias + éq_+ fabfoe (C;bl‘_(): + aitt))) I’A5rA5] _E> (D.46)

A factor 4m%hyshas been introduced inte,qqefOr convenience later in the calculation.

This Hamiltonian commutes with total momentd, P™ and withJ, defined as for a free
theory.
One can search for an eigenstate of this Hamiltonian:

Hmodel| Wp) = P~ |¥p) (D.47)

in the form:

We) = 3 [[p.18aB(P— P P)Woo(x )b B [0) (D.48)

0,0’

After projecting on braky, kz| and introducing relative momensak (andy,n* for the inte-
grated momenta), equatioD @7) takes the following form:

K2 + m2 1 d2 d
P ! r] y 1 =

= M?6Ygqr (x,K) (D.49)

D.4.2 Elements oVmodel
Spinors products

Relative momenta are introduced as follows:

P = xP4+kt (D.50)
Bz = (1-x)P—«*t (D.51)
B = yP+nt (D.52)
Bs = (1-y)P—n", (D.53)
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for the external momenta and for the one integrates over. In terms of these, the spinor products
appearing invmegecan be written as:

Uiy = \/—i_yx{[m(Xer)—osoL(xr]L—yKL)]xg (D.54)
_ B 1 t v
Usugs = (1—X)(l—y)x3[m(2 X—y)+

+odct ((1—x)nL — (l—y)KJ‘> IXa - (D.55)

Momentum factors for the slash-type potential

I [1f F Ot gt s+ = o (P&ergb)r r ] (D.56)
— = — lac AN T 5 lablbe| - T x| A8 AD = .
—= qt 2q+ cb ' ab -
1
= ——B(y—X)rasfas X

y—X
1—-x)ba+ybc 1 1-x

ba = (nit?z+(ny__};)2>(l—x)—l<2—mz (D.58)
bc = (Kziszrmy__f()z)y—nz—mz (D.59)
ac = KM nteme (D.60)

X(1-x) y(l-y)

Momentum factors for the backslash-type potential

1
- = HG(X—Y)VNSFA&X

xba+ (1—y)bc 1 1-y X
><[fac b2 1 b2 (fabfoe—1) éfabfbc F—FEA (D.61)

ba — (r]2+m2+(K—r])2)X_K2_m2 (D.62)
y X—y
2., o 2
be = (Kltx +<KX_':/) >(1—y)—n2—m2 (D.63)
ac = asin(D.60) (D.64)

D.4.3 The equation in terms of pseudo-equal-time momenta

Instead of the relative momentak one can use the pseudo-equal-time momenta introduced
in AppendixB.2.2 However, the equation obtained is not symmetric and to symmetrize it one
introduces new, rescaled wave functign

1

@®p) = (p2+n%hys)l/4¢cc’(ﬁ)~ (D.65)
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D.4 Eigenvalue equation in two-effective-fermions subspace 155

This way Eq. D.49) takes the form:

K2 - 1 d3p
mphysek(poc/(k) + Z/ @/ 174 OkBp Vmodelz z/ (P) =
Mo ( (k2 + mzhys) phys)> /mphys
—4m2

phys, T
0 (k). (D.66
4mphys kPoo (K) - ( )

Note that, when using momerkathe nonrelativistic kinetic energy appears even without any
nonrelativistic approximation. Also, if one introduces a binding end&dpy subtracting two
rest-frame masses of fermions from an equal-time center of mass bound statelepgray

B := Ecms— 2Mphys, (D.67)
then, for weak binding|B| < mphys, ONe can approximate:
M? = Edns= (B~ 2Mpnyd)* ~ 4BMpnys+ 4, o (D.68)
and the eigenvalue expression on the right-hand-side becomes:

M2 — 4m2
Py, (D.69)

ForB < m(or M? ~ 4m%hys), the eigenvalue on the right-hand side of EQ.G6) can thus be
interpreted as a binding energy. When this condition is not fulfilled (i.e., for strong binding)
this eigenvalue has to be interpreted in termM8f without the approximations above.

D.4.4 The leading nonrelativistic approximation

If one assumes that only nonrelativistic momenta are important (which can be forced by intro-
ducing a small parameter for the reduction procedure), the potential is greatly simplified. If
one keeps only leading parts kiim series expansion, the equatidh.§6) takes the following

form:

RZ 92
0 / -l- / X

0,0
X Ipsfas | fac+ fabfbc( — fac)] 8678012/ @ 2/ (B) = BOk@or (K) , (D.70)

where the factor in the parenthesis is the Coulomb potential in the momentum space:
v dk—p) : Ao 9 ! (D.71)
Coulomb h — = - =Y =7. .
(k—p)? (k—p)?

This eigenvalue equation is diagonal in spin indexes: one canq@}(&) as a product of
momentum independent spin factor, and a spin-independent momentum factor:

Qoo () = fowr@(K) . (D.72)
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Thenfsy is arbitrary, andp(R) fulfills:
Rz

Ok ( R +/ ekepVCoqumt(k P)rasfas [ fac+ fanfoc(1— fac)] @(P) = Bek(P(R) .

(D.73)
Thus, in the leading nonrelativistic approximation one gets a Schrodinger equation with a stan-
dard Coulomb potential multiplied by the combination of the similarity factQrand by factors
0 limiting the range of integration.

Whether the similarity form factors matter depends on the width of the form factors com-
pared to the physical mass,,ys For wide form factors (big lambdas), d}| are approximately
equal to 1 for any fixed value of momenta, and there should be no difference between the above
nonrelativistic equation and the equation with the standard Coulomb potential, without the sim-
ilarity factors.

Three related questions present themselves: is the nonrelativistic approximation justified?
are relativistic momenta important in EdP.66) (i.e., before the nonrelativistic approximation)?
And what is the role of the similarity form factors iD(66)? These questions can, in fact, be
reduced to one question: can E@.§6) be approximated by a nonrelativistic equation with a
Coulomb potential?

Since in the final equation only the physical mass enters, to simplify the notation | will
henceforth drop the subscriphys i.e.:

Mphys

and not the bare mass.

D.5 Numerical comparison 1: Tamm-Dancoff vs. Coulomb

D.5.1 Tamm-Dancoff two particles bound-state equation

Trying to solve initial (“bare”) QFT by searching for an eigenstate dominated by two bare
fermion states leads to an eigenvalue equation:

oo K+ 5 [ 5 08viony(F) = BOo (K. (0.75)
or, if one does not impose any momentum limitations:
K2 - S
< ooy () + Z/ VTR () = B (K. (D.76)
0,0’

Instead of keeping complicated regulators (each vertex is regulated separately)rAgrop
and introduce again a momentum cutof: knyax this time in potential part only. Therefore:

_ g2U1 UpU3Uy - B
TP T (Rt ) (2t ) (U:Cﬂ]::)e(k kmax)8(P — kmay) , (D-77)
with:
1 1./y 1-x
o =y ><bc+ H) (D.78)
le = soyfn-5) (54 i) ©.79)
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D.5 Numerical comparison 1: Tamm-Dancoff vs. Coulomb 157

The spinor factors anba, bc are given in Appendi.4.2
This equation can be compared with the Schrodinger equation with Coulomb potential in
perturbation theory. The unperturbed Hamiltonian with the Coulomb potential is:

k2
Ho= S /d3kyk>—<ky+
Ok10k2 m
LS HEDI S 5 (. (D80)
Ok10p10k20p2 <T[) (k_ ﬁ)z

where k) denotes a state of two particles of relative moméntaith implicit spin labels (i.e.,
|k) := |kok10k2)), and normalized as follows:

<k‘ p> = 63(k_ p)60k10p160k20p2 . (D81)
The lowest-energy eigenvalue idf is:
Bo = —g*'m/64m (D.82)

and the corresponding ground-state is (cf. Appeddix
0 _ 3, 1 e
Wy = N[d o lkoo') . (D.83)
The potential in which bound-state perturbation theory is performed is:

o 1
Vipc = APk pK) == | 5101, 061009 ———— —
0k10p120k20p2 (2-,—03 Ok10p1~'0k20p2 (k— mz

Ugy, Uo pl Ugy, Uo p2

" am((k2 -+ mP)(p? 4 m?)) (0 H]—L)] e o

—66

To simplify the notation, | denote spin subscripts of the four degenér8tas follows: 1=1],

2=[1,3=11,4=l].

D.5.2 First order correction
The general structure

Since the above potential preserdgsomponent of angular momentum, the only non-vanishing
first-order corrections to the Coulomb ground bound state energyMs@rc are:

(1vIn) (v 0 0
m_ | @V @&V 0 0
AESY = 0 0 @via o . (D.85)
0 0 0 (4V]4)

The upper-left corner of this matrix is diagonalized by the symmetric/antisymmetric basis

choice:@ = |T]) £[]T).
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Below, | calculate the correction to energy relative to the zeroth-order eigenvsiijE,.
Note that herég = |Bg| > 0.

The diagonal matrix elementgV |i) /Ep (equal for eacli € {1...4}) are real and denoted
d®, the off-diagonal 1|V |2) /Eg are also real and denotét!). The correction to the energy
is a sum or a difference of the two. The staite := LIJo(k)% (71 +17)) has energg®(—1+

d@ + b)), the statap_ = Wo(k) 75 (IT1) —[11)) has energf®(—1+d™ —b™). Depending
on the sign ob®, either one can have the lower energy. The energies of spatemdy, | are
equalEg(—1+d),

Results

o |AE./Ey|AE_/Ey| error | b®
0.01| 8.7E-6 | -58E-5| 1.2E-6| 3.3E-5
0.1 1.3E-3|-5.2E-3| 26E-4| 3.3E-3
03| 20E-2| -35E-2| 1.1E-3| 2.7E-2
0.6 | 80E-2| -0.11 |3.2E-3|9.7E-2

Summary

For alla examined above, the first-order corrections to the energies are small. However but for
o = 0.6 they are considerable (of the order of 10%). In all cases, the bulk of the correction comes
from off-diagonal (spin-changing) matrix elemebtd. This is because the spin-diagonal part
of the potential resembles Coulomb very closely.

In all case$d > 0 and therefore the stam)(k)% (I11) —111)) has lower energy. For this
state | calculated the second order correction.

D.5.3 Second order correction

Since degeneration was removed in first order, in the second order one gets the following cor-
rection to-- (]1) |2)) state:

(W-@VIEVIv-12) g =g ©86)

AE®) — 1 ;
2i such thaE;#£Eg

| calculated only part of this correction, which is sensitivektpyx (essentially, | dropped
terms with lower powers of momenta, e.g., terms without double-spin-flips; see the description
in Chapterd)

AE?) —

1
1VIi,2) (,2|V 1)+ 2|V ]i,1) (i, V|2 —(D.87
isuch%ﬁﬁom i,2) (i,2|V[1) + 2|V ]i, 1) (i, 1] |>)E_Ei (D.87)

1

1V i,2) (i,2|V |1) Eo E

(D.88)

NI NI

? s
i such thak;#Ep

(+1)

. 4am
AE<2>:=/ d3p/ d3k/ "6t (g 1V [k VIB.1) 2 7mb(PIU(P) (D89)

) (&
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The limits of the integrals and simplifications to the denominators are described in Chapter
Note that|1) in Eqs. ©.86)-(D.88) has a Coulomb wave function, whilg, 1> is a free

momentum eigenstate. For visualization purposes, | also changed the sign of this expression to
positive.

The result for the second-order correction is presented in Figden page63 and de-
scribed in Sectiod.5.2

D.6 Numerical comparison 2: two-effective-particles bound-
state equation versus Coulomb

One can analyze the equatidd.66), which describes a bound state of two effective fermions,
following steps described above for two bare fermions bound-state equBtios) (Appendix
D.5). The results of this are analyzed in Sectibf
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Appendix E
Canonical Hamiltonian of QED and QCD

E.1 Lagrangian

For description of light-front quantization in the light-front gauge, see e.§9[(see also
[116-119).

The starting point is the Lagrangian:

1 1 — .

+ ‘Z Uq (iPoeDtoep— My) Wy (E.2)
q
where:
Fg*;Y = OMAY —0VAM 1 ig [AH AV (E.3)
Fhn = OMAE—0"Af (E.4)
Dbep = OM+ieA (E.5)
Doeprocp = OM-+ieAs +igAt (E.6)
Al = AMeTR (E.7)
[Ta,Tb} = ifabere (E.8)
1
aTb _  ~—xab

Tr(TeT?) = >3 (E.9)

Note thatf2tCis antisymmetric under exchange of any of the indexes. Writing the summations
explicitly:

1 1 — .
L= =R Fglw — 2 Fpn Fonw + We (i — €A — me) Ye + (E.10)
T (19— eqfe — AT my) U E11)
Fra _ auAva_avApa_gfabcApbAvc (E.lZ)
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162 Canonical Hamiltonian of QED and QCD

E.2 Equations of motion

oL 0L
2= M
30 0 3 (o) (E.13)
For fieldspe andy:
(i0—efAe—me)Pe = O (E.14)
(i —ePpe—gA—mg) g = O (E.15)
(For fieldsye andyyq, after hermitian conjugation, one gets the same equations.
For AH:
DY = d-+iglAY,.] (E.17)
For AL:
0" Fohwp = ePeYuWe + eqWqYulq (E.18)

E.3 Physical degrees of freedom

E.3.1 Fermions

Projecting Egs.E.14) and E.15 on/A_ leads to a constraint equation. In the light-front gauge:
A=A = 0 (E.19)

this leads to the following expressions for the constraint components of fermion fields:

1 /.

Yo = o (.omaL — e tAL —gotAl + qu> Wg+ (E.20)
1 /.

Wo = . (l(}(iaL —eatAE +me[3) Per - (E.21)

One can introduce free fields:

Wom = Yot +Pgm- (E.22)
W = .a% (iaLal+qu> Yoo (E.23)
Wem = Wet + Yem- (E.24)
Yem = 5 (i 0"+ meB) e, (E.25)
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E.4 Energy momentum tensor 163

E.3.2 Bosons

There is a similar situation for gluon fields. In the light-front gauge
AM = (A+ —0, A—,Ai) (E.26)
the minus component @& can be expressed in terms of other components:

_ 200°AY 29 [0 aial
A= S —(ia+)2[A i A]+

29
(i0+)?

Wy T2 PgmT 2. (E.27)

One introduces free gluon fields by puttigg= O in the above equation:

AM = (A+:0,A—,Al> (E.28)
~ 2i0-A-
A= S (E.29)

Likewise, for electromagnetic field one has:

A= (AT=0A AN (E.30)
_ ZiGLAé 2eq — 2 _ N

A = o+ + (ia+)2L|Jme Wom+ (ia+)2l-|JemV Wem (E.31)
B o= (A =0Acnt) (E.32)
~_ 2i0+Ag

e = T (E.33)

E.4 Energy momentum tensor

0L
T = — g -gVL (E.34)
ey
This defines the Hamiltonian
H=p = %/dzdex T (E.35)

Using the equations of motion and re-expressing constraint components of full interacting fields
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by their free counterparts, one gets:

1. 1_ +_5L2_|_m(2] 1_ +_alermé
ST = SWamV 3 Wam+ SWemy " ——5 7 Wem+ (E.36)
+%6kAiaakAia + %dkAiEdkAiE + (E.37)
—Hl_qu (EQAE + gA) Wgm—+ Wem (eAE) Wem+ (E.38)
L1 .
tig ———ig +id? 8+ (E.39)

2(io+)? 2(i0+)?

—Hqum (quE + QA) % (quE + gA) Wgm+ qjem(eAE> er? (eAE) Wem+(E.40)

~ ~ ~ 2 ~ ~ ~ ~
20T (MR [Au A) — ST (A4 A [AuA)) (41
where the currentg! are defined as:
T = gWgmy TPgmT? (E.42)
it o= g[ia+Ai,Ai]:—ig [0 A A (E.43)
jT = T+ (E.44)
JE = eqwqmy+wqm+etpemy+'~pem (E.45)

E.5 Expansion into creation and annihilation operators

E.5.1 Fields expanded in creation and annihilation operators

For quark and electron fields, the Fourier transform defines creation and annihilation operators:

W0 = [ (Bauae ™+ dvae) (E.46)
A

)
xt=0

where for electrons the indexindicates polarization, and for quarks polarization and color.
Fourier expansion of the unconstrained components of the gluon field is:

la _ 1 —ikx T oxl Jkx
A(x) = ;/[k] (akxaexe +ay, & € >x+:0 (E.47)
The remaining components of the free gluon field are:
AT(x) = 0 (E.48)
2i0+-AL
A = —. E.4
(0 = =5 (E.49)
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Taken togethe* can be written as:

SO [ (aoaT ety ™ gl Toeted) (E.50)

with polarization vectors:

ZkJ_ 1
£ = k—f et =0 (E.51)

Creation and annihilation operators fulfill:
{Boabhon} = {chaasGhon } = (Bt = 2210°%K 8k~ P)Brodan, (E52)

whereA, o denote polarizations arad b denote color.
In all terms, integrals over give:

/ d?xtdx e terekan) = 2(210)38% (Kgre — Kani) O(kdre — Kini) = (E.53)

—: 2(210)°8% (kere — Kani) = O(kere —kani) ~ (E.54)

Below, | list terms of the Hamiltonian densitl 4 1) which contribute to calculating"e™ —
hadronsscattering amplitude. These terms are expressed in terms of the creation and annihila-
tion operators, and with spinor products expressed in terms of two-dimensional spinors.

E.5.2 Free Hamiltonian

+ +e+qQ:

k-2 +
Hofermions = Z/[k]k—+mg (bl)\bk)\“f’d:)\dk)\) +
A

kJ_2+
+ % / K] T”ﬁ (blmlokAC n dlj)\cdkm> (E.55)

A denotes polarization angis a color and flavor index of quarks.
BBOOB006060600600° + .

pJ_Z ‘ pJ_Z t
Hobosons = )\Z/[p]Fagﬂp)\aaglp)\a‘i‘;/[p]Faphp)\aphp)\ (E-56)
a

E.5.3 Electrodynamics of electrons and quarks

For the ultraviolet calculation | assunmg = 0 andmg = 0 (see
also Appendix-.1).

Ho = & 1;/[1234 U1g3Vo 5co|or128(1+ 2-3) bald;rzam (E.57)
Uigavz = ﬁm <—(1— 2K e50° + (i) (K x 53)3> €2 (E.58)
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166 Canonical Hamiltonian of QED and QCD

He = ey / 123 Va#5u1 8(1+ 2— 3) @l ydeober

Vofsup = ﬁﬁ_z (—(1— 2x)kKe50% +i (k x 83)3> X1

Hoe = ege / [1234% VeaY " Uead(1+2— 3— 4) bl 0], deabes
(kg +k7)

Gy've = 2,/pfp3xio% 2

iyt = 2y/pfpixio’xe

ivive = 2/pfpsEl 0%,

E.5.4 Chromodynamics

M = 93 [1123050s (T35 blakbs

_ X3_+ X1+ X3 1 3 13
Uigous = \/X_]-Xl(_ % K1/3€5 —i(K1/3 X €5)°0" ) X3

+
Xp = &
X1
Kf/3 = pf "% pé
e = -9y [123%e (T)0 aldlds
. X X1 + el .
Vagov1 = X—iﬂg (— ! X3K1/3€2L +i (Kayz % 52)303) &1
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A

Hys = g 1; / [12303¢2U1 (T?); 3 blagabs (E.71)
_ X X1+ X: .
Usgoly = ,/X—ixé (— 1X2 3K1/3€2L +i (K13 % 82)303> X1 (E.72)

A

. — —g; / [123V1 v (T?);50 dlchaza (E.73)
_ X X1+ X .
Vifavs = X—jzil (— ! 3K1/385—I(K1/3xa2)3o3) &3 (E.74)
_ 1 .
H: — —¢? / 1234 (Y Uy————Vay v bl T, dgabga 3 (T) 1 (T2)54E. 75)
1;43 (kg_'_kJr) gl-g4 12 3

Corresponding product of spinors is given in H§.62).

_ Ugry " Va2 Vq3V+Uq4 a a
_ P gﬂa / 11234 ey 8 (T%)15(T%)3, bl 0, deabes  (E.76)

4

Corresponding product of spinors is given in Hj.62).

E.5.5 Mixed QED-QCD terms

Y

— 4k y+ < t
e = 0% 5 / 1234 gy s baved (T#),, blaldlas (E.77)
1 )
Gty fomve = /01 p; xa [e5eio® +i (e €0 o (E.79)
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>rap> = qu/ [1234@4%?%5 (T%)1,bjag,das  (E.79)

_ 1 .
Moy Bv2 = \/PYPs Xu [e5teda®—i (g5 ea)°| €2 (E.80)
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Appendix F
Effective Hamiltonian of QCD and QED

F.1 Effective QED and QCD Hamiltonian: list of terms con-
tributing to e"e~ — hadrons

In this appendix | give some of the terms in the effective Hamiltorstgnof QCD coupled
to QED which would contribute to calculating a scattering amplitude for the precess—
hadrons Only some terms have already been calculated and are given below. This preliminary
analysis is presented here to give a general picture of how much more complicated the analysis
in QCD coupled to QED is, compared to the scalar model analyzed in Sé&cfion

Based on standard way of simplifying the calculation of this scattering ampli@el|
consider massless quarks and add a small gluon massich is to go to zero in the end of
calculation.

Calculation of the effective Hamiltonia#) and counterterms in the canonical Hamiltonian
H2 is based on the simplified procedure described in Se&tiér?, starting from the canonical
Hamiltonian of QCD coupled to QED, presented in Appertgix
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170 Effective Hamiltonian of QCD and QED

F.1.1 Electromagnetic interactions of electrons only

Parts of#) coming fromH for electrons and photons only do not change.

F.1.2 Electromagnetic interactions of quarks

AAAA
AL

AAKA
A

UHH Hean

Un2Hcan

Hef fective

UrHcan

Hcan

S )
S DD

Out of the terms in the above table, | have only calculated the terms with quark self-
interactions and corresponding counterterms. All terms with triangle-type strong-interactions
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F.2 Terms with self-interaction loops 171

corrections to electromagnetic interactions of quarks remain to be calculated in future.

F.1.3 Strong interactions of quarks

The effective Hamiltonian of strong interactions comes not only ftbtrlcon terms, but also
from all the combinations it THU. The result is fullHet focp, as follows:

e Terms of ordeg®: #4 gocp = Hooco-

@%{% + @@ + @ﬁ where the bulb denotes a

The counterterms of a similar structure are of the ogdemd therefore do not contribute
to the amplitudeee~ — hadronsin the order?g?.

e Terms of ordeq:

form factor f,,.

e Terms of ordeg?:

%+ £+ ST+ , where the first term comes frof»H1H,

next two terms are fermion and anti-fermion mass corrections, and the last one is the seag-
ull term with a form factorf, .

There are also mass counterterms of ogfer

F.2 Terms with self-interaction loops

F.2.1 Effective quark mass and mass counterterm

_ T
Hoom = FagHOHY (F.1)

| calculate denominatoisa as if gluons had a small magg — O.

d +6rr12
Hhom = 3 [Wblos = mi (F2)
@ [dxdk 1 14X 5 5.0
oy = o5y TR 1 r5fon (F.3)

@ qdxdk 1 14X 5,
My =~ —, ST AT (F.4)

s = € 2/brg (F.5)
rs = rs(X)rs(1—x) (F.6)
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172 Effective Hamiltonian of QCD and QED

g7 A% tdx 14 o? /1dx 1+x%
MM = e oa X 1x? 5+ 521000 X)zréxpéJr (F.7)
g? 1dx 1+x2
5l X (1-x? r3 [XLGye + X1Glog 4] (F.8)

The limit g — 0 is well defined. The first part:

2 A2 1 2
. gA / dx 1+x° ,
e < 0 X (1_x2° )

is divergent and determines the form of quark-mass countertett? inThe other, finite and
A-dependent part is:

o2 — dxdfk 1+x 221 (2

— f2 F.10

wherex is x of the quark in the loop.

F.2.2 Seagull with quark self-interaction loop

%

4 X X2 + X
2 1 T 2T ALk k~3 3 K
oy = O3 Z /[11/234]X4_X1/X1<— o K2/1849 +1E7%5 84—

X ~—~—
BRChRa T 1116%%5 — %53 /10383kzsﬁ> & 1811000 bld] ag (F.11)

Integration overy/; is symmetric {55 does not depend in this term on any complicated com-
bination of momenta), therefore this term is zero.

Hoe | =0 (F.12)

F.2.3 QED vertex with quark self-interaction loop

é_

In any self-interaction loop

2
— — X1+
;U3¢2U1U1¢2U3" — & (( 1 X3) + 1> K§/3633" . (Fl3)

X1 X2
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F.2 Terms with self-interaction loops 173

Therefore,th&‘ term in #, is

1. _ .4 <
-'7'[)\>— = 92 Z /[lel]_+7"abau3¢2'ul’u1’¢2/ul”§600I31’5 (F.14)
173 P71

€ 23 / [172"3" ] Oy #3V2» Bcolor12 © biddprape = (F.15)

14
= & Za / [1”2"3”]lJ_l”¢3”V2”6c0|0r1”2"8bI"d;rznaps“'(*) (F.16)

1

where(x) is:

4, 1 dxck 1./ 12 2 %s [ (v +xs) 2 2
(x) = 39 2(2n)3/ X%y (=3) (ﬁ) (1— foa) v (—XZ’ ) +1)Kyaras (F17)

A divergent part of x) is:

2

(¥)a = —%% 01 (1d_xx) X3 [(X+X3)2+(1—x)2] r5(—1—y—log(4x§)) — (F.18)
2

—%% </01%X3 [(X+X3)2+ (1—x)2} r§> logA? (F.19)

The last line requires a counterterm. A similar anti-quark self-interaction loop gives the contri-
bution:

1 1 dx 2 2] 2 2
(%) = ~382 </o m(l—x@ [(x+1—X3) +(1—x) } rs ) logA=. (F.20)
Taken together, the divergent parts require a counterterm:
Xe = eqln;”/[1”2”3”]U_1"¢3"V2“ 6coIorl”2”Sb]i"d(-qrz“apB” (F.21)
19 /! dx ) ) O?
~382 (/o = [2(1+x°) — (4x+3)x3(1—Xa3)] r§ IogE (F.22)

whereC is a constant of dimensianass.

F.2.4 Photon seagull quark mass loop

>

_ 1 =
Hoo — ege / 1234 ey Ve aar VeaV " Uesd(1+2— 3— 4) bl 4T desbedF. 23)
3 4

H, .. = (loop factorasin EqK.13))-H. < (F.24)

After including both fermion and anti-fermion loops:
... = eqe / (1234 Ugry " Vep ——————— VeaY " Uesd(1+ 2 — 3— 4) bl d},deabes
(k§ +k7)
19 /! dx ) ) N?
X (—1)5@ </0 1% [2(1+X7) — (4x+3)x1 (1 —x1)] r§ IogE (F.25)
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174 Effective Hamiltonian of QCD and QED

F.3 Termsin #, due to mass counterterm inH%

The only way the quark mass countertermHA could enter#, in order g?e is through

un2HoED terms of the typ>_. However,uy2 = {(1— f))H2}, and in the case of such a
term,a= b and f, = 1, and therefor@iy> = 0. Thus there are no such terms#fy (see also
comments on [9.7).
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Appendix G

Scattering amplitude: LSZ formula

Below | derive the expression for the S matrix following closely the Bjorken and Drell text-
book [96]. | point out key differences and quote their equations when necessary; the result is
discussed in Chaptéx

G.1 In andoutfields

G.1.1 Free quantum fields

A free quantum fieldp (x) fulfills the requirements:

_.0g(x)
[Pp,([b(X)] = | aXu

(O+m)@(x) = 0 (G.2)

(G.1)

— the free Klein-Gordon equatién One can look for solutions of these equations in terms of
their spatial x-,x~) Fourier transform:

d?k-dk* i

— iy t\al
%(X) - 2(2T[)3k+ aok(x )e ’ (G3)
wherek := (k*,k*), kx:= —%k*x‘ +k'x*, and the integration measure is written for the 3+1
dimensions case. From thig (x") fulfills:
(—i0 k" + k"2 ) ag(x7) = 0, (G.4)
which can be written as: 2, 2
o k- +
i0"ay(x") = k—+a0R(x+) : (G.5)
By introducing a symbdk, for the eigenvalue of this equation:
kn = 17 (G.6)

I0=g" =0t — (aL)Z
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176 Scattering amplitude: LSZ formula

the dependence afonx™ can be written as:

ag(X") = exp(—ikpx_) ag(0) . (G.7)

Thus one patrticular set of solutions of the Klein-Gordon equatig)(is:

d?k-dk*+ ik
%)= | Sz 20 G:8)

wherea; = a;(x" = 0). Note that all physical particles hake > 0. When acting on any
state, the part ofG.8) with k™ < 0 lowersk™, which can be interpreted as an annihilation of
particles. Therefore one splits the positive and negé#tive

Go(X) = / K [agee %+ aleehdou] | (G.9)
kLKt

2(2m)3kt
ical momentar(x) (see Sectio’.3.3 lead to the equat™ commutation relations faai:

wherelk] := 8(k™). Commutation relations imposed on fielggx) and their canon-

[aorza ag.a} =2(2m% " & (k" — p")3(k" — p*) (G.10)

and all other commutators are zero.
Using the commutation relations and replacing@) thext derivative by a commutator
with the Hamiltonian operatd?; , (G.1), one gets

k-2 4 m?
7 [0 aageag] =0 (6.1

and the same for a commutator Wﬁ&. The assumption that the set of opera%andagﬁ is
a complete set means that the expression in the left part of the commutator (@.Ef).Has to
be a c-numbec:
_ k24 m? +
The vacuum statg0) (i.e., the ground state &%) is the one that is annihilated by all the
annihilation operators:

ag|0) =0, (G.13)

that is, the one with no particles. Itis an eigenstatBofwith an eigenvalue, i.e., the vacuum
energy Ic:
P, |0) =c|0) . (G.14)

In fact, thec constant contributes exactly the same amount to the energy of any state. Thus,
measuring the energy of any state relative to the vacuum energy is equivalent to assigning the
constant a zero value.

An interesting feature of the light-front construction presented above is that the creation and
annihilation operators are components of the Fourier transform of thegg{egcorresponding
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G.1In and out fields 177

to the minus or plus sign in eXgrik™x~ /2) exponents. Botta anda' can be extracted from
one Fourier transform:

agﬁ = p' / d2x - dx ™ e Py (xH) (G.15)
agp = P / d2xtdx et PmXey (xH) (G.16)
where p* can be replaced by a spatial derivativé of the fields. This contrasts with the

equal-time quantization, where to extraitone needs both the field and the corresponding
momentum, i.e., its time derivative.

G.1.2 Interacting quantum fields

For an interacting theory, one can introduce fiets). They are to fulfill the equations:

{ Pl = 150 (©17)
O+ )0 = i)

(G.18)

This time one can also introduce three-dimensional Fourier transforms. If one splits the creating
part (i.e., those parts increasikg) and the annihilating part, the fielgican be written as:

909 = [ 14 [a <) +ax)] (6.19)

but the equationG.18 cannot be rewritten as a simple expression forahg(x): the depen-
dence of the fields and corresponding creation and annihilation operators on the light-front time
xt is complicated. Nevertheless, the last equation can be inverted:

a{(x*) =p" / d2xdx e (R, x*) (G.20)
wherexp := —3x~ pt +xpt.

G.1.3 Asymptotic condition

In a scattering process, one first considers a number of particles (usually two) in normalizable
wave-packets, separated well enough not to be able to interact with each other. The final parti-
cles emerging from the interaction region are assumed not to interact with each other either.

In order to describe the well-separated wave-packets of particles in the language of QFT
one can introduce so-called “smeared” field operataf][ For this, we letf(x") be any
(c-number) normalizable solution of the free Klein-Gordon equation

(O4m?)f(x)=0. (G.21)
One can introduce smeared creation operapfs") according to the following relation:

ar(x") = / dxx™ [(10) F (%)] (%, x") (G.22)
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178 Scattering amplitude: LSZ formula

Note that, for the plain-wave solutions of EqG.1), this equation reduces t&(20. It is
assumed that the packets can have a reasonably small momentum width. Below, | generally
omit the wave-packet smearing subscriipt

It is assumed that matrix elements of smeared packets of the @ietdetween any nor-
malizable statef) and|B) behave for the time&™ — —oo like matrix elements of the similar
packets of certain free fieldgs,:

M (Ble0d)a) = vZ lim (B @n (<)) - (G.23)
This means that thie creation operators — which, as free operators evolve with simply a change
of a phase®.7) — create physical states as the tirfeapproaches-.

G.2 Reduction formula for scalar fields

Let us consider the scattering amplitude with a particle of momergus(p*, p*) and some
other particles (denotedl) in the initial state, and some particlgd {n the final state:

Spa = ouB|a,PBin= (G.24)
= ou(Bla(P) o), = (G.25)
= oulB—P| @)in+ oulBlay(F) — abu(P) o)y = (G.26)
= oulB—P| ), + out(B\/dledx_e_ipmxp+ (@n () — @out (X)) [a)iy (G.27)

where|B — B) oyt == aoutp |B) ot IS @ State with oneut particle of momentunp removed. Note
that, althoughx™ does appear ind.27), it is X" independent. As arbitrary valuesxf can be
used, they can be chosen to appro#eh In this limit, one can use the asymptotic conditions:

im (Bl a0 o) = = lim (Bl [a) (©.28)

Xt — oo Z xt—+ow

Spa = oulB—P|)in—

L N
_E (X!JTOO—XJFILI’T]_OO) /dZXJ—dX e Ipmxp+0ut<B‘(p(Xu)|a>in — (629)

— BBl o)~z [ @ [ D o) ] . (6.30)

where dx* = d2xtdxtdx~ = 2dxdxtdx, = 2adx%dx3d?x-.2 Differentiating the exponent
leads top,p™ = pt? 4 mP. Thus:

Spa = oulB—P| ), —
L / e Pt [—pﬂ—mz+2p+<—i>i} {Bloxd) |a)in =(G.31)
vz 2 ox | oM in =&
note:p™ —io* :.—igﬂ pl——idt—qiot;
= out<[3_ 5 | a>in + ﬁ%/d%(ueipmx [ﬁ + mZ} out<[3|(p<xu) |u>in : (6-32)

2Note that when | break equations at a minus sign, | put minus sign both at the end of the first line and at the
beginning of the second line (which is usually clearer than puttingioaad one-).
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G.3 Perturbation expansion of the tau functions and the S matrix 179

In a similar way, if the statéB) ; has a particle of momentugi we can remove it from the
state in favor of an extra field in the matrix element:

out{BlO(X) [0)iy = 0ut<B— ﬁ/‘aﬁ’out(p(x) |0 + 0ut<B— ﬁ,‘qx)aﬁ/in |0)in —

— out(B— B'|0(X)ayin |a);, = (G.33)

= 0ut<[3_ ﬁ’\cp(x) ‘CX - ﬁ/>in +
+out<B_ ﬁ/‘ [ap/out(P<X) - (p(x)ari’in] [0)in - (G.34)
agout = / d?ydy~ P o' Qoue(y) = (G.35)
= % Am d?y-dy Pt gly), (G.36)

where the last equation is understood to be a part of a smeared matrix element. We can proceed
in a similar way for then field. Note that, becaus®, stands to the right af(x) andag,; stands
to the left, the limits:

Jim ay)a00 -~ im o) = ( im - Im )T oo . (G37)

“Time-ordering” inx* will be denoted here ak ) (contrast ordering in® denoted ag).
One can now repeat stepS.@9 to (G.32) for all other particles ifa) and|fB). The final
result for allp; # qj is:

out{P1-- - Pm | ql...qn>in = (é)mnil:ml/d&i Jljl/d4yjeiQimXi (ﬁxH—mZ) >
X (0] Ty [@(yL) - - @(Yn)@(x2) . .. @(Xm)][0) x
x (Dyj+me) P (G.38)

When anyp are equal to any, there are forward-scattering terms (compare the first terms of
the equations®.32 and G.34) ).

G.3 Perturbation expansion of the tau functions and the S
matrix

One may assume that the operatagéx™) and a complete set of free operatagg(x") are
unitarily equivalent, that is, that there exists an operdtor™) such that

a(x") = U (xMag(xU (x7) (G.39)

and the same foa'. Note that this is consistent with the fact that, for a given titheopera-
torsag(x") andag(x™) fulfill the same commutation relations. Moreover, they have the same
guantum numbers — here, for scalar particles, the three-momentum.

The dependence af(x") onx™ is known, hence:

ag e ™' /2 =uau? (G.40)
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180 Scattering amplitude: LSZ formula

By differentiating this equation with respect;to one gets:

ag(x")(ky) = UVaut+uaut+uaut= (G.41)
= UU tao(x") +Ui[H,ax")]Ut+auu 1, (G.42)

where a dot indicates differentiation over. Note that
uu—t+uut=o0. (G.43)
Moreover, from the fact that is a product ofa(x*) for arbitrary time it follows that
UH(a)u ! =H(ap), (G.44)

whereH (ap) has the same form a&$(a), but with all the creation operatoesreplaced by their
free counterparts. Substituting EG.43 to the last part of Eq&.42), and G.44) to the middle
part, one gets:

0= —ikmao(x") + [UU " +iH (a0),aq] , (G.45)
If one denotes:
Hi(x") = Ho(ao) —H(ao) (G.46)
Ho(ao) := / [Kkma A, (G.47)
(G.4H can be written as:
[UU~1+iH,a0] =0, (G.48)

which is fulfilled for all ap operators and arbitrary times. Together with the completeness of
the ag operators set, this means that the combination on the left side of the commutator is a
c-numberEgy(x™). One can introduce a convenient combination:

H :=H (x") +Eo(x"), (G.49)
and a new operator:
U(x",xX*) :=ux"Hu1(x"). (G.50)
From the definition oy(x™) it follows thatU (x*,x'*) fulfills a Schrédinger equation:
a%U(x’ﬂx’*):iH,’U(er,x“r) (G.51)
with boundary conditions:
Uxt,x")=1. (G.52)

The equation folJ (x*,X' ) can be solved in perturbation theory. Standard manipulations
[96] give the following result:

U(x™,x") =T, [exp(—i f H((E*)éd{*)} : (G.53)

X

In AppendixG.2the S matrix was expressed in terms of the Green function:
T(X1, ., %n) = (O] Ty [@(Xa) ... @(%n)] [O) - (G.54)
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Using the definition ofJ operators above, the expression for this function can be rewritten in
terms ofqy:

(Xt %) = (0] Tix) [UTH(xa)@o(x)U (%) ..U~ (%n) Go(¥n)U (%n)] |0) = (G.55)
= (0T U0 go(x)U (x5 ) ...
LU 1% ) @o(xn)U (%0)] 10) (G.56)

We can use,, to denote the latest time amg,,, to denote the earliest time. For the description
of a scattering process, these would g(xrt%/max_) +00. Using Eg. .53 and the fact that,

under the time order operatdy, ), change of order of the expressions is allowed, one gets:

T(X1,...,Xn) = <O|U‘1(x$ax)T(+) (po(xl)...cpo(xn)exp<—i iH,’(E*)-%dE*)] X

X

xU (xH.)]0) . (G.57)

It is straightforward to show that the vacuum is an eigenstdtk afet|p, o), be an arbitrary
state with at least one free particle of momentganThen:

ofB,alU(x")|0) = ofafagpV (x")[0) = (G.58)
= e"P™o(afagp(x U (x7)[0) = (G.59)
= éPmy(a|U (xM)ag(x U H(x"U (x7) [0) = (G.60)
= éPmo(a|U (xM)ag(x")[0) . (G.61)

In a corresponding expression in the equal-time theory, one was forced to take the limit
t — —oo and, by the asymptotic conditio®(23), get proportionality to:

VZ in{a|U(x")agn |0 (G.62)

which is zero. To do this, one had to choose as the free opetorEq. (G.39 the physical
in operators, (or out operators, if the limit — 4 had been used).

In the case of a light-front Hamiltonian, such a limiting procedure, although possible, is not
necessary: in the cutoff theory the free and the physical vacua are essentially the same, and the
result of Eq. (5.61) is zero for arbitrari™ and arbitrary choice cp.

It is thus clear that) (x*) |0) does not have components with a number of particles greater
than zero, and:

U(x")[0) =¢(x")[0) , (G.63)

i.e., the vacuum is an eigenstatelbfx™). The c-number eigenvalugx’) may depend ox™.
We are concerned with a limit

{+g- = lim (0JU~*(x")[0) (0]U(—x")[0) = (G.64)
= lim (OJU—t(xt, —x*)|0) = (G.65)
= lim (OJU (—xt,x1)|0) = (G.66)
- XyTw<oyexp(+i / ; H,’(ﬁ)édﬁ) 0) . (G.67)

MAREK WIECKOWSKI, DESCRIPTION OF BOUND STATES AND SCATTERING. ..



182 Scattering amplitude: LSZ formula

Note that in the cutoff theory, the normal-ordered Hamiltonian annihilates the valdu|@n—=
0, and thus only the-number components &f] contribute to this expression:

2= fim exp(+i [ EgE) 5" ) (G.68)

Such terms also appear — with the opposite exponent sign — as a factor in internal exponent of
Eq. (G.57). Once these are canceled, one is left with:

Xt

S HED-567) 10 G69)

X

T(X1,--,%) = (0T {(po(xl)...(m(xn)exp(—i

This equation is a light-front analog of Equation (17.22) in the Bjorken and Drell textldbk [
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Appendix H

Description of scattering amplitude using
effective particles

H.1 Interpolating, bare- and effective-particle fields

The free interpolating fieldé, (x), and corresponding creation operathscorrespond to the
physical situation one describes (i.e., the way one prepares an experiment). It is assumed, that
in a distant past{" — —o) the physical situation is described by free evolution, i.e., only by a
phase shift exp-ikx" /2).

Two kinds of interacting fields are introducegl; (x) (expressed as an integral of the bare-
particle creation operatoes,) and@, (x) (expressed as an integral of the effective-particle cre-
ation operatorsy ). Evolution of both these fields is determined by the same evolution opera-
torH:

H:=H%aw) = # (&) . (H.1)
Namely,
0@
0Q,
IK = [H,q], (H.3)

(it may be more natural to ust” (a.) in the first of these equations, aff| (a ) in the second
equation, but since these operators are equal, it does not matter).

However, both fields have different asymptotic behavior. For example, one can consider a
matrix element of each field between the vacuum andautgparticle state:

(Pl @o(8)[0) = V/Zoo (P|@in(ain) |O) (H.4)
(Plor(@)|0) = /Z)(p|@n(ain)|0) . (H.5)

The constantZ,, andz, correspond to a normalization of a one-physical-particle state, and are
different: Z., appears in expansion of the one-physical-particle state in terms of bare-particle
Fock sectors, and, appears in expansion of the one-physical-particle state in terms of effective-
particle Fock sectors (cf. Seb.2.2.
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184 Description of scattering amplitude using effective particles

This result can be generalized to an asymptotic condition for matrix elements of these fields
between any (normalizable) andout states, in the limik™ — oo:

XEToooutm(ﬂ»o(aoo)‘G)in = XETOO\/Z out(B|@n (@in) )iy (H.6)
XHTw°”t<B‘(p)‘(a)‘)‘a>i” = XETOO\/Z_A out(B|@n (@in) [a);p - (H.7)

H.2 Reduction formula in terms of bare and effective fields

All steps of AppendixG can be repeated using either asymptotic condition for the bare fields
@ (Eqg. H.6)), or the effective fieldp, (Eqg. H.7)). This leads to two equivalent forms of the

LSZ equation, expressing the same S-matrix element in terms of time-ordered matrix element
of either of the two kinds of fields:

ouPL- - Pm [ G- On)iy = (ﬁ) mmﬂ / d*x J]j / dy;eidmx (ﬁxi+n12> x
X (0] Ty [@o (Y1) - - Qo (Yn) @eo(X1) - . - Qoo (Xm)] [O)
x (Dyj+m?) &eni = (H.8)

- ()" i oy e o)
1= =
X (0] Ty [ (Y1) - - O (Yn)@r (Xa) - - - @x (Xm)] |O) X
x (Dyj+m?) domiv (H.9)

H.3 Perturbative expansion of the S matrix in terms of bare
and effective fields

AppendixG.3above presents perturbative expansion of the time-ordered product in the equation
(H.8). Let us now address the question of how the expansion of the same S-matrix element looks
like when one uses effective particles!.9).

We can use now unitary equivalence of the bare and effective creation operators:

3, (x") = Ul (x)al, (<)Up (x"). (H.10)
Substituting this to unitary-equivalence of the fre® @nd bare ) operators,©.39), one gets:

3, (X") = Up (x)U 1 (X (XU (x U, (x) (H.11)
(note thau,, is RGPEP similarity rotation, whilg is the operator introduced in Appendi3
in the context of scattering matrix). This means tagix") anda, (x") operators are unitarily
equivalent:
3y, (XT) = Wi (T )age (X WA (x*). (H.12)
This is analogous toQd.39 for the bare andn operators, but the unitary rotation operator is

now:
WA (xT) := U (x")UT (xF) . (H.13)
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H.3 Perturbative expansion of the S matrix in terms of bare and effective fields 185

One can now follow closely the derivation from Appen@3. First, one differentiates Ed{(12)
with respect toc_, using exact, known evolution ab:

a(0)- e X2 = Wy (xP)ag, (xF W, (x) (H.14)

By differentiating this equation with respect;to one gets:

ag(X") Ky = WaaW, WA W, T+ WayW, = (H.15)
= WW, tag+Wai [H,ay| Wyt + aW W, t = (H.16)
= AW 0| + VAT [#4 (), 8wt = (H17)
= ViAW, (20), 2] (H.18)

where | used unitarity of\j. By defining:

Ho(ao) = / ko aao (H.19)
Hy = H(a0) —Ho(ao) (H.20)

equation H.18) can be written as:
VAW + 74, 30| = 0. (H.21)

Following steps from Appendixs.3 with operatorU replaced by, one gets perturbative
expansion of the S matrix in the forrii (9):

(O T [on(x1) - & (xn)][0) =
X 1
= 0T [t tmeno i [ 9487 508° ) [0, (422)
where the expansion is done in powersH .
To summarize: The same S-matrix elemgtf | a);,, can be calculated

e using the bare fields;
— one gets LSZ formulaH{.8) and expansion.69 for thex"-ordered product of fields
in terms of the bare interaction Hamiltoni&f;

e or using effective fields;
— one gets LSZ formulaH.9) with different wave-function renormalization factaZs
and a perturbative expansioH.2) in powers of the effective interaction Hamiltonian
Hy ).

This result is analyzed further in SectibrB.
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Appendix |

Examples of scalar S-matrix elements in
1+1 dimensions

.1 Scalar propagator in 1+1 dimensions

The perturbative formula®.69 allows us to calculate any Green'’s function in perturbation the-
ory. However, the formula needs to be reduced to a set of simpler rules. To see how the formula
works in a specific example | consider here a propagator in scalar theory in 1+1 dimensions,
introduced in Sectio®.4. Although this theory is finite, and the calculation reviewed below
does not include regularization, it can be generalized to more complicated cases.

One can use Eq5(15 to calculate a two-point tau function (quark propagator):

T(x1,%2) = (0 T [@g(x1) @y(x2)] [O) - (1.1)
The zeroth order term irb(15) is simply:
1 (x1,%2) = (0] T4 [oq (%) g (x2) ] [0) (I2)

which leads to free Feynman propagator:

© dk*

(0) —
T (X1, X2) e

[G(Axﬂe‘ikm‘“ + 9(—Ax+)e+ikH"AX“} . (1.3)

B-function can be replaced by an integral:

=1 /® dw o
BAXT) = — | ———e /2 1.4
( ) 210 J—o WHIE (4)
Also, one can change variables in the second integral in E3).flom k* to —k*. This leads
to:

100 (%1, %) = "k | g Ikix (1.5)
VT | o 22k —mR +ie '

where ¢k = 3dk*dk~ (= dk*dk, = dk%dk!). Note the following:

e Although in the initial expression there was an integration over only physical momenta
k+ > 0 andk, was fixed at the physical positive valmé/k*, in the final expression there
is integration over the full range of the Fourier paramkfek™ € (—o0, 00), k™ € (—00, ).

187



188 Examples of scalar S-matrix elements in 1+1 dimensions

e The expression for the full Feynman propagator has in the light-front variables only one
pole ink™ for given momentunk™ (see Fig.3.4).

The propagator in the second ordgf)(is:

C)(00,50) = (01T [0 mae) 3 [ 25 (-) (HO60) 4 HZ(c))

[ !+
[ (RO +HO) o) 06)
| review here the calculation of this expression in more detail. The scattering amplitude calcu-
lations in Section$.4 and5.7 follow a similar path.

SinceH, annihilates the vacuum, it has to be separated from it by at leaggofiderefore
only orderings leading td0| @H,H, @ |0) may lead to non-vanishing results. Also, different
orderings ofx™ andx'* reduce to re-labeling these variables. This cancels the factor one-half

coming from the exponent. The expressionﬂ@?) can thus be written as:

(¢ _ (—i)z ® byt
19 (x1, %) = 52 dx"dx" (0|

0y )H' L (XHY Xy ()8 (4 > X" >X* >x¢) +  (L7)
(p(();)(xz)H@(xJF)H@(x’ﬂ(pé;)(xl)e (X3 >x">XT>x{)[0), (1.8)
Where(pé+) denotes the annihilating part of the field, a;{)d) the creating part. For the matrix
element not to vanish, each creation operator has to disappear by commutation with some anni-
hilation operator. Whenever a particle is created at some interaction Wreaxexternal field
(o, it has to be annihilated at some other part of this expression, and vice versa. Therefore, the

structure of this expression can be shown as a number of lines, each representing a creation-
annihilation operator pair:

The8 functions can be written as
80X} >x" >X">x) =00 —x)8(x" —xX*)?8 (X" —x) , (1.9)

associating oné function with each diagram line.
At this point it is simpler to calculate the Fourier transform of the tau function:

T o
T(gz)(pl, D2) = / dX12dX1 elp1X1/ dXZZdXZ gp2xer(9?) (X1,X2) . (1.20)

The initial expression can then be extracted by an inverse Fourier transform:

dpi—dpl_ e—iplxl dp}dpg e—ip2x2.l.

2-(2m)2 2-(2m)>2 (gz)(pl, P2) - (1.11)

T(gz) (X17X2) —
The Fourier transforml (10) has the following form. For eadhternal linethere is a factor:

/[k]eik,;x+/2e+ik;,x’+/29(x+ _ X/+> 7 (1.12)
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I.1 Scalar propagator in 1+1 dimensions 189

where the exponents are related to the free evolution of the creation and annihilation operators
in terms of which the interaction Hamiltonidd) is expressed. Once tBgunction is expressed
as an integrall(4), this leads to:

RkOkt) i I
/ 2?7 K_mPiic o (113)

(dPk = %dk*dk*). For eachexternal linethere is a similar factor: the difference is that the
Fourier expansion of the fields introduces for the extextiah exgfikix,), instead of exfikyx* /2).
Integration overxi“ in (1.10) substitutes physicgi* of the external particle for momentum pa-
rameter corresponding to this line. The formal requirenkent- 0 is thus automatically ful-
filled, andB(k™) may be dropped for external lines. For eatleraction vertexthere are factors:

()9 [ & amlee ) (.14)

wherekd,. is the sum of the momenta of all particles created in the vertexkapnds the sum of
the momenta of all annihilated particles. Integration over the vertexxinmn be performed,
leading to 4®(k;. — Kann)- Altogether, each vertex gives:

(—ig)Z(ZT[)zéz(kgre— kgnn) ) (|-15)

and exponent factors for each line should be dropped, except for the exponents for the external
lines, corresponding to unintegratet
These rules may be summarized as follows:

e For each internal line there is an integral:

PkO(kT)
/ (2m? k2—mP+ie (116)

(d%k = dk*dk™);

e For each external lineending at a poink*:

d2k I — ik xH .
/(2n)2k2—n12-|-iee o (117)

e For each interaction vertex
<_ig)2(2n)252<kgre - kgnn) . (|-18)
Accordingly, 1) (x, X,) is:

T(gz) (Xl X2> = ipe*ip()(]_*Xz)(_ig)z | | y

s | I .19
/<2Tr>2k2—mZ+is<p—k)2—m2+is' (1.19)
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190 Examples of scalar S-matrix elements in 1+1 dimensions

(d’°p=dp*dp~/2). Together, the zeroth and the first order lead to:

-[(0+92)(X1 XZ) :/ dzp e*ip(lexz);X
’ (2m)2 p?2 —m2+ig

| d’k 1
. {1+ I02—mz+isgz/(2T[)2(k2—mz+ig)((p_k)2_mz+i€> (1.20)

We are interested in this expression at its pole. Perturbation expansion can only be used if the
pole is not shifted too much. The bare expression has the ppfe=air?, so we are interested

in this expression fop? ~ n? € (0,4n?). The &k integral can be calculated explicitly (see
Appendixl.2), leading to:

2 -
(0+¢%) _ [ 9P ipe) :
P, x0) = [ = e L2y
(2m)? p2—mz+is+%—%§_ -arctan—2—

whered := 4n?/p? is assumed to be in the regiére (1,).
This expression is analyzed further in Secttoh. 1

1.2 Propagator in 1+1 dimensions in orderg?: results of inte-
gration

The integral
1 1

I W ::/ 2k . .
11(P) d k2 —mP +ie (p—k)2—m2+ie
(d’k = dk*dk~/2) can be performed either by replacing integration dvemwith a sum of

residues, or by introducing Feynman parameters. Both ways lead to the same result given
below.
A

5= (1.23)

(1.22)

ForP? > 4n? (i.e.,8 € (0,1)):

P L 1-v1-9%)\ .
| (4 < P?) = 22 V15 [log(—1+ 1_6>+m (1.24)
ForP? € (0,4n¥) (i.e.,8> 1):
2 _im 9
1 (0<P?<4n?) = mz\/GTarctan\/T (1.25)
ForP? <0 (i.e.5 < 0):
s o im 3 VI=8-1
| (PP<0) = Zn?\/mlo <m+l) (1.26)
For example, foP? = n¢:
| (PP=nP) = In arctan arctani—m2 2 (1.27)

T = A R
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[.3 1+1 triangle term 191

.3 1+1 triangle term

The integral:

£ dg*tdg~ 1 1 1 (1.28)
a 2(21)? @7 — P i€ (ky+0)° —mP+ig (kp—Qq)° — P +ie '

can be performed either by replacing the integral &vely a sum of residues, or by introducing
Feynman parameters (for details of how to integrate the Feynman parameters explicitly in this
case, see e.gll9). Either way, it is easier to first calculate the imaginary part of this function:

1 o0 1-2%

Im(f) = “ant 313 (1.29)
(d:=nmP/se (O, }1)), and then the real part, using the dispersion relation:
_ 1 Im(f(S))
(9 = = [ asgm > (1.30)

The result is:

s 2
Ref(s) = 4Tin4 1_636 [32\%+ 1_1__226Iog<(1+ 36_46) )] . (1.31)
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Appendix J

Eigenvalue equations

J.1 Schrddinger’s solution in Coulomb potential

The equation:

K K A o -
Zlqk)—/wmq)(k) = —Bag(k) J.1)

(i.e., the Schrodinger equation for positronium without spin and with reduced pmass/2)
has the ground state eigenvalue:

1
Bo = SHo®, (J.2)
and the normalized ground-state wave function:

1

(k) = Nm7 (J.3)

with N = /80°°>/manda = a.

J.2 Reduction procedure

The eigenvalue equation for a Hamiltonilen

HIp) =E|y) (3.4)
for certain low eigenvalues, is replaced using the operd®idgsee {19, 44]) by an eigenvalue

equation for eigenstated) = /P -+ R'R|y) of the reduced HamiltoniaHg. This is given by
the following formula:

1 ~ ~ 1
HR= ———(P+RH(P+R)———— . J.5
R UTRR T IOHPER R 1-5)
If one splits the initial Hamiltonian into the free and interaction parts:
H=Ho+H, (J.6)

then one can look foR andHg in perturbation theory itd,. This leads to the lowest (second
order) expression fdfg:

1mﬂQ{H@bﬁ—%ﬁ{H@bQHﬁ+nu (.7)

HR:ﬁHﬁJré
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Appendix K

Mathematical formulae

K.1 UV divergent integrals

Let us consider an integral:

* dz z z ©  du__,
[ zoolog) = ezl = [ 000 K
*d 1 d 1 d
= [Sevr [ Ter-n+ [ T k2
1 u cha/A2 U cha/A2 U
AZ
= Ins—Incy—In5+y (K.3)

Only the first two terms depend on the regularizatigns a constant numerical term:

1
ly = @ _U+/ du _“— _—0.577216.. (K.4)

Using this, one can calculate frequent divergent integrals: the logarithmically divergent one:

/ dz ex ( C i)—/ai—i— 00dZ i—} —|—/°°d—ZeX (—C i)—
z+d P "A2) " Jo z+d ' Ja z+d z a Z P a2) —
2

:In%—lncn—ln%ﬁy, (K.5)

and the quadratically divergent one:

z ® d z
/dz—exp C”E>:/o dz(l_z-p-—d>eXp<_C”E>:
N? A d
_a—d<lnﬁ—lncn—lnﬁ+ly>. (K.6)

K.2 Area of an n-dimensional sphereQ,

The area oh-dimensional sphere is:
s s 2n /2
Qn = </ densinnzen) (/ degsineg) d6y =2— (K.7)
0 0 0 r(3)
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196 Mathematical formulae

For example:
Q = 21? (K.8)
Q3 = 4m (K.9)
Q, = 2n (K.10)
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