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Sum-frequency generation using spectrally asymmetric type II phase matching enables significant simplifica-
tions in spectral shearing interferometry as applied for ultrashort optical pulse measurements. We present
analytical and numerical models of broadband sum-frequency wave mixing essential to understand the under-
lying effects. We discuss spectral and temporal limits of the method together with various aspects of experi-
mental implementation: optimization of the retrieval algorithm, calibration procedures, and extension to dif-

ferent spectral regions of particular interest with other crystals. © 2007 Optical Society of America
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1. INTRODUCTION

It is the unprecedented electric field intensities generated
and/or the duration of the pulses itself that have estab-
lished ultrashort optical pulses as an important tool in
physics, chemistry, biology, and medicine. In either case,
the ability to characterize the pulse’s electric field in time,
or equivalently in frequency, is a route toward new experi-
ments as well as the improvement of the range and the
reliability of the already well-established ultrafast tech-
niques and technologies. With commercial, turn-key oper-
ated lasers routinely generating sub-10 fs pulses, the
quest for sensitive, simple, and trustworthy techniques of
pulse measurement incarnated in compact devices at-
tracts many leading groups worldwide.

Since the only available nonstationary filters with fem-
tosecond time resolution are based on nonlinear fre-
quency conversion (most often in birefringent nonlinear
crystals), all the current pulse characterization tech-
niques rely on such processes [1]. An important step for-
ward was the realization that by the proper phase-
matching management of these crystals, the pulse
measurement can be significantly simplified [2]. Subse-
quently, a new range of techniques emerged, among them
GRENOUILLE, a spectrographic method based on
frequency-resolved optical gating (FROG) redesigned
with thick crystal and no spectrometer [3] and the single
shot sonogram [4], utilizing a similar effect.

Only recently was it demonstrated that the spectral
shearing interferometry may also benefit from a better
understanding of the phase-matching with broadband
fields and ARAIGNEE (another ridiculous acronym for in-
terferometic geometrically simplified noniterative E-field
extraction) saw its first light [5]. The sum-frequency (SF)
generation in a properly chosen nonlinear crystal
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is itself used to generate frequency sheared pulse
replicas [6]. Thus a fundamental requirement for spectral
phase interferometry for direct electric field extraction
(SPIDER) [7] can be realized without a separate ancillary
pulse leading to a significant simplification of the tech-
nique.

In this paper we present a number of theoretical and
practical issues pertinent to ARAIGNEE: we analyze
broadband type II SF generation in the phase-matching
picture as well as in the framework of the interacting
pulsed fields; we discuss the pulse retrieval procedure in-
cluding corrections accounting for nonperfect group veloc-
ity matching and group velocity dispersion and present
further experimental details of the technique. We have
shown that ARAIGNEE may be implemented in very
simple, compact, and sensitive apparatuses [8] (see also
Fig. 2). Still, for reliable ultrashort pulse measurements
over broad bandwidths as well as defining the limits of
the technique, a better understanding of the upconversion
process is essential. Several numerical simulations of the
SF generation are presented both to validate our analyti-
cal results and to predict the spectral tunability range
and the bandwidth limitations of ARAIGNEE. Three
widely used nonlinear crystals are investigated: potas-
sium dihydrogen phosphate (KDP), potassium titanyl
phosphate (KTP) and B-barium borate (BBO). These crys-
tals are suitable to characterize with high accuracy ul-
trashort pulses in the spectral ranges 740—900 nm,
1000—-1300 nm and 1200—1600 nm, respectively, and for
pulse duration between 50 and 600 fs. Experimental re-
sults are presented and discussed for a number of pulses
under study, in particular those with parameters at the
theoretical limits of the measurement device perfor-
mance.

© 2007 Optical Society of America
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2. PHASE-MATCHING ENGINEERING

The underlying principle of spectral shearing interferom-
etry is to resort to a spectrally shifted (sheared) replica of
the test pulse to measure itself. In conventional SPIDER,
for pulses above 20 fs, the spectral shear is produced by
upconverting two pulse replicas with different quasi-
monochromatic time slices of a highly chirped ancillary
pulse [7]. For ultrashort pulses of 10 fs or less, in order to
not alter the unknown pulse before it arrives at the non-
linear crystal, a single test pulse upconverts with two
highly chirped ancillary pulses [9-11]. What is therefore
essential for either configuration is a nonlinear process
that can mix a broadband test pulse with a quasimono-
chromatic (narrowband) wave, or ancillary pulse, hereaf-
ter labeled the ancilla. Since the ancilla is typically pre-
pared outside the nonlinear crystal, the only requirement
on the crystal is that its phase-matching function (PMF),
which links the upconverted pulse to the input pulse,
should not introduce any phase distortion. A thin nonlin-
ear crystal, typically in the range of a few tens of mi-
crometers, is used to achieve a sufficiently large band-
width.

In ARAIGNEE the crystal is chosen so that the narrow-
band ancilla is selected directly from the test pulse by the
PMF of the nonlinear crystal itself (see Fig. 1).

In the frequency domain, this can be described as fol-
lows: Let us represent the complex amplitude of the input

test pulse, E(t) by a Fourier transformation, E‘(w)
=[E(t)exp(iwt)dt. We are interested in generating a spec-

trally shifted replica of the input: E(w)—E(w-Q), where
Q is the spectral shear. Considering an y? nonlinear

crystal, we can approximate the SF signal, E (w) for two
arbitrary input fields, E 1(w1) and Ez(w2) as [12]:
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Fig. 1. (Color online) Absolute magnitudes of the collinear type
II PMF |®|? of a 20 mm thick KDP crystal for two values of the
propagation angle (0.5° apart), plotted as a function of frequency
for ordinary w, and extraordinary w, input polarization compo-
nents (black indicating perfect phase-matching). The SF signals
are drawn on the diagonal axis, w,=w,+ o,, illustrating the shear
between the outputs due to the specific PMF shape, which allows
all the frequency content of one of the input fields to mix with a
single frequency component of the other one.
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Es(w) o J f Swy + wg — w)E1(w1)E2(w2)‘I’(w1,wz)dwldwz

= f E1(0 - 09)Eq(wy) P(0 — wg,wp)dws, (1)

where & denotes the delta function and the PMF of the in-
teraction in the crystal is represented by

D(wy, ) = sin(T)/T X exp(iT), 2)

where T((Dl , (1)2) =[k1(w1) +k2(w2) —ks(w1+ (1)2)]L/2, L is the
interaction length and k; is the propagation constant of
the j={1,2,s} field.

For a conventional SPIDER device that uses a suffi-
ciently thin crystal, the PMF can be approximated as
®(w1,wy) =1 over the pulse bandwidth, and the SF gen-
eration process described by Eq. (1) is then equivalent to a
convolution of the two fundamental fields:

E () =E(0) * Ey(w) = f Ei(0- wp)Ey(wy)dw,y.  (3)

Therefore, if one of the fundamental beams is a quasi-
monochromatic ancilla and can be approximated by a

delta function, EI: S(w-Q), then Eq. (3) represents an
exact spectrally shifted replica of the broadband input
pulse: Es(w)=E‘2(w—Q).

To visualize the main idea of ARAIGNEE, we must re-
turn to Eq. (1) and consider the case when the PMF
®(wy,wy) can be written as a direct product of two one-
dimensional (1D) functions, ®(w;,ws)=P;(w;) X Py(wy).
This factorization of the PMF means that the SF field of
Eq. (1) is now also a convolution of the two inputs, each
modified by its respective PMF component:

E () =[®1(0)E1(0)] * [Po()Es(w)]. 4)

As a result, if we can arrange for the factorization to be of
the form ®;(w) X Py(w)=8w-Q) X1, the output pulse is
still a replica of one of the input pulses [E (w)=Ey(w

-0)] with the only requirement on the other one (E;) be-
ing that it contains the frequency Q.

Figure 1 shows such a situation, where the PMF mag-
nitude (|®|?) has been plotted for optical fields traveling at
two angles tilted by +0.25° away from the normal to the
surface of a 2 cm long type II KDP crystal cut for second
harmonic generation at 830 nm (#=68°). The particular
combination of the crystal dispersion, the cut angle, and
the wavelength range produces a nearly vertical PMF
that is simultaneously very broad along the ordinary axis
and very narrow along the extraordinary axis. Such a
highly asymmetric PMF shape is the result of a group ve-
locity match between the o-fundamental input and the
e-upconverted output field and a group velocity mismatch
between the e-fundamental and the e-upconverted fields.
Because of this specific PMF, the entire bandwidth of an
o-pulse, with the spectrum located in the 830 nm region,
may convolve with a quasi-monochromatic portion of the
e-pulse spectrum as selected by the PMF. The angle of
propagation relative to the crystal optic axis determines
the wavelength of the monochromatic slice of the e-wave
bandwidth that upconverts with the entire o-wave band-
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width. Thus, if two copies of a pulse are directed into the
crystal, altering their respective propagation angles pro-
duces the spectral shift between the upconverted outputs
required for the spectral shearing interferometry.

One of the recent realizations of the ARAIGNEE appa-
ratus is presented schematically in Fig. 2. The two pulse
replicas are generated by sending the input beam onto a
mirror pair, and the relative angle between them allows
the replicas to propagate in the nonlinear crystal (KDP)
with a slightly different angle. Apparently, the setup re-
quires only a few optical elements, enabling us to build a
very compact apparatus. It is worth mentioning that in
ARAIGNEE the only degree of freedom in the SF genera-
tion is the phase-matching angle, which is the horizontal
tilt of the nonlinear crystal, since the spatial and the tem-
poral overlap of all the pulses is automatically met.

3. ANALYTICAL DESCRIPTION OF THE
SUM-FREQUENCY GENERATION

The simple picture developed in Section 2 is not sufficient
to explore the entire potential of ARAIGNEE. Indeed,
since we are dealing with the nonlinear interaction of
pulses, not only the magnitude of the PMF as depicted in
Fig. 1 but also its phase have to be taken into account. We
have therefore developed a more comprehensive wave
mixing model.

We consider the type II collinear interaction of two fun-
damental pulses R, and R,, respectively, o- and
e-polarized, and the upconverted pulse B generated by SF
in a dispersive dielectric medium with y'?’ nonlinear sus-
ceptibility (see Fig. 3). Assuming the complex amplitude
envelopes R,, R,, and B to be slowly varying, we derive
from Maxwell’s equations the system of three nonlinear
equations coupled parametrically through the compo-

nents Xijzk) of the nonlinear susceptibility tensor [13]:

Spectro-

meter

Fig. 2. (Color online) Schematic of the ARAIGNEE device. \/2,
half-wave plate; Q, quartz plate; MP, mutually tilted (by 8) and
longitudinally shifted (by d) mirror pair; PM, pick-off mirror;
FM, focusing mirror; BF, blue filter; KDP, nonlinear crystal. Dot-
ted curves depict ordinary pulses and solid curves, extraordinary
pulses.
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Fig. 3. (Color online) Upconversion in a type II nonlinear crys-
tal. R, are the o- and e-polarized test pulses, respectively, and B
is the sum frequency pulse. ¢, is the predelay between the two
fundamental test pulses and L is the crystal thickness.

k/!

i0.R,(t,2) +iAky, iR, — &ttR =-T, R,B exp(- iAkz),
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k;

i0.R (t,2) +iAky, 4R, - E"aﬁRe = - T, R,B exp(- iAkz),

"

b
19,B(t,z) — E&tt =-T,R,R, exp(iAkz),

(5)

where diffraction and spatial walk-off have been ne-
glected. In these equations, z is the propagation distance
and ¢ the time in a reference frame traveling at the SF
group velocity (k;~ 1 at the frequency wp=w, + o, where
o, and w,, are the carrier frequencies of the two funda-
mental waves; I'j=(w; /2klc2))(§2) (I=r,,r,,b) is the nonlin-
ear coupling coefficient. Ak =k, +k —kb is the wave vector
mismatch, Akb —kJ' —ky, the group ve10c1ty mismatch while
kj=dki/d,, and k=Rl 0 w2 are the inverse of the group
velocities and the group velocity dispersions (GVD), re-
spectively.

A. Dispersionless Medium

Let us first consider a dispersionless medium. If the non-
linear interaction is weak, the fundamental waves propa-
gate undistorted in the medium and the system (5) can be
reduced to a single equation for the SF wave:

J
EB(t,z) =il R,(t - Akl’)roz)Re(t - Akl;,ez —to)exp(iAkz),

(6)

where ¢, is the predelay between the two fundamental
pulses at z=0. In a negative (positive) crystal, the
e-polarized fundamental pulse is faster (slower) than the
o-polarized one. Therefore ¢y has to be positive (negative)
as the two pulses cross each other in the nonlinear me-
dium.

The complex envelope of the SF wave at the output of
the crystal of length L is formally obtained by integrating
the right-hand side of Eq. (6) from z=0 to z=L:

L
B(t,L)=il, f R,(t - Akj, 2)R,(t - Ak, 2
0

—to)exp(iAkz)dz

(7

For the sake of simplicity, we particularize our discus-
sion to negative crystals, but it can straightforwardly be
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applied to positive crystals. Assuming that the fastest
pulse (R,) walks completely through the slowest on (R,)
and does not overlap with R, either before or after the
crystal, we can extend the integration boundaries of Eq.
(7) to xoo. In this experiment, this condition can be
achieved by choosing a predelay ¢, greater than the time
support (AT) of the test pulse, and a crystal length such
that L> (AT +|to)/|Ak] . |.

Replacing R, by its frequency representation in the
spectral domain:

1 ™ _
R, (t - Aky, 2) = 2—f R (w)exp(iAky, zw)exp(- iwt)do,
[ 77- . [
(8)

Eq. (7) reads
ily ™ . *
B(t,L) = 2—f R, (w)exp(- iwt)f R,(t - Aky, z — 1)
7T —00 —00 ¢
X expli(Ak + Akl’,row)z]dzdw. 9)

To perform the integration over z, the following variable
change, T=t— Ak, z—t, is introduced and Eg. (9) becomes

it -
B(t,L)= ZWAeref_xRo(w)eXp(—iwt)f_mRe(T)
Ak +Ak),
X exp| i—————(t - 7—t,) [drdw. (10
xp| i Ay, (t -7t w. (10)

The integration over r gives

o Ak + Akl',row N Ak + Akl;row
f R, (nexp| ~-i——— 7 |dr=R,|{ - — |,
. Ak, Ak,

(11)

and to solve Eq. (10), Eq. (11) is expanded in a series
around w=0:

B Ak + Ak,;,ow B Ak Ak,’,ro B Ak
R|-— | =R,| - _ wR)| -
v Ak, | " ak e\ T g,

+0(w?), (12)

where ' denotes derivation with respect to the argument
of R,.

In a crystal with a nearly vertical PM function as in
Fig. 1, there is a group velocity mismatch between the two
fundamental pulses (i.e., Ak, , #0) and at the same time
a group velocity match between the o-fundamental and
the SF pulses (i.e., Ak;, =0). As a result, Aky, /Ak,, <1
and only the first term of the right-hand side of £q. (12) is
kept. Therefore Eq. (10) is approximated by
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—il"b~< Ak) {Ak ]
B(t,L) = R, exp| ¢ (t—tg)

2mAky,  C\ Ak, Akj,
- Ak,

Xf R,(w)exp(—iwt)exp| i (t-tyo |do.
. Ak,

(13)

Fourier transforming back R,, the SF pulse at the output
of the crystal is

-l Ak Ak
B(t,L) = R,| - exp| i t—t
(t,L) T R Akl,”e( 0

Ak, Aky,
xR\ t| 1- —— | +te— |. (14)
Ak, Ak,

Equation (14) shows that the SF pulse B is a replica of
the R, pulse, i.e., the fundamental pulse that travels in
the nonlinear crystal with approximately the same group
velocity as the SF pulse. However, this replica is a time-
scaled copy of R, with the scaling factor s:

(15)

The scaling factor is thus equal to 1 when the group ve-
locities of B and R, are perfectly matched. The expression
(15) is in agreement with the results reported in [14].
However our theoretical analysis shows that this result
holds even if the fundamental wave R, is not a § function,
as long as the high order terms in Eq. (12) can be ne-
glected.

The spectrum of the replica is centered around the fre-
quency wb=wru+cu,e—Ak/Akl'jrE and its amplitude is pro-
portional to the spectral amplitude Re at the frequency
w=—Ak/Aky, . We can thus interpret the SF process as a
waveform transfer from the o-wave to the SF-wave by
mixing a quasi-monochromatic slice of the spectrum of
the e-wave with the whole spectrum of the o-wave. The
actual frequency of the quasi-monochromatic slice is de-
fined by the PMF: If we take into account only the lowest
order terms in the power expansion of the wave vectors in
the vicinity of the center frequency [15], then the phase
mismatch is

AR+ k,ﬁo(wl -, )+ k) (g — w,) = ky(ws— wp) =0.
(16)

Taking w;=w, (the central frequency of the spectrum
that is entirely upconverted) and w=w, +Aw, hence w3
=w,.a+wre+Aw and Eq. (16) leads to

Aw=- Ak/Ak;, . (17)

This result is consistent with the simplified picture of the
SF generation discussed in Section 2 on the basis of the
PMF of continuous waves [6].

Eventually, from Eq. (14) it can be seen that, in the ref-
erence frame traveling at the group velocity kl’,_l, the SF
pulse is temporally shifted by
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At =toAky, /AR, , . (18)

This latter result has been previously derived in [14] from
the assumption that the SF pulse is generated in the crys-
tal at the location where the two fundamental pulses
meet in the crystal. Here we derive the result from first
principles. The predicted temporal shift agrees well with
experimental measurements.

To verify our analytical results, we have numerically
simulated the propagation of the pulses in the nonlinear
crystal by solving the system (5) with a standard beam
propagating method [16]. The solid curves in Fig. 4 show
the temporal amplitude and phase of the SF pulse at two
different locations in the nonlinear crystal. The initial
condition corresponds to two identical Gaussian chirped
input pulses for the two fundamental waves: R,(¢)=exp[
—(t/T)?]1 X exp[i0.5(¢/T)?] and R,(t)=0.7R,(t-t,) where £,
=4.3T such that the two pulses do not overlap in z=0.
Moreover we have assumed a perfect group velocity
match between the o-fundamental and the SF waves:
Ak;, =0 and no group velocity dispersion. In Fig. 4(a), the
propagation is stopped at the location where the two fun-
damental pulses meet, and it is evident that the phase
profile of B(¢) differs from the phase of R,(¢). Actually, the
phase profile of B(¢) is equal to the phase profile of the
o-wave only in the right part of R,(¢), i.e., in the part that
has already experienced a complete interaction with the
e-fundamental wave. Moreover, since the mixing process
is not complete, the SF pulse is delayed relative to the
o-pulse even if the two pulses travel at the same group ve-
locity. Fig. 4(b) shows the same amplitudes and phases
but at the output of the crystal (L=2¢y/Ak, , ). Now, the
complex amplitude of R,(¢) has been entirelgfotransferred
to the SF wave B(t). This example shows that a waveform
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Fig. 4. Evolution of the amplitude and the phase of B(¢), with
Ak, =0 and t,=4.3T. Amplitude and phase of R, (dashed
cuw%s), amplitude and phase of B (solid curve) and amplitude of
R, (dotted curve), (a) in the crystal at the location where the two
fundamental pulses meet, (b) at the output of the crystal where
they have walked through each other.
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transfer from the fundamental wave to the SF wave is
possible only if the pulse R, walks completely through R,
in the nonlinear crystal. This requirement imposes an up-
per limit on the time support AT allowing an accurate
replication of the pulse.

In the spectral region where the group velocities of the
o-fundamental and the SF pulses do not match (.e.,
Akyp, #0), we have seen that the SF pulse replicates the
fundamental o-pulse up to a known time axis scaling fac-
tor s [see Fig. 8(a)] and a known time shift A¢ that de-
pends only on the crystal properties. The latter does not
exceed 15% of the predelay ¢, for a KDP crystal in the
spectral range between 750 and 900 nm. This result is il-
lustrated in Fig. 5 for a group velocity mismatch Ak;,
=0.15Ak;, (as for a KDP crystal of ~750 nm). The dashed
curves show the intensity and the phase profile of the SF
pulse at the output of the crystal, and it can be seen that
if the SF pulse is stretched by the calculated factor s
=0.85 and delayed by LAk;, +At=0.645T, the complex
amplitude of the SF pulse (circles) is a perfect replica of
the o-fundamental pulse (solid curves).

B. Effect of Group Velocity Dispersion
In dispersive materials, the transfer function relation in
Eq. (14) is no longer accurate because it neglects the GVD
at both fundamental and SF frequencies. However, to the
first order, the GVD can straightforwardly be taken into
account, since it leads to an extra phase Ap=1/2k!sLw?,
which can be derived as follows: Assuming the SF pulse is
generated in the crystal at the location ! where the two
fundamental pulses meet

l=ty/Ak, (19)

>
Telo

the effective GVD can be split into two terms:
1
kol =Ry 1 X — + k(L - 1). (20)
° s

The first term of the right-hand side of Eq. (20) accounts
for the chirp acquired by the o-pulse while traveling in
the crystal to the location /. The factor 1/s? has been
added because of the temporal scaling factor that appears
in Eq. (14). The second term describes the chirp acquired
by the SF pulse from the location / to the end of the crys-
tal. Therefore the frequency representation of the SF

1 4
0.8 3.2
3 e
- 0.6 2.4 .=
g 3
£0.4 1.6 =
*5 a9
= 0.2 0.8
0

ST 2 4 6
(t — AL)/T

Fig. 5. SF generation in presence of a a group velocity mismatch
(Ak;, =0.15A%;, ). Intensity and phase profiles of the SF pulse
(dashed curves) and the o-fundamental pulse (solid curves) at the
output of the crystal. The initial conditions are identical as for
Fig. 4. The shifted and scaled output SF pulse is also shown
(circles).
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pulse at the output of the crystal can be approximated by
combining the results in Eqs. (14) and (20), and taking
into account the frequency shift (Aw) from the carrier fre-
quency of the SF pulse,

i

B(w,L) = B‘O(w,L)exp< 2kgffL(w - Aw)z) , (21)

where Eo(w,L) is the frequency representation of the tem-
poral signal in Eq. (14). The accuracy of the last expres-
sion has been verified by comparing Eq. (21) with the nu-
merical simulation of the system in Eq. (5). A typical
example is shown in Fig. 6 for a pulse with a complex
temporal shape resulting from a Gaussian spectrum cen-
tered at ~760 nm (14.5 nm bandwidth FWHM) with qua-
dratic and cubic spectral phase components (200 fs2 and
3 X 10* fs®, respectively). The optical properties of KDP
crystal cut for type II second harmonic generation at
760 nm have been used to calculate the group velocity
mismatch Ak, =0.117Ak;,. . The length of the crystal has
been set to 10 mm and theepredelay to to 600 fs. Eventu-
ally, the angle of propagation has been tilted by 4 mrad
(0.23°) from the phase-matching angle for second har-
monic generation at 760 nm resulting in a frequency shift
Aw=4.1 mrad fs~1. The solid curves in Fig. 6 show the am-
plitude and the phase of the SF pulse at the output of the
crystal obtained by numerically solving the system (5).
Dots correspond to the amplitude and the phase given by
our model in Eq. (21). As can be seen, the agreement be-
tween the numerical solution and our model is very good
although the GVD was taken into account only in the first
order approximation.

The most important feature of Eq. (21) is that the SF
pulse is linked to the input pulse by a simple linear trans-
formation that does not depend on the shape of the input
pulse but only on the physical properties of the nonlinear
crystal used. This is essential if we want to implement a
spectral shearing interferometer based on the SF genera-
tion process described above.

4. PULSE MEASUREMENT

ARAIGNEE is a technique for the characterization of the
electric field of ultrashort optical pulses based on spectral
shearing interferometry. It relies on the spectral inter-
ferogram generated by a pair of temporally delayed and
spectrally shifted replicas of the test pulse. In

1 5

0.8
= —_
z 0 3
~0.6 £
£ -5 g
2 0.4 <
g0 :
=1 .
= 0.2 10

0 - 15

04 02 0 02 04

t (ps)
Fig. 6. Comparison of the amplitude and the phase of the SF
pulse at the output of a thick KDP crystal obtained by numeri-

cally solving the system (5) (solid curves) and derived from Eq.
(21) (circles).
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ARAIGNEE, the spectral shear () is the result of a slight
tilt between the two beams in the nonlinear crystal.

From Eq. (21), the spectral interferogram S(w) of the
two SF pulses is given by

S(w) = |B1(0) + By(w — Q)exp(- iw7)|?

=|B1(w)]? + |By(w — Q)|? + 2|B;(w)||By(w - Q)]

1) w-
XCOS|:¢0<;) - ¢0( s ) + 5¢(U)) + (1)’7':| ’

(22)

where the subscripts (1, 2) distinguish the two SF pulses,
¢o(w) is the spectral phase of the test pulse, which is the
information we wish to recover, and Q=Aw;-Awy is the
spectral shear.

S(w) has a form of a standard shearing interferogram
consisting of fringes nominally spaced in frequency at
27/ 71, while the phase difference term ¢y(w/s)—¢o([w
-Q0]/s)+ 6p(w) manifests itself as a deviation from the
nominal fringe spacing. Since the two SF pulses travel at
a different group velocity in the crystal, the time delay 7is
not the delay between these two pulses at the output of
the crystal but must be interpreted as the delay between
the pair of e- (or o-) polarized pulses before the crystal.
The additional time delay resulting from the birefrin-
gence, as well as the chromatic dispersion is included in
the term S¢(w) defined as

S(w) = (Aty — Aty + O l)w, (23)

where the two first terms are defined by Eq. (18) and de-
pend on the actual angle of propagation of the two beams.
The effective GVD is given by Eq. (20) and is assumed to
be identical for both beams.

The phase difference between the two SF pulses is ex-
tracted by Fourier transforming the interferogram, filter-
ing the peak around the pseudotime +7 and inverse Fou-
rier transforming to the frequency domain.

As for a standard SPIDER interferogram, it can be seen
from Eq. (22) that knowledge of the shear and the refer-
ence phase w7+ d¢p(w) is essential for recovering the spec-
tral phase ¢ [7]. In the experiment, the shear can simply
be measured from the two individually recorded upcon-
verted spectra. The reference phase is usually obtained by
recording an additional spectrogram without spectral
shear. In ARAIGNEE, zeroing the shear means canceling
the angular tilt between the two beams and this cannot
be done without changing the delay between the pulses.
As a result, the reference phase cannot be recorded at the
SF frequencies. However, the reference phase can be ex-
tracted from the interferogram between the pair of funda-
mental e- or o-pulses at the output of the crystal. Extract-
ing the reference phase from the interferogram with the
same polarization state as the SF pulses enables us to
minimize the spatial walk-off between the reference and
the SF beams. The experimental procedure therefore re-
quires no intermediate alignment and the fundamental
and SF interferogram can be recorded either simulta-
neously [17] or separately [7]. For instance, in KDP crys-
tal the phase-matching as well as the group velocity
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matching requirements are fulfilled for “oee” interaction
at approximately 830 nm, and the reference phase is ex-
tracted from the phase difference wr+(Ak,2 —Ak;! )Lo be-
tween the two fundamental e-pulses. ‘ ‘

The linear phase extracted from calibration is sub-
tracted from the phase difference between the two SF
pulses to give the phase difference ¢y(w/s)— po([w—Q]/s)
minus a linear phase correction J¢,o(w)=[Atg—At;
+(Ak,2 — AR} —R!:0)L]w that depends only on the geom-
etry of the aepparatus and the optical properties of the
crystal. The correction term can be removed either before
or after the standard concatenation algorithm used to re-
construct ¢(w/s) from the phase difference [7,18]. After
concatenation the correction function ¢.,.(w) appears as
a quadratic phase. Indeed, if the integration approxima-
tion is used, then

1
Peorr = Q f 3eore(@)dw = Aory?, (24)
with
1 2 1 1 n
Qeorr = E[(Ak,bre - Ak,bre)L + Aty — Atl] - Eke
(25)

It is better to apply the phase correction after the con-
catenation because, although 8¢, varies with the shear,
Qeorr 18 independent of the shear, that is of the exact beam
propagation angles, but depends only on the crystal dis-
persion, its length L, and the predelay ¢,. A numerical
evaluation of Eq. (25) has shown that a,,, does not vary
more than 0.1% up to a shear of 40 mrad fs~! (3.6 nm at
A=415 nm). After frequency scaling by the factor s, the re-
sulting phase profile is the spectral phase profile of the
unknown pulse. However, if the predelay is the result of
the propagation of the pulse through a birefringent me-
dium, the added spectral phase associated with the me-
dium dispersion must be subtracted. Finally, a measure-
ment of the spectral density completes the pulse
characterization. The block diagram in Fig. 7 summarizes
the phase retrieval procedure. The wavelength depen-
dence of the scaling factor s for KDP crystal as well as the
quadratic phase factor a.,,, for a crystal length of 5 mm
and a predelay ty=317 fs, as used in our setup presented
in Fig. 2 are plotted in Fig. 8.

Extracted e-SF Extracted e-fundamental
phase difference phase difference
Substraction
concatenation

Fig. 7. Block diagram of the phase retrieval procedure in
ARAIGNEE.
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Fig. 8. Scaling factor s (a) and quadratic phase factor a,,, (b) as
a function of the central wavelength of the unknown pulse for
KDP. The parameters used in (b) are: crystal thickness L
=5 mm, predelay ¢{,=317 fs.

5. EXPERIMENTAL CONSIDERATIONS

Figure 2 displays the schematic of a compact ARAIGNEE
setup. The linearly polarized input pulse passes through
a zero-order \/2-wave plate and a crystalline quartz plate
(10 mm thick, slow axis horizontal), the two elements
splitting it into ordinary and extraordinary polarizations,
with the e-wave being predelayed by 317 fs with respect
to the o-wave. The beam is subsequently sent onto a pair
of mirrors adjacent to each other with a small mutual
horizontal tilt B that splits the incident beam into two
beams [19] (see detail in Fig. 2). The two beams are di-
rected into a 5 mm thick KDP crystal, cut for second har-
monic generation at 830 nm and oriented such that the
optic axis is horizontal. Each beam undergoes type II SF
generation and the resulting SF pulses are spectrally
shifted (sheared) due to the angular offset (23) of the fun-
damental beams in the crystal. In our experiment, the
angle B has been set to 0.25° resulting in a spectral shear
of ~0.8 nm, i.e., 10% of the pulse bandwidth [20]. The
mirror tilt direction (beams diverging) has been chosen to
make selecting individual beams for shear measurement
easier. The opposite configuration (beams converging)
eliminates the need for imaging optics [8], and decreases
the gap between the two mirrors. A longitudinal shift of
one of the two mirrors by d =225 um delays the corre-
sponding pulse by =1.5 ps as required by spectral inter-
ferometry. The stability of the mechanics for d and B is an
important feature but does not need to have a precisely
calibrated scale. At the output of the crystal, the two
beams are recombined with a 100 mm focusing mirror
onto the entrance slit of a compact grating spectrometer
(USB2000, Ocean Optics). The diameter of the input
beam must be larger than ~2 mm to minimize the effect
of the gap between the two mirrors in the pair, the diffrac-
tion of the edges as well as the spatial walk-off in the
crystal (of the order of 20 mrad [21]). On the other hand,
the wave plate and the KDP crystal used (10X 10 mm)
limit the maximum device aperture to approximately
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5 mm. Another implementation of ARAIGNEE has been
proposed in which the two angularly tilted and tempo-
rally delayed beams are generated by a Michelson inter-
ferometer arrangement [6]. The lower limit of the beam
diameter is therefore only imposed by the spatial walk-off
in the crystal.

The calibration in ARAIGNEE is based on the retrieval
of the spectral phase from an interferogram between two
e-polarized test pulses (see Fig. 7). In our ARAIGNEE
setup, this interferogram is generated by rotating the
\/2-wave plate in such a way that the polarization direc-
tion of the beam matches the horizontal axes of both the
quartz and the KDP crystal. Finally, the spectral phase
accumulated by the pulses by propagating through the
10 mm quartz plate (196 fs at 830 nm) is removed after
the frequency scaling.

We used several sources of ultrashort pulses to charac-
terize the performances of our ARAIGNEE device: a
MaiTai (Spectra-Physics) laser delivering =70 fs pulses
centered in the 750—850 nm range, a Mira Seed (Coher-
ent) providing broader bandwidth pulses (AN=30 nm)
and a 1 kHz chirped pulse amplifier (CPA). The dashed
curves plotted in the left part of Fig. 9 show the spectral
phase reconstruction of the MaiTai laser pulses of differ-
ent central frequency. The comparison with the spectral
phase measured with a conventional SPIDER apparatus
[7] (solid curves) shows an excellent agreement between
the ARAIGNEE and the SPIDER measurements. These
results demonstrate that the spectral phase of an ul-
trashort pulse can be measured with ARAIGNEE outside
the spectral range where a perfect group velocity match-
ing occurs as predicted by our theoretical analysis, pro-
viding that the scaling factor in Eq. (15) is taken into ac-
count. Note that since the sensitivity of ARAIGNEE is
higer than SPIDER, the average power of the laser beam
was attenuated down to 25 mW average (0.3 nd/pulse) in
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Fig. 9. Left: Spectrum of the test pulse (dotted curve) and its
spectral phase retrieved by ARAIGNEE (dashed curve) and
SPIDER (solid curve) for various central wavelengths. Right:
Time-dependent intensity and phase measured by ARAIGNEE
(circles) and SPIDER (solid curve) from the data plotted on the
left.
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the former case, that is 1 order of magnitude lower than
with our conventional SPIDER apparatus. This is the re-
sult of a longer interaction length for the sum-frequency
generation and no chirped ancillary pulse.

As an additional consistency check of the ARAIGNEE
method, we performed the measurement of the spectral
phase added to the MaiTai laser pulses after propagation
through various lengths of the BK7 glass from
10 to 100 mm. The accumulated quadratic spectral phase
has been compared with the theoretical curve calculated
from the Sellmeier equation. The very good agreement be-
tween the reconstructed phase by ARAIGNEE and the
theoretical profile [5] demonstrates the reliability of the
ARAIGNEE device. Particularly, this result shows that
the spectral chirp of the e-polarized fundamental pulse
does not affect the arrival time of the SF pulse at the out-
put of the crystal, or, in other words, the delay between
the two spectrally sheared SF pulses. We performed the
same experiment with 30 fs pulses (FWHM) from the
Mira Seed laser. The reconstructed spectral phase plotted
in Fig. 10(a) has a positive curvature of 220 fs2, which
agree very well with the 200 fs2 calculated from the Sell-
meier equation.

We also tested ARAIGNEE for structured pulses. The
spectral phase of the Gaussian pulses generated by a CPA
laser system was sinusoidally modulated by a pulse
shaper consisting of a programable acousto-optic modula-
tor (AOM) placed in the focal plane of a 4-F grating-and-
lens apparatus [22]. The spectral phase retrieved from
the measurement with the Michelson arrangement of
ARAIGNEE [6] was compared with conventional SPIDER
results. As can be seen in Fig. 10(b) both measurements

—
o
]

e
> o

o
o

Intensity (arb. unit.)
=]
=

7800 820 840 860
A (nm)

—
=3
S

)

arb. unit
e @
[=2] oc

(

3

Intensit
[an]
(%]

S
1

<

ot

820 830 g0
A (nm)

Fig. 10. (a) Spectrum of the Mira Seed laser (dotted curve) and
acquired spectral phase after propagation through 9.5 mm of
BK7 (dashed curve). The solid curve shows the fit to the phase
that corresponds to a group delay dispersion of 440 fs2. (b) Spec-
tral intensity of the test pulse (dotted curve) and sinusoidal
modulation of its spectral phase reconstructed by ARAIGNEE
(dotted curve) and SPIDER (solid curve).
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agree perfectly over the central part of the spectrum with
some discrepancies in the wings. The low signal level at
the output of the pulse shaper is responsible for the SPI-
DER phase deviating somewhat from the sinusoidal pro-
file while the more sensitive ARAIGNEE recovers this
profile with higher accuracy.

6. DISCUSSION

The condition of complete walkthrough of the two funda-
mental test pulses in the nonlinear crystal results in a
limitation of the time support AT for an accurate mea-
surement of the test pulse. On the other hand, the maxi-
mum bandwidth of the pulse is limited by the GVD. In-
deed, the GVD leads to the distortion of the test pulses
that, in turn, affects both the amplitude and the phase of
the SF pulse. This effect is proportional to the magnitude
of the GVD, the pulse bandwidth and the interaction
length. In the PMF picture, the GVD manifests itself as a
curvature of the PMF (see Fig. 1). The amplitude distor-
tion can be qualitatively understood from this figure: the
frequencies in the wings of the o-pulse are mixed with a
lower frequency of the e-pulse than the o-pulse carrier fre-
quency.

To quantify the consequences of both the GVD and the
group velocity mismatch Ak;. on the accuracy of the
ARAIGNEE method, we have ﬁumerically simulated the
generation of the two spectrally sheared replica and ap-
plied our reconstruction algorithm. The rms error ¢ be-
tween the input and the reconstructed electric fields, re-
spectively, E;, and E,.., defined as

€= HEin(t) - Erec(t)”, (26)

where the norm of the field is |E|=[J” |E()[?dt]"? and
where the two complex amplitudes are normalized to
unity, has been used to quantify the reconstruction error
[18].

In Fig. 11(a) we have plotted the rms error ¢ for a
transform-limited Gaussian input pulse at different cen-
tral wavelengths and of different bandwidths, for an
ARAIGNEE apparatus with a 20 mm nonlinear KDP
crystal (with a predelay ¢,=1440 fs such that the o- and
the e-pulses meet halfway in the crystal). Following [18],
we consider the reconstruction very good for & below 0.02,
average for € between 0.02 and 0.1 and poor for ¢ exceed-
ing 0.1. A qualitative understanding of the metric used is
provided by Figs. 11(b) and 11(c). A single KDP crystal
(20 mm thick) can be used to measure pulses from
60 to 700 fs in the spectral range from 0.74 to 0.9 um
with the restrictive criterion £<0.02. The result plotted
in Fig. 11(a) also shows that the rms error is minimal
near 830 nm. The increase of the rms error away from
that region comes from the terms we have neglected in
Eq. (12). Indeed, for such wavelengths, the assumption
that Ak, /Aky, <1 is no longer valid and the higher or-
der terms lead to a distortion of the SF pulse from a per-
fect replica of the input pulse. The performance of
ARAIGNEE has also been studied for complex pulses. As
an example, the reconstruction of two 50 fs transform-
limited Gaussian pulses, separated by 0.2 ps and cen-
tered ~800 nm, is shown in Fig. 12. As can be seen, the
two pulses are very well retrieved in spite of the fact that
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Fig. 11. (Color online) (a) rms error ¢ of the retrieved pulse cal-
culated from numerical simulation of the SF generation in a
20 mm thick KDP crystal as a function of the input pulse band-
width (intensity FWHM) and central wavelength for Gaussian
transform-limited input pulses. (b), (¢) Temporal intensity profile
(dotted curves) of the test pulse corresponding to B and C in (a)
and reconstructed intensity (solid curves) and phase (dashed
curves) profiles.

each pulse in the e-polarized pair takes part in the SF
generation. The small residual phase leads to a rms error
as low as 0.03.

Pulses in other wavelength ranges can also be charac-
terized by ARAIGNEE providing that a suitable nonlinear
crystal is chosen. In Fig. 13 we have plotted the spectral
range of tunability for two commonly used nonlinear crys-
tals: BBO and KTP. With a KTP crystal in the YZ plane
(=90°), both the group velocity matching and the phase-
matching are achieved at a wavelength of 1422 nm, for
the “oeo” interaction at an angle 6=47°. With our conser-
vative requirement of £<0.02, a 20 mm thick crystal al-
lows the measurement of pulses in the telecom band in
the range of ~60-900 fs FWHM. In addition, the PM
function of an oee interaction in a BBO crystal is vertical
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Fig. 12. Simulated reconstruction of a double Gaussian pulse at
800 nm (dashed curve). The solid curves show the test pulse in-
tensity and phase.
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Fig. 13. (Color online) Simulated rms error ¢ of an ARAIGNEE

device with a 20 mm thick BBO and KTP in the YZ plane, and a
quartz plate 40 and 50 mm thick, respectively.

at a wavelength of 1169 nm (6=31°). This crystal is
therefore suitable to measure pulses in the range
1.0-1.3 um where new, powerful, diode-pumped mode-
locked lasers based on Yb-doped materials become avail-
able. The rms error of very short pulses is no longer mini-
mal around the group velocity matching wavelength but
~1.3 um instead where the GVD experienced by the
pulse in the quartz plate prior to propagating in the non-
linear crystal is minimal. Table 1 enables us to quickly
find the proper crystal type and length for a given appli-
cation. It displays the maximum bandwidth allowing very
good or average reconstruction of transform-limited
Gaussian pulses. The predelay is assumed to be the result
of the propagation through a quartz plate with the appro-
priate length.

The full characterization of the electric field of an opti-
cal pulse both in space and time is an active research area
in optical metrology since space-time coupling occurs in
the manipulation of light as simple as focusing as well as
in most nonlinear interactions. Recently, the SEA-
SPIDER (spatial encoding for SPIDER) method where the
spectral phase is encoded in the spatial fringes between
two spectrally sheared replicas has been developed to
measure extremely short pulses [10,11]. Since a two-
dimensional sensor is used to record the fringes, this
method naturally measures the spatial dependence of the
pulse along one transverse coordinate. Similarly, the spa-
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tial encoding method can straightforwardly be applied to
ARAIGNEE by combining a Michelson interferometer to
split the beam in two parts, with an imaging spectrom-
eter. Note that in the splitting mirror implementation of
ARAIGNEE as depicted in Fig. 2, a reliable measurement
of the pulse can still be performed in the presence of
space—time coupling as long as it involves only a spatial
variation of the central frequency within the beam, since
we have direct access to the spectral shear.

ARAIGNEE is based on the general principle of a group
velocity mismatch between two fundamental test pulses
as well as a group velocity match between the SF pulse
and one of the two test pulses. Therefore quasi-phase-
matched crystals can be designed to achieve the phase-
matching at a desired wavelength where the group veloc-
ity requirements are already satisfied. Moreover, when an
external powerful optical beam is available, it can be used
as a source of the fundamental pulse with the group ve-
locity mismatch, similarly to the modified SPIDER pro-
posed to improve the sensitivity of the spectral shearing
interferometry [23].

7. SUMMARY

ARAIGNEE (another ridiculous acronym for interfero-
metric geometrically simplified noniterative E-field ex-
traction) is a novel implementation of spectral shearing
interferometry for measuring ultrashort pulses. It takes
advantage of the properties of sum-frequency (SF) gen-
eration in a type II nonlinear crystal to dramatically sim-
plify the generation of the sheared replicas. Indeed, it is
the phase-matching function itself that selects the single
frequency to be upconverted with the test pulse, eliminat-
ing the requirement for linearly chirped ancillary pulses
and the components that produced them. Moreover, due
to the intrinsic collinear geometry, the pulses automati-
cally overlap both spatially and temporally in the crystal,
offering a user-friendly apparatus. ARAIGNEE is also
more sensitive than a conventional SPIDER since the
crystal used is longer.

Table 1. Maximum Pulse Bandwidth (AN) That Can Be Measured with an rms Error Less than 0.02 or 0.1

AN AN
L to (nm) (nm)
Crystal (mm) (fs) €<0.02 €<0.1

A=750 nm A=830 nm A=750 nm A=830 nm

KDP 20 1450 14 17 28 32

oee 5 360 23 25 46 49

1 75 — — 77 77
A=1000 nm A=1169 nm A=1000 nm A=1169 nm

BBO 20 1100 39 42 88 89

oee 5 275 49 49 103 130

1 55 — — 165 204
A=1422 nm A=1550 nm N=1422 nm A=1550 nm

KTP YZ 20 1750 49 30 98 70

0eo 5 440 60 46 155 120

1 85 — — 246 197
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We have presented a comprehensive description of the
SF generation in the nonlinear crystal. Our analytical
model shows that a wide range of pulse lengths and cen-
tral wavelengths can be accurately characterized by
ARAIGNEE, but the device calibration requires a reason-
able knowledge of the crystal properties. The capabilities
of ARAIGNEE have been experimentally demonstrated
for pulses of various bandwidths, central wavelengths,
and spectral phases. As with other spectral shearing in-
terferometric techniques, ARAIGNEE requires only 1D
data collection for pulse reconstruction, has a fast inver-
sion algorithm as well as one shot -capabilities.
ARAIGNEE can also be used in other SPIDER schemes
such as modified-SPIDER [23] or SEA-SPIDER [10,11] for
increased sensitivity or space—time coupling measure-
ments, respectively.
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