
Wzbudzenia sieci – fonony 

• przybliżenie adiabatyczne

• elastomechaniczny model kryształu,

• pojęcie fononu, 

• Dynamiczna Funkcja Dielektryczna  w opisie wzbudzeń sieci

• wzbudzenia podłużne i poprzeczne w równaniach Maxwella 

• odbicie światła w obszarze reststralen



Hamiltonian kryształu
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Co można zapisać w postaci:
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- położenia elektronów  

- położenia jonów 

m - masa elektronu  

Mj - masa jonu  

energia kinetyczna

elektronów i jąder
energia oddziaływania

pomiędzy elektronami

V(r, R) -energia 

oddziaływania

elektron-sieć 

(elektron-fonon)

G(R) -energia 

oddziaływania

pomiędzy jonami

w sieci 



• Dlaczego rozważając strukturę pasmową półprzewodników zakłada się,  że sieć

krystaliczna jest nieruchoma?  

• Kiedy można założyć, że nawet jeśli coś się będzie działo z siecią to nie zmieni

to elektronowych funkcji falowych?
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Przybliżenie adiabatyczne (Borna – Oppenheimera):

Sieć drga powoli w stosunku do częstości własnych elektronowych

(wynika to przede wszystkim z różnicy mas elektronu i atomów tworzących  sieć). 

Drgania sieci i wzbudzenie elektronowe

L - charakterystyczna częstotliwość drgań sieci (zwykle opowiada ~ 10-100 meV) 

e - charakterystyczna częstotliwość przejść międzypasmowych ~ eV

Można przyjąć, że elektrony „natychmiast” przechodzą do stanów  

kwantowych odpowiadających potencjałowi zadanemu przez 

aktualną konfigurację jonów w sieci.
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Szukamy funkcji falowej w postaci iloczynu części elektronowej R(r)

(zależnej od położenia jonów R) oraz części opisującej sieć (R): 
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Zakładamy, że funkcja wieloelektronowa R spełnia równanie

Schrödingera dla elektronów w nieruchomej sieci:
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część adiabatyczna

część nieadiabatyczna, 

Gdyby część nieadiabatyczną można było pominąć…
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W najgorszym przypadku

gdyby elektrony były ciasno 

związane  z jonami:

Pierwszy człon nieadiabatyczny

Będzie wprowadzał całki typu:

ne – całkowita liczba elektronów

Po podstawieniu funkcji falowej Ψ i pominięciu członów nieistotnych 

otrzymujemy równanie na funkcje falowe jonów:
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Ee(R) – adiabatyczny wkład elektronów w energię sieci.



Przybliżenie harmoniczne
Zastosujmy do powyższego równania przybliżenie klasyczne. Energię jonów 

możemy przybliżyć opisując ich ruch względem położenia równowagi:
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gdzie H0 – energia jonów gdy wszystkie znajdują się w położeniu równowagi, 

H’ – zmiana energii wskutek zmiany położeń jonów o dR

Rozwijamy H’ względem dR.

•Człon liniowy znika gdyż mamy do czynienia z minium.  

•Jeśli wszystkie jony przesuniemy o ten sam wektor dRi

to otrzymamy przesunięcie całego kryształu. 

W przybliżeniu harmonicznym zmiana energii kryształu zależy 

od kwadratu względnego przesunięcia jonów d(Ri-Rj).



Drgania jednowymiarowej sieci monoatomowej. 

Fonony akustyczne

n-1 n n+1 n+2

m m m m

xn-1 =(n-1)a xn=na xn+1=(n+1)a xn+2=(n+2)a

   

n-1  n  n+1  n+2

Stan równowagi

Ogólna 

konfiguracja

Równanie ruchu dla n-tej masy 
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Otrzymujemy nieskończony układ równań różniczkowych. Szukamy rozwiązania 

w postaci fali biegnącej 
 tqnai

n Ae  
q – wektor falowy

 - częstość 

(4.1)
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Po podstawieniu do równania (4.1) dostajemy: 
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Związek dyspersyjny: 
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Widzimy, że 

• (q)=(-q)

• funkcja jest periodyczną

z okresem 2/a

Podobnie jak w przypadku elektronów 

można wprowadzić strefę Brillouina
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Ograniczenie na maksymalną wartość q

a

Z jaką prędkością rozchodzą się fale podłużne w łańcuchu?

0q

Rozważmy przypadek 

qa
m

qa

m


 

2
2

Zatem prędkość fazowa dla małych q:
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Sens fizyczny 

mają tylko 
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Prędkość dźwięku w ciałach 

stałych! 

Periodyczność  (q) jest czysto formalna.

Powyższe nie dotyczy dyskusji 

właściwości strefy Brillouin'a dla elektronów

- funkcja falowa jest rozciągła, natomiast

dla drgań sieci funkcja falowa opisuje 

położenia  dyskretnych jonów.



Drgania podłużne i poprzeczne w ciele stałym
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Sprężyste fale 

poprzeczne w pręcie: 
G – moduł sztywności

E – moduł Younga
Sprężyste fale 

podłużne w pręcie: 

G < EPonieważ 
to prędkość fal podłużnych będzie 

większa niż fal poprzecznych 

Jeśli więc będziemy rozważać drgania w trzech wymiarach, 

to możemy dostać trzy różne gałęzie fononów akustycznych:

• fonony LA (longitudinal acoustic)  

• dwie gałęzie (czasami zdegenerowane) fononów poprzecznych akustycznych

TA (transverse acoustic) 



Dyspersja dla fononów w złocie

Drgania sieci  – fonony (drgania własne, czy też fale propagujące się w kryształach)

J. W. Lynn, H. G. Smith, and R. M. Nicklow 

Phys. Rev. B 8, 3493 (1973) )
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Czerwone krzywa:

Prosty model 

nieźle pracuje…



Pojęcie fononu 

qE 
.

Energia układu oscylatorów 

kwantowych:
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nq - liczba całkowita, liczba fononów o wektorze falowym q

E0 - energia zerowa układu (dla T=0 E0).

qp fonFonony o wektorze falowym q niosą pęd

Dowolne drganie można przedstawić jako superpozycję drgań normalnych 

układu (superpozycji drgań harmonicznych o energii E i pędzie p).

Stąd jeden krok do kwantowania takiego układu.

W opisie z wykorzystaniem formalizmu mechaniki kwantowej: 

wzbudzenia kryształu        fonony o energii 



Formalizm opisujący fonony jest analogiczny do kwantowania pola 

elektromagnetycznego.

Często spotyka się opis wzbudzeń fononowych w języku drugiej kwantyzacji.

Wykorzystuje się wtedy operatory kreacji i anihilacji (a+, a) fononu o 

określonym pędzie i energii.

Fonony są bozonami - czyli podobnie jak fotony podlegają statystyce opisanej 

przez rozkład  Bosego-Einsteina

Analogia pomiędzy fotonami i fononami

fotony - stany wzbudzenia próżni

fonony - stany wzbudzenia kryształu

Zamiast rozpatrywać ogromne liczby oddziałujących ze sobą atomów 

wprowadzamy nieoddziałujące kwazicząstki – fonony.



Drgania sieci jednowymiarowej z bazą

1,n-1

m1 m2 m1 m2
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q – wektor falowy

 - częstość 

2,n-1 2,n1,n
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Szukamy rozwiązań w postaci:

ab

Dwa atomy w bazie o masach m2 i m2,  

a - stała sieci

b - odległość w bazie

Stałe siłowe: 

- w bazie 

- poza bazą 

Wychylenia atomów z położenia równowagi 1n, 2n

BA  , - amplitudy (w ogólności zespolone – różnica fazy 

pomiędzy 1 oraz 2 ) 



Po podstawieniu do powyższego układu równań:
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Można to przepisać jako równania na amplitudy A i B.
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Ma ono nietrywialne rozwiązania jeśli znika wyznacznik:
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 - ma charakter quasi stałej siłowej  
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Równanie jest dwukwadratowe 

i dla każdego q ma dwa rozwiązania 

po dwie gałęzie 

dyspersyjne (q)



Przykład - struktura diamentu

21 mm 
Baza dwuatomowa

z takich samych atomów
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Równanie przyjmuje postać

Jego rozwiązania mają postać:
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Zbadajmy rozwiązania dla granicznych wartości q
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Na granicy strefy Brillouin’a 

pojawia się przerwa energetyczna   
m

2


(drugie rozwiązanie

wygląda znajomo…)
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Gałąź optyczna:
przy takim modzie drgań  w kryształach 

jonowych  pojawia moment dipolowy -

oddziaływanie z falą elektromagnetyczną!

Mamy dwie gałęzie fononów:

akustyczna - niżej energetyczna 

optyczna - wyżej energetyczna

Dla gałęzi akustycznej (2)

dla q0 A=B - sąsiednie atomy 

bazy drgają  zgodnie w fazie.

Dla gałęzi optycznej (1) 

dla q0 A=-B - sąsiednie atomy 

bazy wychylają się w przeciwnych 

kierunkach.

WAŻNE!!!

Dwie gałęzie: wynik nie jest związany z różnicą mas m1 i m2 ale z istnieniem bazy!

Dla kryształów jonowych pojawia się silna absorpcja promieniowania 

elektromagnetycznego dla częstości odpowiadającym fononom optycznym

poprzecznym…

Podstawiamy częstości 2 i 1 do równania:



Fonony w sieci trójwymiarowej

Trzeba wprowadzić warunki brzegowe  Borna -Karmana

Łańcuch jednowymiarowy: N komórek N stopni swobody (1 gałąź akustyczna)

N komórek z bazą 2 atomową –

2N drgań własnych (jedna gałąź akustyczna i jedna optyczna)

Sieć trójwymiarowa:
N komórek, kryształ jednoatomowy - 3N stopni swobody

3 gałęzie fononów (wszystkie akustyczne)

• 1 gałąź fononów akustycznych podłużnych LA.

• 2 gałęzie fononów akustycznych poprzecznych TA (czasami zdegenerowane)

Różne nachylenia krzywej dyspersji dla q0 (prędkość dźwięku).

Sieć trójwymiarowa z bazą, np. baza dwuatomowa - 6N stopni swobody 

- 3 gałęzie akustyczne (LA+2xTA) i 3 optyczne (LO+2xTO)

W ogólnym przypadku dla s atomów w bazie: 

3 gałęzie akustyczne i 3(s-1) gałęzi optycznych.     (3s=3+3(s-1))

TO - mają moment dipolowy - sprzęgają się z promieniowaniem EM

LO - wnoszą istotny wkład do polaryzacji ośrodka (stała dielektryczna)



GaAs

2 atomy w bazie – 6 gałęzi fononowych

- 3 akustyczne

- 3 optyczne

J. S. Blakemore, J. Appl. Phys. 53, R123 (1982) 



Fonony w SiC
Blenda

cynkowa
Wurcyt

3C - SiC 2H - SiC 6H - SiC



S. Nakashima and H. Harima 

phys. stat. sol. (a) 162, 39 (1997)



Fonony w SiC 

S. Nakashima and H. Harima phys. stat. sol. (a) 162, 39 (1997)



S. Nakashima and H. Harima phys. stat. sol. (a) 162, 39 (1997)



Jak drgania sieci wpływają na własności 

optyczne półprzewodników?

Fonony optyczne dają wkład do makroskopowej polaryzacji 

dielektrycznej ośrodka

Rozważmy kryształ o wiązaniu częściowo jonowym 

(półprzewodniki grup III-V lub II-VI) bez swobodnych nośników 

(na początek).

• Struktura kubiczna, kryształ z bazą dwuatomową.

• Fonony akustyczne długofalowe nie dają wkładu do polaryzacji  ośrodka.

• Rozpatrujemy fonony optyczne długofalowe ka<<1. W granicy    

długofalowej można kryształ rozpatrywać jako jednorodny ośrodek.

Jak poprzednio, postaramy się wykorzystać metodę 

Dynamicznej Funkcji Dielektrycznej - DFD 

(Dynamic Dielectric Function - DDF)
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elast

Gęstość masy 

zredukowanej:

gdzie V - objętość komórki elementarnej.

Zdefiniujmy

+, _ - odpowiednio wychylenia 

jonu dodatniego i ujemnego z 

położenia równowagi

Masa zredukowana w 

komórce elementarnej

Wprowadźmy znormalizowany 

wektor przesunięcia:

Siła sprężystości:

Gęstość energii kinetycznej:

Gęstość energii potencjalnej ośrodka

sprężystego (energia elastyczna)
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Obok sił sprężystych (lokalnych), istnieją siły wynikające z 

polaryzacji ośrodka – siły dalekozasięgowe.

Pojawia się oddziaływanie wymagające samouzgodnienia:

Polaryzacja wewnątrz jonów 

(powłok elektronowych 

względem jądra).

To jest bardzo szybki proces.

przesunięcie jonów

powstanie polaryzacji

pole elektryczne

Wpływ

pola  

na jony

(elektrony „nieskończenie”

szybko dostosowują się 

do położenia jonów…)
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Polaryzacja ośrodka:

(polaryzacja związana z przesunięciem jonów + wewnętrzna polaryzacja jonu)

Wewnętrzna polaryzacja jonów daje 

polaryzację dla dużych częstości 

(w porównaniu z częstością fononów):

 - parametr charakteryzujący 

polaryzację ośrodka

dla częstości dużo większych

niż częstotliwość drgań sieci, 

a mniejszych niż polaryzacja 

wewnątrz jonów (poniżej przejść 

międzypasmowych).

Wprowadzamy 

  E012 1   ηP



Warto zauważyć:

To co dla procesów zachodzących

przy wysokich częstościach

s odpowiada  (stanowi tło)

dla procesów o niższej częstości !!!
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Zajmijmy się teraz członem związanym bezpośrednio z ruchem jonów

Gęstość energii potencjalnej 
(elektrostatyczna):

Całkowita gęstość energii 

potencjalnej 
(mechaniczna+ elektrostatyczna):

Znajomość U pozwala nam napisać równanie ruchu jonów w polu elektrycznym:

Dla pola stałego

w czasie 
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Szukamy Dynamicznej Funkcji Dielektrycznej (DDF) 

uwzględniającej wpływ fononów
Mamy układ równań:

Szukamy rozwiązania w postaci fali płaskiej:
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Fale podłużne i poprzeczne

w ośrodku dielektrycznym



Wróćmy do równań Maxwella i znajdźmy warunki dla rozchodzenia 

się w ośrodku fal poprzecznych i podłużnych
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Nie tracąc ogólności rozważmy dwa przypadki:

Fale poprzeczne:
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To już znamy – propagacja fal elektromagnetycznych!

Pokazaliśmy, że  fale elektromagnetyczne są absorbowane dla 

częstości 0. Zatem 0 odpowiada częstości fononu optycznego 

TO (w pobliżu k=0). 

Wzbudzenia poprzeczne spełniają związek:
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Wzbudzenia podłużne pojawiają się dla częstości, dla których spełnione jest
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Dlaczego częstość drgań podłużnych L jest większa 

od częstości fononu TO?

0)( 

Warunkiem wzbudzenia drgania podłużnego                 jest: 

   LL EE 00 1  P

Nie oznacza to, że pole elektryczne wewnątrz ośrodka wynosi zero!

gdy

0

P
-EL  0D

Zauważmy bowiem, że

To pole ma przeciwny kierunek niż polaryzacja, dlatego daje 

dodatkową siłę zwrotną dla oscylacji podłużnych                                 

(w porównaniu z poprzecznymi)!

Pojawia się makroskopowe pole elektryczne, wynikające z 

makroskopowej polaryzacji środka!

Dlatego energia fononu LO jest zawsze większa 

od energii fononu TO!
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Widma fononowe w podczerwieni 



Oddziaływanie podczerwieni z fononami

a



a






q

foton

gałąź optyczna

gałąź 

akustyczna

Trzeba dopasować

energię i wektory 

falowe światła i fononu!

Absorpcja światła pojawia się w 

kryształach (przynajmniej częściowo)

jonowych!
(Oscylujący dipol sprzęgający się ze 

światłem pojawi się tylko gdy w sieci

mamy naładowane atomy!)



Korzystając z relacji LST możemy dynamiczną funkcję 

dielektryczną przedstawić w postaci:

 
22

22









 

TO

L

  0

LTO  

Dla częstości spełniających 

warunek: 

  1R   
 2

2

1 TO

TOs









 

0.6 0.8 1.0 1.2 1.4

0

 


L

 

 






TO

 
L
 Wzbudzenia poprzeczne 

  

Wzbudzenia podłużne 

  0



0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

TO


TO

 

 

R
(

)

LO

0.6 0.8 1.0 1.2 1.4

0

 


L

 

 






TO

 
L


Reststrahlen 

(promieniowanie resztkowe)

- brak penetracji próbki 

w obszarze częstości pomiędzy

TO i  L

- współczynnik odbicia bliski 1 
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Żeby lepiej opisać dane eksperymentalne (tak jak w poprzednim wykładzie) 
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Funkcja dielektryczna (GaAs)
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Różne półprzewodniki

M. Hass: Lattice reflections, Optical properties of III-V Compounds,

Semiconductors and Semimetals, Vol. 3 (Academic, New York 1967), pp.3-16



Widma odbicia w kryształach jonowych

M. Lax and E. Burstein Phys. Rev. B 97, 39 (1995)



Polariton fononowy –

układ sprzężony foton-fonon



Polariton fononowy 
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Wróćmy do związku jaki uzyskaliśmy z równań Maxwella

dla fal poprzecznych oddziałujących z ośrodkiem:

Dotychczas rozpatrując oddziaływanie pomiędzy falami 

elektromagnetycznymi  a oscylatorami zaniedbywaliśmy 

promieniowanie wywołane oscylacjami makroskopowej 

polaryzacji. 

0k
mamy wzbudzenia poprzeczne i podłużne

dla częstości TO, LO

Ale przecież dla k0 różnica pomiędzy częstościami powinna zniknąć.

Jak je bowiem odróżnić? 

 

















 

 222

2
2

1 TO

s

c
k








 
221

)(
TO

s









 



Relacja 

dyspersyjna
Szukamy rozwiązań

(k) spełniających ten

związek



Polariton fononowy Mamy dwa rozwiązania:
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- górna gałąź polaritonowa

0k LO

LO 






ck

- dolna gałąź polaritonowa
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Rzeczywiście: 

dla k0 częstość drgań 

poprzecznych staje się 

zdegenerowana z częstością

drgań podłużnych! 

Efekt symetrii (kubicznej)!
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Polariton fononowy w GaP

C.H. Henry and J.J. Hopfield, Phys. Rev. Letters 15, 964 (1965)

LO

fonon 

TO



Występowanie efektu polaritonowego wynika z silnego sprzężenia 

dwóch wzbudzeń  fononu TO oraz fotonu.

foton fonon TO foton

W wyniku oddziaływania pojawiają się nowe nowe mody 

własne systemu: 

- górna gałąź polaritonaowa

- dolna gałąź polaritonowa

Przekonamy się, że podobną sytuacją będziemy mieli 

też np. w przypadku oddziaływania ekscytonu ze światłem.

Wtedy będziemy mówić o polaritonie ekscytonowym…

W ośrodku propagują się więc polaritony (ani fonon TO, ani foton!)

oddziaływanie emisja oddziaływanie



Inne metody badania wzbudzeń 

fononowych



Wzbudzenia 

wielofononowe

w absorpcji
LO+TA

TO+TA

LO+TA

TO+LO

R. J. Collins and H. Y. Fan Phys. Rev. B 93 674 (1954)



Repliki fononowe w luminescencji
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A. Wysmolek et al., Phys. Rev. B 74, 195205 (2006) 



Badania synchrotronowe

T. Ruf et al. Phys. Rev. Lett. 86, 906 (2001)



Sprzężenie fononów podłużnych 

optycznych z nośnikami –

mody sprzężone plazmon-fonon



Mody sprzężone plazmon-fonon

ELO Epl

ELO Epl
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B.B. Varga, Phys. Rev. 137, A1896 (1965)

A. Mooradian and B. Wright, PRL 16, 999 (1966)
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Mody sprzężone plazmon-fonon
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Rozpraszanie na wzbudzeniach podłużnych o 

dużych wektorach falowych

Medium q
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rozpraszanie 

do tyłu, wtedy przekaz 

pędu jest największy… k 2k0

Nieelastyczne rozpraszanie światła (efekt Ramana)



Ewolucja od izolatora, do 

metalicznego półprzewodnika…



Mody sprzężone plazmon-fonon w GaAs
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Można wyznaczyć koncentrację 

elektronów swobodnych!

A. Wysmolek et al. PRB 74, 165206 (2006) 


