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Sum-frequency generation using spectrally asymmetric type II phase matching enables significant simplifica-
tions in spectral shearing interferometry as applied for ultrashort optical pulse measurements. We present
analytical and numerical models of broadband sum-frequency wave mixing essential to understand the under-
lying effects. We discuss spectral and temporal limits of the method together with various aspects of experi-
mental implementation: optimization of the retrieval algorithm, calibration procedures, and extension to dif-
ferent spectral regions of particular interest with other crystals. © 2007 Optical Society of America
OCIS codes: 320.7160, 320.7100, 190.4360.
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. INTRODUCTION
t is the unprecedented electric field intensities generated
nd/or the duration of the pulses itself that have estab-
ished ultrashort optical pulses as an important tool in
hysics, chemistry, biology, and medicine. In either case,
he ability to characterize the pulse’s electric field in time,
r equivalently in frequency, is a route toward new experi-
ents as well as the improvement of the range and the

eliability of the already well-established ultrafast tech-
iques and technologies. With commercial, turn-key oper-
ted lasers routinely generating sub-10 fs pulses, the
uest for sensitive, simple, and trustworthy techniques of
ulse measurement incarnated in compact devices at-
racts many leading groups worldwide.

Since the only available nonstationary filters with fem-
osecond time resolution are based on nonlinear fre-
uency conversion (most often in birefringent nonlinear
rystals), all the current pulse characterization tech-
iques rely on such processes [1]. An important step for-
ard was the realization that by the proper phase-
atching management of these crystals, the pulse
easurement can be significantly simplified [2]. Subse-

uently, a new range of techniques emerged, among them
RENOUILLE, a spectrographic method based on

requency-resolved optical gating (FROG) redesigned
ith thick crystal and no spectrometer [3] and the single

hot sonogram [4], utilizing a similar effect.
Only recently was it demonstrated that the spectral

hearing interferometry may also benefit from a better
nderstanding of the phase-matching with broadband
elds and ARAIGNEE (another ridiculous acronym for in-
erferometic geometrically simplified noniterative E-field
xtraction) saw its first light [5]. The sum-frequency (SF)
eneration in a properly chosen nonlinear crystal
0740-3224/07/092064-11/$15.00 © 2
s itself used to generate frequency sheared pulse
eplicas [6]. Thus a fundamental requirement for spectral
hase interferometry for direct electric field extraction
SPIDER) [7] can be realized without a separate ancillary
ulse leading to a significant simplification of the tech-
ique.
In this paper we present a number of theoretical and

ractical issues pertinent to ARAIGNEE: we analyze
roadband type II SF generation in the phase-matching
icture as well as in the framework of the interacting
ulsed fields; we discuss the pulse retrieval procedure in-
luding corrections accounting for nonperfect group veloc-
ty matching and group velocity dispersion and present
urther experimental details of the technique. We have
hown that ARAIGNEE may be implemented in very
imple, compact, and sensitive apparatuses [8] (see also
ig. 2). Still, for reliable ultrashort pulse measurements
ver broad bandwidths as well as defining the limits of
he technique, a better understanding of the upconversion
rocess is essential. Several numerical simulations of the
F generation are presented both to validate our analyti-
al results and to predict the spectral tunability range
nd the bandwidth limitations of ARAIGNEE. Three
idely used nonlinear crystals are investigated: potas-

ium dihydrogen phosphate (KDP), potassium titanyl
hosphate (KTP) and �-barium borate (BBO). These crys-
als are suitable to characterize with high accuracy ul-
rashort pulses in the spectral ranges 740–900 nm,
000–1300 nm and 1200–1600 nm, respectively, and for
ulse duration between 50 and 600 fs. Experimental re-
ults are presented and discussed for a number of pulses
nder study, in particular those with parameters at the
heoretical limits of the measurement device perfor-
ance.
007 Optical Society of America
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. PHASE-MATCHING ENGINEERING
he underlying principle of spectral shearing interferom-
try is to resort to a spectrally shifted (sheared) replica of
he test pulse to measure itself. In conventional SPIDER,
or pulses above 20 fs, the spectral shear is produced by
pconverting two pulse replicas with different quasi-
onochromatic time slices of a highly chirped ancillary

ulse [7]. For ultrashort pulses of 10 fs or less, in order to
ot alter the unknown pulse before it arrives at the non-

inear crystal, a single test pulse upconverts with two
ighly chirped ancillary pulses [9–11]. What is therefore
ssential for either configuration is a nonlinear process
hat can mix a broadband test pulse with a quasimono-
hromatic (narrowband) wave, or ancillary pulse, hereaf-
er labeled the ancilla. Since the ancilla is typically pre-
ared outside the nonlinear crystal, the only requirement
n the crystal is that its phase-matching function (PMF),
hich links the upconverted pulse to the input pulse,

hould not introduce any phase distortion. A thin nonlin-
ar crystal, typically in the range of a few tens of mi-
rometers, is used to achieve a sufficiently large band-
idth.
In ARAIGNEE the crystal is chosen so that the narrow-

and ancilla is selected directly from the test pulse by the
MF of the nonlinear crystal itself (see Fig. 1).
In the frequency domain, this can be described as fol-

ows: Let us represent the complex amplitude of the input
est pulse, E�t� by a Fourier transformation, Ẽ���
�E�t�exp�i�t�dt. We are interested in generating a spec-

rally shifted replica of the input: Ẽ���→ Ẽ��−��, where
is the spectral shear. Considering an ��2� nonlinear

rystal, we can approximate the SF signal, Ẽs��� for two
rbitrary input fields, Ẽ1��1� and Ẽ2��2� as [12]:

ig. 1. (Color online) Absolute magnitudes of the collinear type
I PMF 
�
2 of a 20 mm thick KDP crystal for two values of the
ropagation angle (0.5° apart), plotted as a function of frequency
or ordinary �o and extraordinary �e input polarization compo-
ents (black indicating perfect phase-matching). The SF signals
re drawn on the diagonal axis, �s=�e+�o, illustrating the shear
etween the outputs due to the specific PMF shape, which allows
ll the frequency content of one of the input fields to mix with a
ingle frequency component of the other one.
Ẽs��� ��� ���1 + �2 − ��Ẽ1��1�Ẽ2��2����1,�2�d�1d�2

=� Ẽ1�� − �2�Ẽ2��2���� − �2,�2�d�2, �1�

here � denotes the delta function and the PMF of the in-
eraction in the crystal is represented by

���1,�2� = sin�T�/T � exp�iT�, �2�

here T��1 ,�2�= �k1��1�+k2��2�−ks��1+�2��L /2, L is the
nteraction length and kj is the propagation constant of
he j= �1,2,s� field.

For a conventional SPIDER device that uses a suffi-
iently thin crystal, the PMF can be approximated as
��1 ,�2�	1 over the pulse bandwidth, and the SF gen-

ration process described by Eq. (1) is then equivalent to a
onvolution of the two fundamental fields:

Ẽs��� = Ẽ1��� � Ẽ2��� =� Ẽ1�� − �2�Ẽ2��2�d�2. �3�

herefore, if one of the fundamental beams is a quasi-
onochromatic ancilla and can be approximated by a

elta function, Ẽ1	���−��, then Eq. (3) represents an
xact spectrally shifted replica of the broadband input
ulse: Ẽs���= Ẽ2��−��.
To visualize the main idea of ARAIGNEE, we must re-

urn to Eq. (1) and consider the case when the PMF
��1 ,�2� can be written as a direct product of two one-
imensional (1D) functions, ���1 ,�2�=�1��1���2��2�.
his factorization of the PMF means that the SF field of
q. (1) is now also a convolution of the two inputs, each
odified by its respective PMF component:

Ẽs��� = ��1���Ẽ1���� � ��2���Ẽ2����. �4�

s a result, if we can arrange for the factorization to be of
he form �1�����2���=���−���1, the output pulse is
till a replica of one of the input pulses �Ẽs���= Ẽ2��
��� with the only requirement on the other one �Ẽ1� be-

ng that it contains the frequency �.
Figure 1 shows such a situation, where the PMF mag-

itude �
�
2� has been plotted for optical fields traveling at
wo angles tilted by ±0.25° away from the normal to the
urface of a 2 cm long type II KDP crystal cut for second
armonic generation at 830 nm �	=68° �. The particular
ombination of the crystal dispersion, the cut angle, and
he wavelength range produces a nearly vertical PMF
hat is simultaneously very broad along the ordinary axis
nd very narrow along the extraordinary axis. Such a
ighly asymmetric PMF shape is the result of a group ve-

ocity match between the o-fundamental input and the
-upconverted output field and a group velocity mismatch
etween the e-fundamental and the e-upconverted fields.
ecause of this specific PMF, the entire bandwidth of an
-pulse, with the spectrum located in the 830 nm region,
ay convolve with a quasi-monochromatic portion of the

-pulse spectrum as selected by the PMF. The angle of
ropagation relative to the crystal optic axis determines
he wavelength of the monochromatic slice of the e-wave
andwidth that upconverts with the entire o-wave band-
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idth. Thus, if two copies of a pulse are directed into the
rystal, altering their respective propagation angles pro-
uces the spectral shift between the upconverted outputs
equired for the spectral shearing interferometry.

One of the recent realizations of the ARAIGNEE appa-
atus is presented schematically in Fig. 2. The two pulse
eplicas are generated by sending the input beam onto a
irror pair, and the relative angle between them allows

he replicas to propagate in the nonlinear crystal (KDP)
ith a slightly different angle. Apparently, the setup re-
uires only a few optical elements, enabling us to build a
ery compact apparatus. It is worth mentioning that in
RAIGNEE the only degree of freedom in the SF genera-

ion is the phase-matching angle, which is the horizontal
ilt of the nonlinear crystal, since the spatial and the tem-
oral overlap of all the pulses is automatically met.

. ANALYTICAL DESCRIPTION OF THE
UM-FREQUENCY GENERATION
he simple picture developed in Section 2 is not sufficient
o explore the entire potential of ARAIGNEE. Indeed,
ince we are dealing with the nonlinear interaction of
ulses, not only the magnitude of the PMF as depicted in
ig. 1 but also its phase have to be taken into account. We
ave therefore developed a more comprehensive wave
ixing model.
We consider the type II collinear interaction of two fun-

amental pulses Ro and Re, respectively, o- and
-polarized, and the upconverted pulse B generated by SF
n a dispersive dielectric medium with ��2� nonlinear sus-
eptibility (see Fig. 3). Assuming the complex amplitude
nvelopes Ro, Re, and B to be slowly varying, we derive
rom Maxwell’s equations the system of three nonlinear
quations coupled parametrically through the compo-
ents �ijk

�2� of the nonlinear susceptibility tensor [13]:

ig. 2. (Color online) Schematic of the ARAIGNEE device. � /2,
alf-wave plate; Q, quartz plate; MP, mutually tilted (by �) and

ongitudinally shifted (by d) mirror pair; PM, pick-off mirror;
M, focusing mirror; BF, blue filter; KDP, nonlinear crystal. Dot-

ed curves depict ordinary pulses and solid curves, extraordinary
ulses.
i�zRo�t,z� + i
kbro
� �tRo −

kro
�

2
�ttRo = − �ro

Re
*B exp�− i
kz�,

i�zRe�t,z� + i
kbre
� �tRe −

kre
�

2
�ttRe = − �re

Ro
*B exp�− i
kz�,

i�zB�t,z� −
kb�

2
�ttB = − �bRoRe exp�i
kz�,

�5�

here diffraction and spatial walk-off have been ne-
lected. In these equations, z is the propagation distance
nd t the time in a reference frame traveling at the SF
roup velocity �kb�

−1� at the frequency �b=�ro
+�re

where
ro

and �re
are the carrier frequencies of the two funda-

ental waves; �l= ��l
2 /2klc2��l

�2� �l=ro ,re ,b� is the nonlin-
ar coupling coefficient. 
k=kro

+kre
−kb is the wave vector

ismatch, 
kbj� =kj�−kb� the group velocity mismatch while

l�=�kl /��l
and kl�=�2kl /��l

2 are the inverse of the group
elocities and the group velocity dispersions (GVD), re-
pectively.

. Dispersionless Medium
et us first consider a dispersionless medium. If the non-

inear interaction is weak, the fundamental waves propa-
ate undistorted in the medium and the system (5) can be
educed to a single equation for the SF wave:

�

�z
B�t,z� = i�bRo�t − 
kbro

� z�Re�t − 
kbre
� z − t0�exp�i
kz�,

�6�

here t0 is the predelay between the two fundamental
ulses at z=0. In a negative (positive) crystal, the
-polarized fundamental pulse is faster (slower) than the
-polarized one. Therefore t0 has to be positive (negative)
s the two pulses cross each other in the nonlinear me-
ium.
The complex envelope of the SF wave at the output of

he crystal of length L is formally obtained by integrating
he right-hand side of Eq. (6) from z=0 to z=L:

B�t,L� = i�b�
0

L

Ro�t − 
kbro
� z�Re�t − 
kbre

� z − t0�exp�i
kz�dz.

�7�

For the sake of simplicity, we particularize our discus-
ion to negative crystals, but it can straightforwardly be

ig. 3. (Color online) Upconversion in a type II nonlinear crys-
al. Ro,e are the o- and e-polarized test pulses, respectively, and B
s the sum frequency pulse. t0 is the predelay between the two
undamental test pulses and L is the crystal thickness.



a
p
a
c
(
a
s
t

s

E

T
c

T

a
a

w
o

F
f
a
t
a
k

F
o

t
t
v
s

T
l
(
H
h
a
g

q
p
�
w
m
t
a
fi
o
t
m

T
t
=

T
S
P

e
p

Gorza et al. Vol. 24, No. 9 /September 2007 /J. Opt. Soc. Am. B 2067
pplied to positive crystals. Assuming that the fastest
ulse �Re� walks completely through the slowest on �Ro�
nd does not overlap with Ro either before or after the
rystal, we can extend the integration boundaries of Eq.
7) to ±
. In this experiment, this condition can be
chieved by choosing a predelay t0 greater than the time
upport �
T� of the test pulse, and a crystal length such
hat L� �
T+ 
t0
� / 

krero

� 
.
Replacing Ro by its frequency representation in the

pectral domain:

Ro�t − 
kbro
� z� =

1

2�
�

−





R̃o���exp�i
kbro
� z��exp�− i�t�d�,

�8�

q. (7) reads

B�t,L� =
i�b

2�
�

−





R̃o���exp�− i�t��
−





Re�t − 
kbre
� z − t0�

� exp�i�
k + 
kbro
� ��z�dzd�. �9�

o perform the integration over z, the following variable
hange, �= t−
kbre

� z− t0, is introduced and Eq. (9) becomes

B�t,L� =
− i�b

2�
kbre
�
�

−





R̃o���exp�− i�t��
−





Re���

� exp�i

k + 
kbro

� �


kbre
�

�t − � − t0��d�d�. �10�

he integration over � gives

�
−





Re���exp
− i

k + 
kbro

� �


kbre
�

��d� = R̃e
−

k + 
kbro

� �


kbre
� � ,

�11�

nd to solve Eq. (10), Eq. (11) is expanded in a series
round �=0:

R̃e
−

k + 
kbro

� �


kbre
� � = R̃e
−


k


kbre
� � −


kbro
�


kbre
�

�R̃e�
−

k


kbre
� �

+ O��2�, �12�

here � denotes derivation with respect to the argument
f Re.

In a crystal with a nearly vertical PM function as in
ig. 1, there is a group velocity mismatch between the two

undamental pulses (i.e., 
krore
� �0) and at the same time

group velocity match between the o-fundamental and
he SF pulses (i.e., 
kbro

� �0). As a result, 
kbro
� /
kbre

� �1
nd only the first term of the right-hand side of Eq. (12) is
ept. Therefore Eq. (10) is approximated by
B�t,L� �
− i�b

2�
kbre
�

R̃e
−

k


kbre
� �exp�i


k


kbre
�

�t − t0��
��

−





R̃o���exp�− i�t�exp�i

kbro

�


kbre
�

�t − t0���d�.

�13�

ourier transforming back R̃o, the SF pulse at the output
f the crystal is

B�t,L� =
− i�b


kbre
�

R̃e
−

k


kbre
� �exp�i


k


kbre
�

�t − t0��
�Ro
t�1 −


kbro
�


kbre
� � + t0


kbro
�


kbre
� � . �14�

Equation (14) shows that the SF pulse B is a replica of
he Ro pulse, i.e., the fundamental pulse that travels in
he nonlinear crystal with approximately the same group
elocity as the SF pulse. However, this replica is a time-
caled copy of Ro with the scaling factor s:

s = 1 −

kbro

�


kbre
�

. �15�

he scaling factor is thus equal to 1 when the group ve-
ocities of B and Ro are perfectly matched. The expression
15) is in agreement with the results reported in [14].
owever our theoretical analysis shows that this result
olds even if the fundamental wave Re is not a � function,
s long as the high order terms in Eq. (12) can be ne-
lected.

The spectrum of the replica is centered around the fre-
uency �b=�ro

+�re
−
k /
kbre

� and its amplitude is pro-
ortional to the spectral amplitude R̃e at the frequency
=−
k /
kbre

� . We can thus interpret the SF process as a
aveform transfer from the o-wave to the SF-wave by
ixing a quasi-monochromatic slice of the spectrum of

he e-wave with the whole spectrum of the o-wave. The
ctual frequency of the quasi-monochromatic slice is de-
ned by the PMF: If we take into account only the lowest
rder terms in the power expansion of the wave vectors in
he vicinity of the center frequency [15], then the phase
ismatch is


k + kro
� ��1 − �ro

� + kre� ��2 − �re
� − kb���3 − �b� = 0.

�16�

aking �1=�ro
(the central frequency of the spectrum

hat is entirely upconverted) and �2=�re
+
�, hence �3

�ro
+�re

+
� and Eq. (16) leads to


� = − 
k/
kbre
� . �17�

his result is consistent with the simplified picture of the
F generation discussed in Section 2 on the basis of the
MF of continuous waves [6].
Eventually, from Eq. (14) it can be seen that, in the ref-

rence frame traveling at the group velocity kb�
−1, the SF

ulse is temporally shifted by
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t = t0
kbro
� /
krore

� . �18�

his latter result has been previously derived in [14] from
he assumption that the SF pulse is generated in the crys-
al at the location where the two fundamental pulses
eet in the crystal. Here we derive the result from first

rinciples. The predicted temporal shift agrees well with
xperimental measurements.

To verify our analytical results, we have numerically
imulated the propagation of the pulses in the nonlinear
rystal by solving the system (5) with a standard beam
ropagating method [16]. The solid curves in Fig. 4 show
he temporal amplitude and phase of the SF pulse at two
ifferent locations in the nonlinear crystal. The initial
ondition corresponds to two identical Gaussian chirped
nput pulses for the two fundamental waves: Ro�t�=exp�
�t /T�2��exp�i0.5�t /T�2� and Re�t�=0.7Ro�t− t0� where t0
4.3T such that the two pulses do not overlap in z=0.
oreover we have assumed a perfect group velocity
atch between the o-fundamental and the SF waves:
kbro
� =0 and no group velocity dispersion. In Fig. 4(a), the

ropagation is stopped at the location where the two fun-
amental pulses meet, and it is evident that the phase
rofile of B�t� differs from the phase of Ro�t�. Actually, the
hase profile of B�t� is equal to the phase profile of the
-wave only in the right part of Ro�t�, i.e., in the part that
as already experienced a complete interaction with the
-fundamental wave. Moreover, since the mixing process
s not complete, the SF pulse is delayed relative to the
-pulse even if the two pulses travel at the same group ve-
ocity. Fig. 4(b) shows the same amplitudes and phases
ut at the output of the crystal �L=2t0 /
krero

� �. Now, the
omplex amplitude of Ro�t� has been entirely transferred
o the SF wave B�t�. This example shows that a waveform

ig. 4. Evolution of the amplitude and the phase of B�t�, with
kbro
� =0 and t0=4.3T. Amplitude and phase of Ro (dashed

urves), amplitude and phase of B (solid curve) and amplitude of
e (dotted curve), (a) in the crystal at the location where the two

undamental pulses meet, (b) at the output of the crystal where
hey have walked through each other.
ransfer from the fundamental wave to the SF wave is
ossible only if the pulse Re walks completely through Ro
n the nonlinear crystal. This requirement imposes an up-
er limit on the time support 
T allowing an accurate
eplication of the pulse.

In the spectral region where the group velocities of the
-fundamental and the SF pulses do not match (i.e.,
kbro
� �0), we have seen that the SF pulse replicates the

undamental o-pulse up to a known time axis scaling fac-
or s [see Fig. 8(a)] and a known time shift 
t that de-
ends only on the crystal properties. The latter does not
xceed 15% of the predelay t0 for a KDP crystal in the
pectral range between 750 and 900 nm. This result is il-
ustrated in Fig. 5 for a group velocity mismatch 
kbro

�
0.15
kbre

� (as for a KDP crystal of �750 nm). The dashed
urves show the intensity and the phase profile of the SF
ulse at the output of the crystal, and it can be seen that
f the SF pulse is stretched by the calculated factor s
0.85 and delayed by L
kbro

� +
t=0.645T, the complex
mplitude of the SF pulse (circles) is a perfect replica of
he o-fundamental pulse (solid curves).

. Effect of Group Velocity Dispersion
n dispersive materials, the transfer function relation in
q. (14) is no longer accurate because it neglects the GVD
t both fundamental and SF frequencies. However, to the
rst order, the GVD can straightforwardly be taken into
ccount, since it leads to an extra phase 
�=1/2keff� L�2,
hich can be derived as follows: Assuming the SF pulse is
enerated in the crystal at the location l where the two
undamental pulses meet

l = t0/
krero
� , �19�

he effective GVD can be split into two terms:

keff� L = kro
� l �

1

s2 + kb��L − l�. �20�

he first term of the right-hand side of Eq. (20) accounts
or the chirp acquired by the o-pulse while traveling in
he crystal to the location l. The factor 1/s2 has been
dded because of the temporal scaling factor that appears
n Eq. (14). The second term describes the chirp acquired
y the SF pulse from the location l to the end of the crys-
al. Therefore the frequency representation of the SF

ig. 5. SF generation in presence of a a group velocity mismatch

kbro

� =0.15
kbre
� �. Intensity and phase profiles of the SF pulse

dashed curves) and the o-fundamental pulse (solid curves) at the
utput of the crystal. The initial conditions are identical as for
ig. 4. The shifted and scaled output SF pulse is also shown

circles).
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ulse at the output of the crystal can be approximated by
ombining the results in Eqs. (14) and (20), and taking
nto account the frequency shift �
�� from the carrier fre-
uency of the SF pulse,

B̃��,L� � B̃0��,L�exp
 i

2
keff� L�� − 
��2� , �21�

here B̃0�� ,L� is the frequency representation of the tem-
oral signal in Eq. (14). The accuracy of the last expres-
ion has been verified by comparing Eq. (21) with the nu-
erical simulation of the system in Eq. (5). A typical

xample is shown in Fig. 6 for a pulse with a complex
emporal shape resulting from a Gaussian spectrum cen-
ered at �760 nm (14.5 nm bandwidth FWHM) with qua-
ratic and cubic spectral phase components (200 fs2 and
�104 fs3, respectively). The optical properties of KDP
rystal cut for type II second harmonic generation at
60 nm have been used to calculate the group velocity
ismatch 
kbro

� =0.117
kbre
� . The length of the crystal has

een set to 10 mm and the predelay t0 to 600 fs. Eventu-
lly, the angle of propagation has been tilted by 4 mrad
0.23°) from the phase-matching angle for second har-
onic generation at 760 nm resulting in a frequency shift
�=4.1 mrad fs−1. The solid curves in Fig. 6 show the am-
litude and the phase of the SF pulse at the output of the
rystal obtained by numerically solving the system (5).
ots correspond to the amplitude and the phase given by
ur model in Eq. (21). As can be seen, the agreement be-
ween the numerical solution and our model is very good
lthough the GVD was taken into account only in the first
rder approximation.

The most important feature of Eq. (21) is that the SF
ulse is linked to the input pulse by a simple linear trans-
ormation that does not depend on the shape of the input
ulse but only on the physical properties of the nonlinear
rystal used. This is essential if we want to implement a
pectral shearing interferometer based on the SF genera-
ion process described above.

. PULSE MEASUREMENT
RAIGNEE is a technique for the characterization of the
lectric field of ultrashort optical pulses based on spectral
hearing interferometry. It relies on the spectral inter-
erogram generated by a pair of temporally delayed and
pectrally shifted replicas of the test pulse. In

ig. 6. Comparison of the amplitude and the phase of the SF
ulse at the output of a thick KDP crystal obtained by numeri-
ally solving the system (5) (solid curves) and derived from Eq.
21) (circles).
RAIGNEE, the spectral shear � is the result of a slight
ilt between the two beams in the nonlinear crystal.

From Eq. (21), the spectral interferogram S̃��� of the
wo SF pulses is given by

S̃��� = 
B̃1��� + B̃2�� − ��exp�− i���
2

= 
B̃1���
2 + 
B̃2�� − ��
2 + 2
B̃1���

B̃2�� − ��


�cos��0
�

s � − �0
� − �

s � + ����� + ��� ,

�22�

here the subscripts (1, 2) distinguish the two SF pulses,
0��� is the spectral phase of the test pulse, which is the

nformation we wish to recover, and �=
�1−
�2 is the
pectral shear.

S̃��� has a form of a standard shearing interferogram
onsisting of fringes nominally spaced in frequency at
� /�, while the phase difference term �0�� /s�−�0���
�� /s�+����� manifests itself as a deviation from the
ominal fringe spacing. Since the two SF pulses travel at
different group velocity in the crystal, the time delay � is
ot the delay between these two pulses at the output of
he crystal but must be interpreted as the delay between
he pair of e- (or o-) polarized pulses before the crystal.
he additional time delay resulting from the birefrin-
ence, as well as the chromatic dispersion is included in
he term ����� defined as

����� = �
t1 − 
t2 + �keff� L��, �23�

here the two first terms are defined by Eq. (18) and de-
end on the actual angle of propagation of the two beams.
he effective GVD is given by Eq. (20) and is assumed to
e identical for both beams.
The phase difference between the two SF pulses is ex-

racted by Fourier transforming the interferogram, filter-
ng the peak around the pseudotime +� and inverse Fou-
ier transforming to the frequency domain.

As for a standard SPIDER interferogram, it can be seen
rom Eq. (22) that knowledge of the shear and the refer-
nce phase ��+����� is essential for recovering the spec-
ral phase �0 [7]. In the experiment, the shear can simply
e measured from the two individually recorded upcon-
erted spectra. The reference phase is usually obtained by
ecording an additional spectrogram without spectral
hear. In ARAIGNEE, zeroing the shear means canceling
he angular tilt between the two beams and this cannot
e done without changing the delay between the pulses.
s a result, the reference phase cannot be recorded at the
F frequencies. However, the reference phase can be ex-
racted from the interferogram between the pair of funda-
ental e- or o-pulses at the output of the crystal. Extract-

ng the reference phase from the interferogram with the
ame polarization state as the SF pulses enables us to
inimize the spatial walk-off between the reference and

he SF beams. The experimental procedure therefore re-
uires no intermediate alignment and the fundamental
nd SF interferogram can be recorded either simulta-
eously [17] or separately [7]. For instance, in KDP crys-
al the phase-matching as well as the group velocity
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atching requirements are fulfilled for “oee” interaction
t approximately 830 nm, and the reference phase is ex-
racted from the phase difference ��+ �
kbre

�2 −
kbre
�1 �L� be-

ween the two fundamental e-pulses.
The linear phase extracted from calibration is sub-

racted from the phase difference between the two SF
ulses to give the phase difference �0�� /s�−�0���−�� /s�
inus a linear phase correction ��corr���= �
t2−
t1
�
kbre

�2 −
kbre
�1 −keff� ��L�� that depends only on the geom-

try of the apparatus and the optical properties of the
rystal. The correction term can be removed either before
r after the standard concatenation algorithm used to re-
onstruct ��� /s� from the phase difference [7,18]. After
oncatenation the correction function �corr��� appears as
quadratic phase. Indeed, if the integration approxima-

ion is used, then

�corr �
1

�
� ��corr���d� = acorr�

2, �24�

ith

acorr =
1

2�
��
k�bre

2 − 
k�bre

1 �L + 
t2 − 
t1� −
1

2
keff� L.

�25�

It is better to apply the phase correction after the con-
atenation because, although ��corr varies with the shear,
corr is independent of the shear, that is of the exact beam
ropagation angles, but depends only on the crystal dis-
ersion, its length L, and the predelay t0. A numerical
valuation of Eq. (25) has shown that acorr does not vary
ore than 0.1% up to a shear of 40 mrad fs−1 (3.6 nm at
=415 nm). After frequency scaling by the factor s, the re-
ulting phase profile is the spectral phase profile of the
nknown pulse. However, if the predelay is the result of
he propagation of the pulse through a birefringent me-
ium, the added spectral phase associated with the me-
ium dispersion must be subtracted. Finally, a measure-
ent of the spectral density completes the pulse

haracterization. The block diagram in Fig. 7 summarizes
he phase retrieval procedure. The wavelength depen-
ence of the scaling factor s for KDP crystal as well as the
uadratic phase factor acorr for a crystal length of 5 mm
nd a predelay t0=317 fs, as used in our setup presented
n Fig. 2 are plotted in Fig. 8.

ig. 7. Block diagram of the phase retrieval procedure in
RAIGNEE.
. EXPERIMENTAL CONSIDERATIONS
igure 2 displays the schematic of a compact ARAIGNEE
etup. The linearly polarized input pulse passes through
zero-order � /2-wave plate and a crystalline quartz plate

10 mm thick, slow axis horizontal), the two elements
plitting it into ordinary and extraordinary polarizations,
ith the e-wave being predelayed by 317 fs with respect

o the o-wave. The beam is subsequently sent onto a pair
f mirrors adjacent to each other with a small mutual
orizontal tilt � that splits the incident beam into two
eams [19] (see detail in Fig. 2). The two beams are di-
ected into a 5 mm thick KDP crystal, cut for second har-
onic generation at 830 nm and oriented such that the

ptic axis is horizontal. Each beam undergoes type II SF
eneration and the resulting SF pulses are spectrally
hifted (sheared) due to the angular offset �2�� of the fun-
amental beams in the crystal. In our experiment, the
ngle � has been set to 0.25° resulting in a spectral shear
f �0.8 nm, i.e., 10% of the pulse bandwidth [20]. The
irror tilt direction (beams diverging) has been chosen to
ake selecting individual beams for shear measurement

asier. The opposite configuration (beams converging)
liminates the need for imaging optics [8], and decreases
he gap between the two mirrors. A longitudinal shift of
ne of the two mirrors by d	225 �m delays the corre-
ponding pulse by 	1.5 ps as required by spectral inter-
erometry. The stability of the mechanics for d and � is an
mportant feature but does not need to have a precisely
alibrated scale. At the output of the crystal, the two
eams are recombined with a 100 mm focusing mirror
nto the entrance slit of a compact grating spectrometer
USB2000, Ocean Optics). The diameter of the input
eam must be larger than �2 mm to minimize the effect
f the gap between the two mirrors in the pair, the diffrac-
ion of the edges as well as the spatial walk-off in the
rystal (of the order of 20 mrad [21]). On the other hand,
he wave plate and the KDP crystal used �10�10 mm�
imit the maximum device aperture to approximately

ig. 8. Scaling factor s (a) and quadratic phase factor acorr (b) as
function of the central wavelength of the unknown pulse for
DP. The parameters used in (b) are: crystal thickness L
5 mm, predelay t0=317 fs.
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mm. Another implementation of ARAIGNEE has been
roposed in which the two angularly tilted and tempo-
ally delayed beams are generated by a Michelson inter-
erometer arrangement [6]. The lower limit of the beam
iameter is therefore only imposed by the spatial walk-off
n the crystal.

The calibration in ARAIGNEE is based on the retrieval
f the spectral phase from an interferogram between two
-polarized test pulses (see Fig. 7). In our ARAIGNEE
etup, this interferogram is generated by rotating the
/2-wave plate in such a way that the polarization direc-
ion of the beam matches the horizontal axes of both the
uartz and the KDP crystal. Finally, the spectral phase
ccumulated by the pulses by propagating through the
0 mm quartz plate (196 fs2 at 830 nm) is removed after
he frequency scaling.

We used several sources of ultrashort pulses to charac-
erize the performances of our ARAIGNEE device: a
aiTai (Spectra-Physics) laser delivering 	70 fs pulses

entered in the 750–850 nm range, a Mira Seed (Coher-
nt) providing broader bandwidth pulses �
�	30 nm�
nd a 1 kHz chirped pulse amplifier (CPA). The dashed
urves plotted in the left part of Fig. 9 show the spectral
hase reconstruction of the MaiTai laser pulses of differ-
nt central frequency. The comparison with the spectral
hase measured with a conventional SPIDER apparatus
7] (solid curves) shows an excellent agreement between
he ARAIGNEE and the SPIDER measurements. These
esults demonstrate that the spectral phase of an ul-
rashort pulse can be measured with ARAIGNEE outside
he spectral range where a perfect group velocity match-
ng occurs as predicted by our theoretical analysis, pro-
iding that the scaling factor in Eq. (15) is taken into ac-
ount. Note that since the sensitivity of ARAIGNEE is
iger than SPIDER, the average power of the laser beam
as attenuated down to 25 mW average �0.3 nJ/pulse� in

ig. 9. Left: Spectrum of the test pulse (dotted curve) and its
pectral phase retrieved by ARAIGNEE (dashed curve) and
PIDER (solid curve) for various central wavelengths. Right:
ime-dependent intensity and phase measured by ARAIGNEE

circles) and SPIDER (solid curve) from the data plotted on the
eft.
he former case, that is 1 order of magnitude lower than
ith our conventional SPIDER apparatus. This is the re-

ult of a longer interaction length for the sum-frequency
eneration and no chirped ancillary pulse.

As an additional consistency check of the ARAIGNEE
ethod, we performed the measurement of the spectral

hase added to the MaiTai laser pulses after propagation
hrough various lengths of the BK7 glass from
0 to 100 mm. The accumulated quadratic spectral phase
as been compared with the theoretical curve calculated
rom the Sellmeier equation. The very good agreement be-
ween the reconstructed phase by ARAIGNEE and the
heoretical profile [5] demonstrates the reliability of the
RAIGNEE device. Particularly, this result shows that

he spectral chirp of the e-polarized fundamental pulse
oes not affect the arrival time of the SF pulse at the out-
ut of the crystal, or, in other words, the delay between
he two spectrally sheared SF pulses. We performed the
ame experiment with 30 fs pulses (FWHM) from the
ira Seed laser. The reconstructed spectral phase plotted

n Fig. 10(a) has a positive curvature of 220 fs2, which
gree very well with the 200 fs2 calculated from the Sell-
eier equation.
We also tested ARAIGNEE for structured pulses. The

pectral phase of the Gaussian pulses generated by a CPA
aser system was sinusoidally modulated by a pulse
haper consisting of a programable acousto-optic modula-
or (AOM) placed in the focal plane of a 4-F grating-and-
ens apparatus [22]. The spectral phase retrieved from
he measurement with the Michelson arrangement of
RAIGNEE [6] was compared with conventional SPIDER
esults. As can be seen in Fig. 10(b) both measurements

ig. 10. (a) Spectrum of the Mira Seed laser (dotted curve) and
cquired spectral phase after propagation through 9.5 mm of
K7 (dashed curve). The solid curve shows the fit to the phase

hat corresponds to a group delay dispersion of 440 fs2. (b) Spec-
ral intensity of the test pulse (dotted curve) and sinusoidal
odulation of its spectral phase reconstructed by ARAIGNEE

dotted curve) and SPIDER (solid curve).
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gree perfectly over the central part of the spectrum with
ome discrepancies in the wings. The low signal level at
he output of the pulse shaper is responsible for the SPI-
ER phase deviating somewhat from the sinusoidal pro-
le while the more sensitive ARAIGNEE recovers this
rofile with higher accuracy.

. DISCUSSION
he condition of complete walkthrough of the two funda-
ental test pulses in the nonlinear crystal results in a

imitation of the time support 
T for an accurate mea-
urement of the test pulse. On the other hand, the maxi-
um bandwidth of the pulse is limited by the GVD. In-

eed, the GVD leads to the distortion of the test pulses
hat, in turn, affects both the amplitude and the phase of
he SF pulse. This effect is proportional to the magnitude
f the GVD, the pulse bandwidth and the interaction
ength. In the PMF picture, the GVD manifests itself as a
urvature of the PMF (see Fig. 1). The amplitude distor-
ion can be qualitatively understood from this figure: the
requencies in the wings of the o-pulse are mixed with a
ower frequency of the e-pulse than the o-pulse carrier fre-
uency.
To quantify the consequences of both the GVD and the

roup velocity mismatch 
kbro
� on the accuracy of the

RAIGNEE method, we have numerically simulated the
eneration of the two spectrally sheared replica and ap-
lied our reconstruction algorithm. The rms error � be-
ween the input and the reconstructed electric fields, re-
pectively, Ein and Erec, defined as

� = �Ein�t� − Erec�t��, �26�

here the norm of the field is �E�= ��−


 
E�t�
2dt�1/2 and

here the two complex amplitudes are normalized to
nity, has been used to quantify the reconstruction error
18].

In Fig. 11(a) we have plotted the rms error � for a
ransform-limited Gaussian input pulse at different cen-
ral wavelengths and of different bandwidths, for an
RAIGNEE apparatus with a 20 mm nonlinear KDP
rystal (with a predelay t0=1440 fs such that the o- and
he e-pulses meet halfway in the crystal). Following [18],
e consider the reconstruction very good for � below 0.02,
verage for � between 0.02 and 0.1 and poor for � exceed-
ng 0.1. A qualitative understanding of the metric used is
rovided by Figs. 11(b) and 11(c). A single KDP crystal
20 mm thick) can be used to measure pulses from
0 to 700 fs in the spectral range from 0.74 to 0.9 �m
ith the restrictive criterion ��0.02. The result plotted

n Fig. 11(a) also shows that the rms error is minimal
ear 830 nm. The increase of the rms error away from
hat region comes from the terms we have neglected in
q. (12). Indeed, for such wavelengths, the assumption

hat 
kbro
� /
kbre

� �1 is no longer valid and the higher or-
er terms lead to a distortion of the SF pulse from a per-
ect replica of the input pulse. The performance of
RAIGNEE has also been studied for complex pulses. As
n example, the reconstruction of two 50 fs transform-
imited Gaussian pulses, separated by 0.2 ps and cen-
ered �800 nm, is shown in Fig. 12. As can be seen, the
wo pulses are very well retrieved in spite of the fact that
ach pulse in the e-polarized pair takes part in the SF
eneration. The small residual phase leads to a rms error
s low as 0.03.
Pulses in other wavelength ranges can also be charac-

erized by ARAIGNEE providing that a suitable nonlinear
rystal is chosen. In Fig. 13 we have plotted the spectral
ange of tunability for two commonly used nonlinear crys-
als: BBO and KTP. With a KTP crystal in the YZ plane
�=90° �, both the group velocity matching and the phase-
atching are achieved at a wavelength of 1422 nm, for

he “oeo” interaction at an angle 	=47°. With our conser-
ative requirement of ��0.02, a 20 mm thick crystal al-
ows the measurement of pulses in the telecom band in
he range of �60–900 fs FWHM. In addition, the PM
unction of an oee interaction in a BBO crystal is vertical

ig. 11. (Color online) (a) rms error � of the retrieved pulse cal-
ulated from numerical simulation of the SF generation in a
0 mm thick KDP crystal as a function of the input pulse band-
idth (intensity FWHM) and central wavelength for Gaussian

ransform-limited input pulses. (b), (c) Temporal intensity profile
dotted curves) of the test pulse corresponding to B and C in (a)
nd reconstructed intensity (solid curves) and phase (dashed
urves) profiles.

ig. 12. Simulated reconstruction of a double Gaussian pulse at
00 nm (dashed curve). The solid curves show the test pulse in-
ensity and phase.
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t a wavelength of 1169 nm �	=31° �. This crystal is
herefore suitable to measure pulses in the range
.0–1.3 �m where new, powerful, diode-pumped mode-
ocked lasers based on Yb-doped materials become avail-
ble. The rms error of very short pulses is no longer mini-
al around the group velocity matching wavelength but
1.3 �m instead where the GVD experienced by the

ulse in the quartz plate prior to propagating in the non-
inear crystal is minimal. Table 1 enables us to quickly
nd the proper crystal type and length for a given appli-
ation. It displays the maximum bandwidth allowing very
ood or average reconstruction of transform-limited
aussian pulses. The predelay is assumed to be the result
f the propagation through a quartz plate with the appro-
riate length.
The full characterization of the electric field of an opti-

al pulse both in space and time is an active research area
n optical metrology since space-time coupling occurs in
he manipulation of light as simple as focusing as well as
n most nonlinear interactions. Recently, the SEA-
PIDER (spatial encoding for SPIDER) method where the
pectral phase is encoded in the spatial fringes between
wo spectrally sheared replicas has been developed to
easure extremely short pulses [10,11]. Since a two-

imensional sensor is used to record the fringes, this
ethod naturally measures the spatial dependence of the

ulse along one transverse coordinate. Similarly, the spa-

ig. 13. (Color online) Simulated rms error � of an ARAIGNEE
evice with a 20 mm thick BBO and KTP in the YZ plane, and a
uartz plate 40 and 50 mm thick, respectively.

Table 1. Maximum Pulse Bandwidth „��… That Can

Crystal
L

(mm)
t0

(fs)

�=750 nm

KDP 20 1450 14
oee 5 360 23

1 75 —
�=1000 nm

BBO 20 1100 39
oee 5 275 49

1 55 —
�=1422 nm

KTP�YZ 20 1750 49
oeo 5 440 60

1 85 —
ial encoding method can straightforwardly be applied to
RAIGNEE by combining a Michelson interferometer to
plit the beam in two parts, with an imaging spectrom-
ter. Note that in the splitting mirror implementation of
RAIGNEE as depicted in Fig. 2, a reliable measurement
f the pulse can still be performed in the presence of
pace–time coupling as long as it involves only a spatial
ariation of the central frequency within the beam, since
e have direct access to the spectral shear.
ARAIGNEE is based on the general principle of a group

elocity mismatch between two fundamental test pulses
s well as a group velocity match between the SF pulse
nd one of the two test pulses. Therefore quasi-phase-
atched crystals can be designed to achieve the phase-
atching at a desired wavelength where the group veloc-

ty requirements are already satisfied. Moreover, when an
xternal powerful optical beam is available, it can be used
s a source of the fundamental pulse with the group ve-
ocity mismatch, similarly to the modified SPIDER pro-
osed to improve the sensitivity of the spectral shearing
nterferometry [23].

. SUMMARY
RAIGNEE (another ridiculous acronym for interfero-
etric geometrically simplified noniterative E-field ex-

raction) is a novel implementation of spectral shearing
nterferometry for measuring ultrashort pulses. It takes
dvantage of the properties of sum-frequency (SF) gen-
ration in a type II nonlinear crystal to dramatically sim-
lify the generation of the sheared replicas. Indeed, it is
he phase-matching function itself that selects the single
requency to be upconverted with the test pulse, eliminat-
ng the requirement for linearly chirped ancillary pulses
nd the components that produced them. Moreover, due
o the intrinsic collinear geometry, the pulses automati-
ally overlap both spatially and temporally in the crystal,
ffering a user-friendly apparatus. ARAIGNEE is also
ore sensitive than a conventional SPIDER since the

rystal used is longer.

Measured with an rms Error Less than 0.02 or 0.1

)
.02
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We have presented a comprehensive description of the
F generation in the nonlinear crystal. Our analytical
odel shows that a wide range of pulse lengths and cen-

ral wavelengths can be accurately characterized by
RAIGNEE, but the device calibration requires a reason-
ble knowledge of the crystal properties. The capabilities
f ARAIGNEE have been experimentally demonstrated
or pulses of various bandwidths, central wavelengths,
nd spectral phases. As with other spectral shearing in-
erferometric techniques, ARAIGNEE requires only 1D
ata collection for pulse reconstruction, has a fast inver-
ion algorithm as well as one shot capabilities.
RAIGNEE can also be used in other SPIDER schemes
uch as modified-SPIDER [23] or SEA-SPIDER [10,11] for
ncreased sensitivity or space–time coupling measure-

ents, respectively.
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man’s FROG,” Opt. Commun. 186, 329–333 (2000).

3. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly
simplified device for ultrashort-pulse measurement,” Opt.
Lett. 26, 932–934 (2001).

4. D. T. Reid and I. G. Cormack, “Single-shot sonogram: a
real-time chirp monitor for ultrafast oscillators,” Opt. Lett.
27, 658–660 (2002).

5. A. S. Radunsky, I. A. Walmsley, S. P. Gorza, and P.
Wasylczyk, “Compact spectral shearing interferometer for
ultrashort pulse characterization,” Opt. Lett. 32, 181–183
(2007).

6. A. S. Radunsky, E. M. Kosik, I. A. Walmsley, P. Wasylczyk,
W. Wasilewski, A. B. U’Ren, and M. E. Anderson,
“Simplified spectral phase interferometry for direct
electric-field reconstruction by using a thick nonlinear
crystal,” Opt. Lett. 31, 1008–1010 (2006).

7. C. Iaconis and I. A. Walmsley, “Self-referencing spectral
interferometry for measuring ultrashort optical pulses,”
IEEE J. Quantum Electron. 35, 501–509 (1999).
8. A. Monmayrant, S.-P. Gorza, P. Wasylczyk, and I.
Walmsley, “Beyond the fringe: SPIDER—the anatomy of
ultrashort laser pulses,” Photon. Int. 44 (2007).

9. P. Baum, S. Lochbrunner, and E. Riedle, “Zero-additional-
phase SPIDER: full characterization of visible and sub-
20-fs ultraviolet pulses,” Opt. Lett. 29, 210–212 (2004).

0. E. M. Kosik, A. S. Radunsky, I. A. Walmsley, and C. Dorrer,
“Interferometric technique for measuring broadband
ultrashort pulses at the sampling limit,” Opt. Lett. 30,
326–328 (2005).

1. A. S. Wyatt, I. A. Walmsley, G. Stibenz, and G. Steinmeyer,
“Sub-10 fs pulse characterization using spatially encoded
arrangement for spectral phase interferometry for direct
electric field reconstruction,” Opt. Lett. 31, 1914–1916
(2006).

2. A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw,
“Analysis of cross correlation, phase velocity mismatch, and
group velocity mismatches in sum-frequency generation,”
IEEE J. Quantum Electron. 29, 580–589 (1993).

3. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
4. H. Wang and A. M. Weiner, “A femtosecond waveform

transfer technique using type II second harmonic
generation,” IEEE J. Quantum Electron. 40, 937–945
(2004).

5. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating
frequency and space-time correlations in multiphoton
states,” Phys. Rev. A 64, 063815 (2001).

6. E. Sidick, A. Knoesen, and A. Dienes, “Ultrashort-pulse
second-harmonic generation. I. Transform-limited
fundamental pulses,” J. Opt. Soc. Am. B 12, 1704–1712
(1995).

7. C. Dorrer, “Implementation of spectral phase
interferometry for direct electric-field reconstruction with a
simultaneously recorded reference interferogram,” Opt.
Lett. 24, 1532–1534 (1999).

8. C. Dorrer and I. A. Walmsley, “Accuracy criterion for
ultrashort pulse characterization techniques: application to
spectral phase interferometry for direct electric field
reconstruction,” J. Opt. Soc. Am. B 19, 1019–1029 (2002).

9. I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner,
and E. Riedle, “Compact autocorrelator for the online
measurement of tunable 10 femtosecond pulses,” Rev. Sci.
Instrum. 75, 2323–2327 (2004).

0. M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A.
Walmsley, “The effect of noise on ultrashort-optical-pulse
measurement using SPIDER,” Appl. Phys. B 70, S85–S93
(2000).

1. V. G. Dimitrev, G. G. Gurzadyan, and D. N. Nikogosyan,
Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-
Verlag, 1997).

2. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and
W. S. Warren, “Femtosecond laser pulse shaping by use of
microsecond radio-frequency pulses,” Opt. Lett. 19,
737–739 (1994).

3. M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H.
Shigekawa, and M. Yamashita, “Sensitivity improvement of
spectral phase interferometry for direct electric-field
reconstruction for the characterization of low-intensity
femtosecond pulses,” Appl. Phys. B 74, S225–S229 (2002).


