
Wpływ pola magnetycznego na 

plazmę w półprzewodnikach



Założenia

• pole magnetyczne  B nie wpływa na polaryzację rdzeni 

atomowych (zatem ε∞ nie zależy od B)

• pole magnetyczne nie wpływa na polaryzację, ani na 

częstości własne modów fononowych

Jedyny wpływ pola magnetycznego na polaryzację
wynika z jego wpływu na zachowanie swobodnych 
nośników…



Wpływ pola magnetycznego na plazmę 

(w półprzewodnikach)
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- funkcja dielektryczna sieci
bez nośników swobodnych

Pole magnetyczne modyfikuje ruch nośników poprzez siłę Lorentza
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Pole elektryczne zmienne w czasie Periodyczny w czasie „dodatek” 
do prędkości nośników
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Znając zależność prędkości od pola magnetycznego 

spróbujemy znaleźć tensor przewodnictwa:

Zacznijmy od prędkości:
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Wybieramy:
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Stąd dostajemy układ równań na składowe prędkości
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Spróbujmy wyrazić składowe prędkości przez składowe pola elektrycznego:
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Częstość cyklotronowa:
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Po przemnożeniu  dostajemy zależność wektora gęstości prądu od wektora 

pola elektrycznego:
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Znając zależność gęstości prądu od pola elektrycznego 

możemy znaleźć tensor przewodnictwa:
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Przedstawmy  tę równość 

w postaci macierzowej i

wyznaczmy składowe tensora 

przewodnictwa…
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Tensor przewodnictwa w polu magnetycznym
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Granica długiego czasu relaksacji (zerowe tłumienie)
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Tensor dielektryczny w obecności nośników
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Znając składowe tensora przewodnictwa znajdziemy 

składowe tensora dielektrycznego
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Związek składowych tensora przewodnictwa i tensora 

dielektrycznego (bez tłumienia):
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(…tak jak bez pola B!)

(…znika w nieobecności pola B!)



Konfiguracje w polu magnetycznym
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Konfiguracja Faradaya:
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Jaki jest związek pomiędzy 

składowymi 

pola elektrycznego Ex oraz Ey?
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Polaryzacja 

prawoskrętna:

Polaryzacja 

lewoskrętna:



Znajdźmy związek zespolonego współczynnik załamania

ze składowymi tensora dielektrycznego:

xyxx
iN εε ±=±

2

Dygresja... 

Postać funkcji dielektrycznej w przypadku kryształu o wiązaniu 
jonowym zawierającym gaz swobodnych nośników:
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Bez tłumienia

Z tłumieniem

±= ε2~n Widmo odbicia, widmo absorpcjiZnając



Rozszczepienie krawędzi plazmowej
Krawędź plazmowa (bez tłumienia):

gdy współczynnik odbicia R=1

( )
01

2

=









−= ∞±

c

p

ωωω

ω
εε

m
0~ 22 == Nn

022 =− pc ωωωω m 22
4 pc ωω +=∆

11

2

1~

1~
)(

+

−
=

n

n
R ω

cpc
ωωωω

2

1
4

2

1 22 ±+=±

c
ωωω =− −+

Rozszczepienie krawędzi 
plazmowej!
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Zera i osobliwości 

funkcji dielektrycznej 

w konfiguracji 

Faraday’a

Wzbudzenia poprzeczne, 

wzbudzenia podłużne…
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Odbicie plazmowe

w polu magnetycznym
masa efektywna

B. Lax and G. B. Wright Phys. Rev. Lett. 4, 16 (1960)



Eksperyment (stary…)

cω

B. Lax and G. B. Wright Phys. Rev. Lett. 4, 16 (1960)



Pochłanianie fale elektromagnetycznych – tam gdzie funkcja dielektryczna 
ma osobliwości (pamiętamy to z modelu oscylatora – warto sprawdzić jeszcze
raz samodzielnie uwzględniając tłumienie i obliczając widmo absorpcji )
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Osobliwości: zera mianownika

Tylko c
ωω =

+N ma osobliwość

Tylko jedna z polaryzacji jest daje absorpcję 

rezonansową – jest aktywna cyklotronowo 

CRA – cyclotron resonance active

Rezonans cyklotronowy to bardzo ważna metoda w badaniach półprzewodników

struktur półprzewodnikowych…



Rezonans cyklotronowy w 

strukturze GaN/AlGaN

masa elektronu w GaN

-badania absorpcji z użyciem

spektroskopii Fourierowskiej

- metody badania absorpcji

z użyciem laserów w dalekiej

podczerwieni

Stała sprzężenia elektron-fonon:

W. Knap et al. Appl. Phys. Lett. 70, 21 (1997) 
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Stała sprzężenia elektron-fonon:

Masa polaronowa (to co mierzymy…)

GaAs:  αep= 0,06; GaN: αep =0,3 

ZnSe : αep= 0,40   AgCl :  αep=  2,2



Rezonans cyklotronowy w GaAs

Batke et al. Phys. Rev. B 48, 8761 (1993)



Rezonans cyklotronowy w germanie – anizotropia masy

efektywnej….

B. Lax, H.Zeiger, and E. Rosenblum, Phys. Rev. 93, 1418 (1954)

R. Dexter, H. Zeiger,and  B. Lax, Phys. Rev. 95, 557 (1954)



Przykład trochę na wyrost:
rezonans cyklotronowy w dwuwymiarowym gazie elektronowym

A. Poulter et al. Phys. Rev Lett. 86, 336 (2001)


