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Abstract

We present the results of our study of the second harmonic generation (SHG) in a nonlinear crystal using phase modulated femto-
second laser pulses. We show experimentally that the SHG process is an analogue of two photon absorption (TPA), yet it provides a
better way to study coherent control because it enables one easier control of some important parameters. We demonstrate that for a
thick nonlinear crystal pure phase manipulation can result in nontrivial pulses maximizing the second harmonic conversion efficiency
and in dark pulses which are not converted at all. With a p step phase modulation applied to the pulse we have measured conversion
efficiency for a set of crystals with different thicknesses to explore the effect of a finite spectral width of the TPA transition.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The coherent control has been proposed for the first
time two decades ago by Brumer and Shapiro [1] who sug-
gested that two optical fields can be used to control the
photodissociation of a molecule. The scheme they consid-
ered is an analogy of a two slit interference experiment in
which the outcome depends on a phase between two path-
ways leading to the final state. In another theoretical anal-
ysis they showed that by employing a laser with frequency
x and its second harmonic at 2x one can control the direc-
tion of the photoinduced current in a semiconductor [2]. At
the beginning of the 1990’s Zewail group took advantage of
localized wave packed excitation to access two different
electronic states of iodine molecule [3] in a femtosecond
pulse-probe experiment. As a result of those experiments
a new field of research called coherent control emerged.
Usually in coherent control the prime objective is to move
a quantum system from its initial state to a predetermined
final state exerting as little effort (energy) as possible. Suc-
0030-4018/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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cessful experimental realizations of coherent control of dif-
ferent processes including: ionization and dissociation of
molecules [4,5], molecular fluorescence excitation [6,7] or
current excitation in semiconductors [8,9] were reported
and excellent review articles [10–12] are available.

As early as 1992 Broers et al. published the first paper
on, what we would call today, quantum control of two-
photon processes [13,14]. They did not use this term explic-
itly – instead they wrote about ‘‘energy focusing’’ to
describe enhancement of a narrow-band SHG and TPA
efficiency by binary spectral amplitude modulation and
quadratic phase modulation. This effect bears very close
resemblance to Fresnel diffraction as shown by the increase
of SHG power in a given narrow band of frequencies for
the amplitude mask equivalent to Fresnel zones.

One of the simplest yet very profound demonstrations of
coherent control was the work by Meshulach and Silber-
berg [15]. They presented a theoretical analysis and per-
formed an experiment on TPA in alkali atoms
illuminated by phase modulated ultrashort laser pulses.
The most striking effect of their work was, probably, the
demonstration that pulses other than the transform limited
ones can also maximize TPA. Later, it was also shown that,
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when an intermediate state between the ground and excited
states is involved, phase modulated pulses can produce up
to a 7 times higher TPA rate than the transform limited
ones [16]. Two years after the initial experiment with coher-
ent two photon absorption, Zheng and Weiner noticed that
the equations governing TPA and the SHG in a nonlinear
crystal have the same structure [17].

A series of experiments on various aspects of coherent
control of multiphoton processes with phase modulated
pules was conducted by Dantus and co-workers [18–24].
Among other things, they have developed a new method
for ultrashort laser pulse characterization and improved
excitation selectivity through binary phase shaping in
two-photon microscopy. Motzkus and co-workers have
reported an experiment on a nonresonant TPA in alkali
atoms with phase shaped pulses. They have used evolution-
ary algorithm to coherently control the transition probabil-
ity demonstrating both increase and decrease of the
transition probability [25–28]. Yet another experiment on
two photon transition in sodium atoms led to the develop-
ment of a new, simple and very sensitive method for the
calibration of the spatial light modulators [29].

In the SHG process involving a monochromatic light
source two photons from the fundamental beam with a fre-
quency of x/2 are converted into one photon in the second
harmonic beam with a frequency of x as a result of nonlin-
ear interaction in a nonlinear crystal. When the fundamen-
tal beam is formed of short pulses with finite bandwidth the
second harmonic at a given frequency x can result from
any photon pair whose frequencies add up to the desired
frequency. Since, for coherent input pulses, the phases of
all spectral components are well defined one has to con-
sider a coherent superposition of all possible paths leading
to generation of the second harmonic field. Because of this,
coherent control of the SHG process is possible. Classi-
cally, an expression for the electric field of the second har-
monic can be derived assuming wave optics and the
nonlinear response of the medium to the oscillating electric
field at the fundamental frequency. If the depletion of the
fundamental beam is negligible the second harmonic field
in the frequency domain is given by [30]:

~�2ðxÞ ¼
Z 1

�1
~�1ðx=2þ XÞ~�1ðx=2� XÞdX� DðxÞ; ð1Þ

where ~�1 and ~�2 are the spectral amplitudes of the funda-
mental and second harmonic waves respectively. Each of
them can be decomposed into its real positive magnitude
A(x) and phase U(x) : e�ðxÞ ¼ AðxÞ exp½iUðxÞ�. The last
factor in Eq. (1) describes a phase matching condition in
a nonlinear crystal: D(x) = CLsinc[a(x � x0)L/2], with L

being the crystal length, C – the nonlinear coupling coeffi-
cient and a = 1/tg1 � 1/tg2 Group Velocity Mismatch
(GVM) between the fundamental and doubled waves. We
assume here that at the frequency x0/2 a perfect phase
matching is achieved in the crystal. D(x) can be regarded
as a frequency dependent filter which defines SHG effi-
ciency for different frequencies [31].
It was pointed out by Meshulach [15] that the ability to
coherently control TPA strongly depends on the spectral
width of the two-photon transition. With narrow-band
transitions characteristic of atomic gases it is possible to
maximize TPA with an infinite number of nontrivial phase
shapes whereas with broadband transitions often encoun-
tered in condensed media, e.g., a solution of the Coumarin
6G in methanol, a flat spectral phase corresponding to the
shortest, i.e., a Fourier limited pulse is the only solution.
The two extreme cases are easily quantified by providing
the ratio of the spectral width of the laser pulse to the spec-
tral width of the two-photon transition. In the first case this
ratio is very large and in the second case small. One would
expect that for the intermediate values of this parameter a
continuous transition between the two regimes can be
achieved. However, it is very difficult to explore the inter-
mediate range using two photon absorption as this would
require either a collection of pulsed lasers with widely dif-
ferent bandwidths or a collection of absorbing media with
different widths of two-photon transitions. Neither of the
two approaches is appealing. Still, one can use the formal
correspondence between TPA and SHG [17] to explore
coherent quantum control of two-photon absorption in
the intermediate regime by studying second harmonic gen-
eration in a nonlinear crystal.

The basic idea of our approach relies on the observation
that in the SHG process one can continuously tune
between the two extreme regimes by taking advantage of
the phase matching part D(x) in Eq. (1). If one takes a
thick nonlinear crystal with a significant GVM the phase
matching part D(x) responsible for frequency dependent
conversion efficiency becomes very narrow and can be well
approximated by a d(x � x0) function. It is convenient to
introduce the interaction length given by Li = s/jaj, where s
is the duration of a transform limited fundamental pulse.
Then, in the thick crystal regime with L� Li the SHG
spectrum is limited by the spectral filtering due to the phase
matching in a nonlinear crystal. When a thin (L� Li) crys-
tal is used a broadband generation of the second harmonic
is possible and the spectral width of the output field is lim-
ited solely by that of the input.

For a thick nonlinear crystal D(x) � d(x � x0); the fil-
ter frequency x0 can be tuned, e.g., by changing crystal ori-
entation. Then Eq. (1) gives the power of the quasi-
monochromatic second harmonic:

P Thick
SH �

Z 1

�1
Aðx0=2þ XÞAðx0=2� XÞ

����
� exp½ifUðx0=2þ XÞ þ Uðx0=2� XÞg�dX

����
2

: ð2Þ

The effect of the spectral filtering is now evident: the second
harmonic field at a frequency of x0 results from summing
up all frequency pairs xi, xj in the fundamental beam ful-
filling the energy conservation condition x0 = xi + xj. The
value of the integral depends on the spectral phase of the
input pulse and thus one can achieve coherent control by
the pure phase shaping of the input pulses. In particular,
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as we demonstrate experimentally, there are spectral phase
shapes for which the second harmonic at a given frequency
is zero. It should be mentioned that, contrary to SHG or
TPA, one photon transition probability is not phase depen-
dent at all, it depends only on the spectral amplitude.

In the other limit of the SHG – a thin crystal regime –
D(x) can be approximated by a constant value over the
whole input pulse spectrum – there is no filtering due to
the phase matching in a crystal and all input frequencies
are converted with the efficiency proportional to the prod-
uct of the respective spectral amplitudes. This results in a
spectrum of the second harmonic limited by the spectrum
of the input pulse only [32]. Again, using Eq. (1) one can
write the power of the second harmonic as:

P Thin
SH �

Z 1

�1

Z 1

�1
~�1ðx=2þ XÞ~�1ðx=2� XÞdX

����
����
2

dx: ð3Þ

Eq. (3) can be cast into a more intuitive form if the convo-
lution theorem is used:

P Thin
SH �

Z 1

�1
I2

1ðtÞdt: ð4Þ

The result for a thin crystal regime is the same as the one
for TPA in condensed matter (e.g., Rhodamine 6G). It is
clear from Eq. (4) that in order to maximize either the sec-
ond harmonic signal in a thin nonlinear crystal or the TPA
in Rhodamine 6G one has to use Fourier-limited and thus
the shortest possible pulses.

The filter function D(x) opens a convenient way of
studying coherent control of TPA processes (utilizing the
analogy between TPA and SHG) as it provides an easy
method to change the relative spectral widths of the laser
pulse and the two-photon transition. We use this approach
to demonstrate experimentally the effect of finite two-pho-
ton transition bandwidth on the effectiveness of coherent
control in the TPA process. Instrumentally, we change
the spectral width of the TPA line by either changing the
thickness of the SH crystal or spectral filtering of the SH
signal.
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Fig. 1. (a) Scheme of the experimental set-up for SHG generation with phase m
mirrors, Gr1, Gr2 – diffraction gratings 1200 lines/mm, L1, L2 – cylindrical lens
Optics USB2000), CF – blue color glass filter, BBO – b-barium borate nonli
spectrum with FWHM width of D and the compensating phase (see text). The
modulation imposed on the pulses by the pulse shaping system. The position
2. Experiment and results

The experimental set-up for the second harmonic gener-
ation with phase modulated pulses is shown in Fig. 1. A
beam of pulses from a home-built Ti:Sapphire femtosecond
oscillator was passed through a standard 4f pulse shaper
[33] equipped with a Liquid Crystal Spatial Light Modula-
tor with 640 independent sectors (JenOptik SLM-S640d).

The phase-voltage dependence of our SLM was
obtained with a standard procedure: the light modulator
was placed between two crossed polaroids and illuminated
with a semiconductor laser with a known wavelength.
Transmission versus voltage was measured and used to
retrieve the phase-voltage calibration. Calibration for other
wavelengths was then calculated using Sellmeier formula
for liquid crystals. The results of this procedure are in
excellent agreement (within 2%) with the data provided
by the manufacturer.

The spectral window of the pulse shaper was 124 nm
resulting in the spectral resolution of 0.2 nm/pixel. The
shaped pulses were passed through a nonlinear crystal
and the second harmonic signal was registered with an
either a photodiode or a spectrometer. This way both the
total SH power and the SH spectrum could be recorded.

Prior to any measurements involving phase modulation
the pulses at the output of the shaper were compressed to
remove the residual chirp from the laser as well as the
phase distortions introduced by the shaper itself. This
was achieved by running a standard evolutionary algo-
rithm [34] with the feedback signal generated by a two-pho-
ton photodiode placed in the position of the second
harmonic crystal. The evolutionary algorithm increased
the feedback signal approximately 3 times, however, it
did not deliver a correct spectral phase in the full spectral
range (see Fig. 1b). As might be expected, for frequencies
for which the spectral amplitude is small phase modulation
had little effect on the feedback signal and its result was
hidden in the experimental noise. Because of that the resul-
tant phase acquired random values in the spectral wings.
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Such phase ‘‘background’’ was added to a desired phase
shape function in all the subsequent measurements.

In order to compare our results with those for the TPA
process in atoms [35] we applied the same phase modula-
tion to the laser pulses – a single p step with the position
of the step being the only control parameter. The SH inten-
sity was recorded versus the position of the phase step.

The results of our measurements – SH signal versus the
p step position – for BBO crystals with four different thick-
nesses are shown in Fig. 2. Not surprisingly, our experi-
mental results very closely resemble the available data for
TPA in atoms. For a thick crystal (Fig. 2a), the second har-
monic signal is high for the p step positions which are far
from the central frequency. In this case, the phase modula-
tion affects just the spectral wings of the pulse and the pulse
can still be well approximated by a transform limited one.
When the p step position approaches x0/2 the SH signal
drops to almost zero at d/D = ±0.31. For d/D close to zero
the SH signal revives rapidly reaching the maximum at
d/D = 0. The results shown in Fig. 2a can be explained if
we recall Eq. (2). The phase part in the integral reads as:
/(X) = U(x0/2 + X) + U(x0/2 � X). The first obvious
solution maximizing SHG is /(X) = 0 which is a well
known case of transform limited pulses. However, there
are other nontrivial solutions: any phase antisymmetric
around x0/2, i.e., fulfilling the condition: U(x0/2 + X) =
�U(x0/2 � X) should also maximize the second harmonic
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Fig. 2. Second harmonic power as a function of the phase p step position for di
Solid line – experiment, dashed line – simulation. The ratio Li/L is 0.061, 0.24
signal, giving the same power as transform limited pulses.
It is worth noting that the p step is just one example of
the phase modulation which maximizes the SH power. A
pulse with any antisymmetric phase will give the maximum
SH efficiency. In the case of a thin crystal (D(x) � const)
the SH power depends on the temporal pulse profile only
(see Eq. (4)). It is maximized for the shortest – Fourier lim-
ited pulses and any spectral phase other than a flat one
leads to pulse lengthening and a decrease in the SHG effi-
ciency. This has been verified experimentally with a
20 lm BBO crystal and laser pulses with the p step phase
modulation (Fig. 2d). According to the dispersion data
for the BBO material [36] the ratio Li/L is �6 in the case
of 20 lm BBO crystal and therefore the limit of a very
broadband TPA should be well modeled. The results
obtained for the SHG in a thin crystal are very similar to
those for the TPA with a broad transition line. In this case
there should be no revival of the SH signal when the phase
step is centered at the maximum of the laser spectrum. The
remnants of a revival observed in the experimental data
show that even with a very broad line of the TPA transition
– in this case it is 6 times broader than the laser spectrum –
some coherent control is still possible.

Using the second harmonic generation in a nonlinear
crystal instead of two-photon absorption enables one to
study phase modulation effects in different regimes. In par-
ticular, one can vary the ratio of the filter function width to
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fferent BBO crystal lengths. (a) 2 mm, (b) 0.5 mm, (c) 0.2 mm, (d) 0.02 mm.
, 0.61, 6.1 for (a), (b), (c) and (d), respectively.
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the width of the pulse spectrum. This is illustrated in Fig. 2
where the experimental data for four crystals with thick-
nesses from 20 lm to 2 mm are presented together with
the results of the numerical modeling. The numerically
computed curves were obtained as follows. In order to cal-
culate efficiently the integral in Eq. (1) we use the convolu-
tion theorem: we take Fourier transform of the
fundamental field, square it and back-transform it to the
frequency domain to obtain the SH field:

~�2ðxÞ ¼F F�1~�1ðx=2Þ
� �2
� �

	 DðxÞ: ð5Þ

The filter function D(x) was a sinc function scaled properly
to account for a given crystal thickness. This procedure was
repeated for a range of the phase step positions d used in
the experiment. The overall agreement between the experi-
ment and numerical modeling is very good. All the basic
features present in the experimental data are reproduced
in the modeling. The main discrepancy is the width of the
double well structures – the experimental ones are nar-
rower than their calculated counterparts. There are several
possible reasons for this discrepancy. Firstly, one should
consider possible errors due to imperfect phase-voltage cal-
ibration of the SLM. As described in the experimental sec-
tion, this calibration is correct within a few percent.
Anyway, the possible error in this calibration would only
decrease the modulation depth of the curves shown in Figs.
2 and 3 without changing their widths. Secondly, it is well
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Fig. 3. Second harmonic power as a function of the phase p step position for 2
The FWHM width of the filter is: (a) 0.2 nm, (b) 3 nm, (c) 6 nm, (d) infinite.
known that liquid crystal SLM can change the pulse spec-
trum significantly when sharp phase modulation is applied
[37] due to diffraction effects. However, in our experimental
set-up, the spectral hole created by a single sharp phase
jump has a width of just 0.4 nm so its influence can not ex-
plain visible discrepancies. Last but not least, the spectral
phase of the input pulse is not perfectly flat. This is due
to the finite accuracy of the evolutionary algorithm used
to flatten the phase of the pulses prior to applying the step
function. As already discussed, the algorithm produced
random phases in the spectral wings of the pulse and any
additional phase modulation in those regions should have
no effect on the SHG efficiency. We have verified this by
running our numerical code that simulates SHG process
and assuming random phase in the spectral wings. The re-
sults of the modeling show that the SHG spectrum is nar-
rower than the one obtained with a flat spectral phase.
Thus such a phase randomization is equivalent to the spec-
tral narrowing as observed in our experimental data.

In principle, one could apply another method to flatten
the spectral phase of the input pulse. The pulses after 4f set-
up could be characterized with either FROG or SPIDER.
The retrieved spectral phase could then be applied (with
opposite sign) to a well calibrated SLM to get transform
limited pulses at the shaper output. This has not been done
in our experiment as a full input pulse characterization
would result in a complex experimental set-up.
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0 lm BBO crystal and different widths of the gaussian spectral filter D(x).
Solid line – experiment, dashed line – simulation.
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The data shows that the transition from a thick crystal
enabling coherent control of the SHG process to a thin
one where there are no nontrivial pulses maximizing the
efficiency is smooth. It should be noted that no such data
for TPA exists while with the method presented here it is
rather straightforward to obtain it.

It should also be pointed out that the nature of the spec-
tral filter D(x) involved in the second harmonic generation
is not important. The results shown in Fig. 2 can also be
obtained with other methods. For example, one can use a
very thin crystal followed by a spectrometer. We applied
this approach – with a 20 lm BBO crystal we registered
the spectra of SH for different positions of the p phase step.
Then each spectrum has been numerically filtered with a
gaussian filter and integrated to provide a number which
is proportional to the signal given by Eq. (1). The results
are shown in Fig. 3 together with the results of numerical
modeling. With this procedure one can easily change the
width of the spectral filter by a simple manipulation of a
computer code analyzing the experimental data. Moreover,
a single set of experimental data (a set of SH spectra) is suf-
ficient to retrieve the results for different values of the filter
width. The results obtained using this method are consis-
tent with the data shown in Fig. 2.

It is instructive to consider the thick crystal case and
look at the temporal profiles of three pulses with different
positions of the p step – a transform limited one, a pulse
with a phase which is antisymmetric with respect to x0/2,
and a pulse with the p step at d = ±0.31D. The last one
is not converted into the second harmonic and we call it
a dark pulse by analogy to dark states in atoms [38]. To
gain a better insight into the nature of a dark pulse we
numerically modeled the temporal profiles of the three
pulses. We assumed a gaussian pulse spectrum with
FWHM equal to the spectral width of our laser and a p
step phase. The results are shown in Fig. 4. Even though
the peak intensity of the pulse with anti-symmetric phase
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Fig. 4. Temporal pulse profiles: solid line – a transform limited pulse,
dashed – a pulse with antisymmetric phase, dash–dot – a dark pulse.
is more than 2 times smaller than the intensity of the trans-
form limited pulse they produce the same SH power. At the
same time the temporal profile of a dark pulse is quite sim-
ilar to that of the pulse with antisymmetric phase but they
are converted to SH with drastically different efficiency.
One can consider this case as an illustration of the power
of coherent control.

3. Conclusions

In summary, we have experimentally demonstrated
some effects of the phase modulation in the second har-
monic generation process. We have built an analogy
between the second harmonic generation and the well
studied two-photon absorption processes and emphasized
one-to-one correspondence between the two. We have
demonstrated an experimental method that makes studies
of coherent control in TPA using a well established and rel-
atively simple method of SHG in nonlinear crystals possi-
ble. It enables one to explore the continuous transition
between different regimes of either TPA or SHG. For a
thick crystal regime we have shown that a pure phase
manipulation of the laser pulse can lead to a dramatically
different efficiency of the SHG process. In particular, we
have shown the existence of dark pulses that are not con-
verted to the second harmonic even though their temporal
profiles are quite similar to the temporal profiles of the
pulses that are converted with the maximum achievable
efficiency. Good agreement with analytical predictions
and previous experimental result on coherent control in
TPA in atoms was achieved.
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