Wptyw pola magnetycznego na
plazme w poétprzewodnikach



Zatozenla

« pole magnetyczne B nie wptywa na polaryzacje rdzeni
atomowych (zatem ¢_ nie zalezy od B)

« pole magnetyczne nie wptywa na polaryzacje, ani na
czestosci wtasne moddéw fononowych

Jedyny wplyw pola magnetycznego na polaryzacje
wyhika z jego wptywu na zachowanie swobodnych
nosnikow...



Wptyw pola magnetycznego na plazme
(w potprzewodnikach)

e =¢ (0)+ ' & (w) -lunkea dielekiryczna sieci
- WE, . bez nosnikdw swobodnych

Pole magnetyczne modyfikuje ruch nosnikOw poprzez site Lorentza

Rownanie ruchu |:> Tensor przewodnictwa E> Tensor dielektryczny
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do predkosci nosnikow
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Znajac zaleznosc predkosci od pola magnetycznego
sprobujemy znalez¢ tensor przewodnictwa:

(dla elektrondw)

Zacznijmy od predkosci:

E=[EE,E,]
Dz[vx,vy,vz]

Wybieramy:

DXB

€

X

(),

X

0

ey
Uy
0

eZ

()

<

j=—enD=0FL

B =10,0,B]
gl

=[v,B,—v,B,0]



dv

e
dt m’

Stad dostajemy uktad rownan na sktadowe predkosci
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Sprobujmy wyrazi¢ sktadowe predkosci przez sktadowe pola elektrycznego:
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Po przemnozeniu dostajemy zaleznos¢ wektora gestosci prgdu od wektora
pola elektrycznego:
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Znajgc zaleznosc gestosci pragdu od pola elektrycznego
mozemy znalez¢ tensor przewodnictwa:
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Przedstawmy te rownosc

w postaci macierzowej i
wyznaczmy sktadowe tensora
przewodnictwa...

[T

Ox

oy

0z _




Tensor przewodnictwa w polu magnetycznym
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Granica dtugiego czasu relaksacji (zerowe ttumienie)
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Tensor dielektryczny w obecnosci nosnikow
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Znajgc sktadowe tensora przewodnictwa znajdziemy
sktadowe tensora dielektrycznego
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Zwigzek sktadowych tensora przewodnictwa | tensora
dielektrycznego (bez ttumienia):
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Konfiguracje w polu magnetycznym B 7

Konfiguracja Faradaya k B k l TE
Podstawowe polaryzacje fal
prawoskretna O, = F = E. ,0]
lewoskretna g > E = —lE ,0]
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E
E. /. _ Konfiguracja rownolegta
k TB EB
Konfiguracja prostopadta
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Z rébwnan Maxwella _ k(E k) + sz — €((())E
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Konfiguracja Faradaya: 0 0
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Jaki jest zwigzek pomiedzy (N2 _g )
sktadowymi E =- = F
pola elektrycznego E, oraz E£,? €y
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Znajdzmy zwigzek zespolonego wspotczynnik zatamania
ze sktadowymi tensora dielektrycznego:

N;=¢g_ tig,

Dygresja...

Postac funkcji dielektrycznej w przypadku krysztatu o wigzaniu
jonowym zawierajgcym gaz swobodnych nosnikow:
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Znajac 1° = £, = Widmo odbicia, widmo absorpciji



Rozszczepienie krawedzi plazmowej

Krawedz plazmowa (bez ttumienia):
gdy wspotczynnik odbicia R=1
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Palik & Furdyna, Rep. Prog. Phys. 33 1193 (1970)




Zera i osobliwosci Y
funkcji dlelektrycznej 4T o 7 :
w konfiguracji 4 _
Faraday’a A ]
Wzbudzenia poprzeczne, ’ -
wzbudzenia podtuzne... CRA +
CAl-
oles, 4 6

Figure 9. ‘Contour map’ of dielectric constants &/, for the Faraday geometry with 0, 1 and =

lines indicated. Shaded areas represent regions of negative x. where reflectivity is unity
(after Palik and Henvis 1970).



Odbicie plazmowe

w polu magnetycznym eB
. = ) masa efektywna
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FIG. 1. Theoretical curves of magnetoplasma effect
for isotropic carrier and w >>1. we=0. 2wp.

B. Lax and G. B. Wright Phys. Rev. Lett. 4, 16 (1960)



Eksperyment (stary...)
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FIG. 2. Magnetoplasma effect in 7-type InSb.
N=1.8x10'"% cm™3.

B. Lax and G. B. Wright Phys. Rev. Lett. 4, 16 (1960)



Pochtanianie fale elektromagnetycznych — tam gdzie funkcja dielektryczna
ma osobliwosci (pamietamy to z modelu oscylatora — warto sprawdzic jeszcze
raz samodzielnie uwzgledniajgc ttumienie i obliczajgc widmo absorpcji )

4 2 )

w

N:=n"=¢|1 L
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Osobliwosci: zera mianownika |

Tylko | NV L ma osobliwos$é @ =,

Tylko jedna z polaryzacji jest daje absorpcje
rezonansowg — jest aktywna cyklotronowo
CRA — cyclotron resonance active

Rezonans cyklotronowy to bardzo wazna metoda w badaniach potprzewodnikow
struktur pétprzewodnikowych...
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FIG. 2. Results of the fast Fourier transform (FFT) spectrometer measure-
ments (7=2 K) on sample A. (a) 0.5 cm ™! resolution spectra—theoretical
result (thin solid line) is shifted by 0.15 cm™ ! resolution spectra—
theoretical result (thin solid line) is shifted by 0.15 for clarity (b) 3.0
cm” ! resolution spectra: experiment open points. Theoretical results—thin
solid lines correspond to calculations according to Eq. (2) averaged over the
oscillations due to interferences. The vertical scale corresponds to 12 T
spectra. For clarity, the spectra for lower fields are shifted vertically from
the spectrum at 12 T by a constant value.

W. Knap et al. Appl. Phys. Lett. 70, 21 (1997)

Rezonans cyklotronowy w
strukturze GaN/AlGaN

_ys

masa elektronu w GaN

-badania absorpcji z uzyciem
spektroskopii Fourierowskiej
- metody badania absorpciji

z uzyciem laserow w dalekie;
podczerwieni

Stata sprzezenia elektron-fonon:
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GaAs: ag,=0,06; GaN: a,,=0,3
ZnSe : ag,= 0,40 AgCl: o= 2,2



Rezonans cyklotronowy w GaAs
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FIG. 1. Temperature-dependent cyclotron resonances of wave numbers (cm

electrons in bulk GaAs at magnetic-field strengths (a) B=3.91
T, (b) 6.50 T, and (c) 13.63 T. The arrows mark resonance posi-
tions.

bound electrons in n-GaAs at B
tures.

FIG. 2. Spin-split cyclotron resonances of (a) free and (b)

=15 T and various tempera-

Batke et al. Phys. Rev. B 48, 8761 (1993)



ABSORPTION (arbitrary units)

[ Rezonans cyklotronowy w germanie — anizotropia masy
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Przyktad troche na wyrost:
rezonans cyklotronowy w dwuwymiarowym gazie elektronowym
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A. Poulter et al. Phys. Rev Lett. 86, 336 (2001)



