
Efekt Faradaya na 

swobodnych nośnikach

Efekt Faradaya:

Skręcenie płaszczyzny polaryzacji światła spolaryzowanego liniowo 

przy przechodzeniu przez ośrodek umieszczony w stałym polu 

magnetycznym równoległym do kierunku rozchodzenia się fali.



Rozważmy falę spolaryzowaną kołowo rozchodzącą się równolegle do 

kierunku pola magnetycznego. Przy zaniedbaniu tłumienia mamy:
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Falę spolaryzowaną liniowo można przedstawić w postaci superpozycji 

fal spolaryzowanych  kołowo (składowe wektora zapisujemy w postaci

liczb zespolonych) :
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Dla każdych dwóch polaryzacji kołowych rozwiązanie ma postać:
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Kąt skręcenia płaszczyzny polaryzacji proporcjonalny 

do różnicy dróg optycznych! 



Jeśli kąt skręcenia

jest niewielki
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Pamiętamy, że
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Metoda pomiaru masy efektywnej!



Palik & Furdyna, Rep. Prog. Phys. 33 1193 (1970)  



Badanie nieparaboliczności pasma przewodnictwa



Efekt Faradaya w grafenie 

I. Crassee et al. Nature Physics 7, 48 (2011)

• Pomiar na pojedynczej

warstwie atomowej!

• Kąt skręcenia zmienia znak

przy zmianie znaku ładunku 

nośników.



Fale helikonowe
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Gdy rozważymy bardzo

małe częstości fali 
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Korzystamy z definicji

wektora propagacji 
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Helikon – poprzeczna

fala w plazmie 

spolaryzowana kołowo –

ośrodek staje się przezroczysty!

Helikon porusza się

wzdłuż pola 

magnetycznego 

z bardzo małą prędkością!
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Propagacja helikonów  

Palik & Furdyna, Rep. Prog. Phys. 33 1193 (1970) 



Magnetyczny efekt Kerra
Badamy efekt odbicia od powierzchni półprzewodnika fali spolaryzowanej liniowo,

rozchodzącej się wzdłuż kierunku pola magnetycznego. Częstość fali bliska 

częstości plazmowej. 

Polaryzacja fali odbita ulega skręceniu i pojawia się eliptyczna polaryzacja światła. 

Zjawisko to nazywamy magnetooptycznym efektem Kerra lub odbiciowym efektem

Faradaya.

Falę padającą spolaryzowaną liniowo rozkładamy na fale o polaryzacji kołowej.

Przy padaniu prostopadłym do powierzchni próbki, amplitudy fal spolaryzowanych 

kołowo można wyrazić za pomocą ich rzutu na osie x, y:
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Zmiana fazy fal spolaryzowanych 

kołowo na  skutek odbicia
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W obecności pola magnetycznego amplitudy 

fal spolaryzowanych kołowo 

prawoskrętnie i lewoskrętnie są różne

Fala odbita jest 

spolaryzowana

eliptycznie
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Skręcenie płaszczyzny polaryzacji fali odbitej względem fali padającej 

(dokładniej kąt pomiędzy dłuższą osią elipsy fali odbitej a płaszczyzną

polaryzacji fali padającej):
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W odróżnieniu od efektu Faradaya skręcenie płaszczyzny polaryzacji 

(w efekcie Kerra) występuje  tylko przy odbiciu od ośrodka pochłaniającego.

Żeby uzyskać informacje o masach efektywnych nośników należy badać efekt Kerra

w pobliżu krawędzi plazmowej.
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Szukamy krawędzi plazmowej 0  
górna i dolna 

„krawędź plazmowa” 
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Podobnie jak w przypadku odbicia magnetoplazmowago 
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Magnetyczny efekt Kerra
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Konfiguracja Voigta
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Szukamy rozwiązań równania Maxwella:

Obliczamy
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Rozwiązania
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Rozpatrzmy jeszcze równanie
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Czyli istnieje pole podłużne wzdłuż wektora propagacji fali!!!
Dostajemy więc polaryzację podłużną ośrodka!

Fizycznie związane jest to z własnościami siły Lorentza, która działa na nośniki!

Ma to ogromne znaczenie dla propagacji modów sprzężonych plazmon-fonon w  

polu magnetycznym.

Nie zależy od pola 

magnetycznego! 

Promień zwyczajny.
BE
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Promień nadzwyczajny

Dwójłomność wymuszona polem 

magnetycznym



Rozpatrzmy zera 
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To już było!
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Zera takie samo zachowanie jak dla B=0
(zwyczajny)



Palik & Furdyna, Rep. Prog. Phys. 33 1193 (1970) 

Odbicie plazmowe 

w konfiguracji Voigta



Osobliwości:
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