Efekt Faradaya na
swobodnych nosnikach

Efekt Faradaya:

Skrecenie ptaszczyzny polaryzacji Swiatta spolaryzowanego liniowo
przy przechodzeniu przez osrodek umieszczony w statym polu
magnetycznym rownolegtym do kierunku rozchodzenia sie fali.



Rozwazmy fale spolaryzowang kotowo rozchodzgcg sie rownolegle do
Kierunku pola magnetycznego. Przy zaniedbaniu ttumienia mamy:
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Fale spolaryzowang liniowo mozna przedstawiC¢ w postaci superpozyciji
fal spolaryzowanych kotowo (sktadowe wektora zapisujemy w postaci
liczb zespolonych) :
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Dla kazdych dwoch polaryzacji kotowych rozwigzanie ma postac:
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Kat skrecenia ptaszczyzny polaryzacji proporcjonalny
do réznicy drég optycznych!
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Metoda pomiaru masy efektywnej!
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Figure 15. Variation of Faraday rotation with m* and A} for a typical semiconductor with
K = 16-

Palik & Furdyna, Rep. Prog. Phys. 33 1193 (1970)



Badanie nieparabolicznosci pasma przewodnictwa
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Figure 32, Faraday-rotation data for several samples of n-type InSb of varying carrier density
at two temperatures. These data illustrate the variation of w* with » and T (after Pidgeon 1962),



Efekt Faradaya w grafenie
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Fale helikonowe
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Palik & Furdyna, Rep. Prog. Phys. 33 1193 (1970)



Magnetyczny efekt Kerra

Badamy efekt odbicia od powierzchni poétprzewodnika fali spolaryzowanej liniowo,
rozchodzgcej sie wzdtuz kierunku pola magnetycznego. Czestosc fali bliska
czestosci plazmowej.

Polaryzacja fali odbita ulega skreceniu i pojawia sie eliptyczna polaryzacja swiatta.
Zjawisko to nazywamy magnetooptycznym efektem Kerra lub odbiciowym efektem
Faradaya.

Fale padajaca spolaryzowang liniowo rozktadamy na fale o polaryzacji kotowej.
Przy padaniu prostopadtym do powierzchni probki, amplitudy fal spolaryzowanych
kotowo mozna wyrazi¢ za pomocg ich rzutu na osie X, V:
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Skrecenie ptaszczyzny polaryzacji fali odbitej wzgledem fali padajgce;
(doktadniej kat pomiedzy dtuzszg osig elipsy fali odbitej a ptaszczyzng
polaryzaciji fali padajgcej):
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W odroznieniu od efektu Faradaya skrecenie ptaszczyzny polaryzacii

(w efekcie Kerra) wystepuje tylko przy odbiciu od osrodka pochtaniajgcego.

Zeby uzyskaé informacje o masach efektywnych no$nikow nalezy bada¢ efekt Kerra
w poblizu krawedzi plazmowej. o
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Podobnie jak w przypadku odbicia magnetoplazmowago
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Magnetyczny efekt Kerra
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Figure 25. Reflection Faraday rotation and ellipticity for n-type InSb (after Palik er al. 1962).




Obliczamy

~N(N-E)=

Konfiguracja Voigta
N 1B N=[N,0,0]

Szukamy rozwigzan rownania Maxwella:
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ROZWiazan ia Dwojtomnosé wymuszona polem

magnetycznym
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Promien zwyczajny.
Rozpatrzmy jeszcze rownanie
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Czyli istnieje pole podtuzne wzdtuz wektora propagaciji fali!ll
Dostajemy wiec polaryzacje podtuzng osrodka!
Fizycznie zwigzane jest to z wlasnosciami sity Lorentza, ktoéra dziata na nosniki!
Ma to ogromne znaczenie dla propagacji modow sprzezonych plazmon-fonon w
polu magnetycznym.
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Odbicie plazmowe
w konfiguracji Voigta

Palik & Furdyna, Rep. Prog. Phys. 33 1193 (1970)
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Figure 31. Faraday and Voigt cyclotron resonances in n-type InSb (after Iwasa et al. 1966).
(@) Transmission showing line shape. (&) Magnetic field and frequency dependence.



