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We propose a modification of the Shack–Hartmann wavefront sensor in which the lens array is made
of Fresnel zone plates. The modification allows students to construct the sensor in an undergraduate
laboratory at little cost. In spite of its simplicity the sensor has a sensitivity of � /50 in relative
measurements, which is sufficient to measure a wavefront of a laser beam distorted by various
optical elements as well as by a turbulent airflow. Such an experiment is an excellent supplement to
a course in optics, gives students a deeper understanding of the wavefront concept, and demonstrates
the wavefront measurement technique widely used in physics, astronomy, and medicine. © 2008
American Association of Physics Teachers.
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I. INTRODUCTION

The concept of a wavefront is important in optics and in
the physics of waves in general. Phenomena such as focusing
or defocusing of a collimated beam by a lens and the free
propagation of a Gaussian beam can be well described as
changes of the curvature of a wavefront. The wavefront ap-
proach is also the most natural way of describing the opera-
tion of optical elements made of a material with a spatially
varying index of refraction �for example, GRIN lenses which
are often used to couple light to optical fibers�.1 Wavefront
analysis is the enabling technology in the rapidly developing
field of adaptive optics and is used in modern astronomical
telescopes2 and high power laser systems.3,4 Wavefront mea-
surements are also crucial for eye surgery because they are
an excellent tool for diagnosing eye aberrations prior to and
during surgical corrections.5

Because of its prominence in wave physics and important
applications in science and technology, the concept of a
wavefront should be carefully taught during a course on the
physics of waves and optics. In this paper we show that the
introduction of this concept during a course in optics can be
easily and effectively supplemented by wavefront measure-
ments in an undergraduate student laboratory.

The foundation for the easiest and most direct way of de-
termining wavefront distortion was given by Johannes Hart-
mann at the beginning of the 20th century when he used an
array of small circular holes in an opaque screen placed over
the aperture of a large astronomical refractor to test the qual-
ity of its optics.6 Light rays passing through different holes
created separate spots on a photographic plate located out of
the focal plane. Light rays entering the input aperture of the
telescope at different positions could be traced in the vicinity
of the focal plane after exposing two plates—one on either
side of the focus.

The Hartmann detector in its original shape of a mask �an
opaque screen with regularly distributed holes� can be easily
adapted to measure the shape of a wavefront of a laser beam.
The method uses a purely geometrical effect—a nonplanar
wavefront is tilted differently over different holes. Thus a
spot created on the screen by the light entering a particular

hole is shifted proportionally to the gradient of the wavefront
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over this hole �see Fig. 1�. After recording these displace-
ments the gradient and subsequently the shape of the whole
wavefront can be recovered.

The Hartmann wavefront sensor suffers from two prob-
lems. Only a small fraction of the incident light passes
through the holes in the mask and creates the spots on the
screen, which limits the applications of the sensor to strong
beams and/or requires sensitive detectors. Also the spots are
washed out due to diffraction, making the precise determina-
tion of their positions difficult or even impossible if spots
created by different holes overlap �see Fig. 1�.

Both problems were solved by a modification of the Hart-
mann sensor due to Shack and Platt.7,8 In the Shack–
Hartmann �or Hartmann–Shack� sensor the holes are re-
placed by small lenses—lenslets. The light entering the
entire aperture of a lenslet focuses on a corresponding focal
spot. Thus the diameter of the lenslets may be equal to the
separation between them without losing spatial resolution.
Hence almost all the incident light is used to create spots on
the screen, and the spots are also significantly smaller than
those in the Hartmann sensor. Therefore much weaker beams
can be measured with greater sensitivity to wavefront distor-
tions. However, the Shack–Hartman sensor has one serious
disadvantage: it requires a regular array of lenslets with di-
ameters of the order of 1 mm. Despite great developments in
optical technology, lenslet arrays are expensive. Commercial
models contain either refractive plano-convex lenses or dif-
fractive Fresnel lenses produced by photolithography and
etching. Making a suitable array of lenses is practically im-
possible without highly specialized equipment. Although its
cost is acceptable in scientific, medical, or industrial appli-
cations, it might be a serious obstacle for a student labora-
tory.

In this paper we propose an alternative approach—a sen-
sor in which the lenses are replaced by flat transmissive
Fresnel zone plates. Such a sensor can be easily prepared by
students at little cost. It produces images with spots that are
brighter and sharper than those obtainable with a Hartmann
screen, and an inexpensive video or digital camera can be

used as a detector. It is also much easier to precisely measure
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the displacements of the spots, and the range of measurable
wavefront distortions is larger due to the reduced risk of spot
overlap.

II. FRESNEL ZONE PLATE

A Fresnel zone plate is a well known optical element,9–13

so it is discussed here only to the extent required for using it
in a wavefront sensor. It consists of a set of concentric rings
�zones�, alternatively transparent and opaque. The radii of
the zones are such that each zone is half of the wavelength
longer than the previous one from the primary focus point
located on the axis. This condition can be easily converted to
an expression for the radii Rn of the nth border between
zones:

Rn =�nf� + n2�2

4
, �1�

where f is the focal length and � is the wavelength of light.
In practical systems �visible light, f of the order of millime-
ters� Eq. �1� simplifies to

Rn = �nf� = �nR1, �2�

which is accurate to within 10−3.
A Fresnel zone plate behaves much like a standard lens of

a focal length f . In particular, it focuses an incident colli-
mated beam. If the beam is not parallel to the optical axis,
the focal spot lies on the line parallel to the beam coinciding
with the center of the zone plate,10 which is essential for the
operation of the wavefront sensor. Moreover, the resolving
power of a zone plate is similar to that of a lens with the
same aperture.9 Namely, the radius rspot of a spot created by
focusing a collimated beam �defined as the distance of the
first intensity minimum from the center of the spot� may be
approximated by the well known expression:

rspot =
1.22�f

2R2m−1
, �3�

where R2m−1 is the radius of the zone plate with m transpar-
ent zones.

Equation �3� is accurate only for a large number of zones
constituting a plate; it is just a rough approximation for
plates with few zones. We analyzed the latter by numerical
evaluation of Fresnel diffraction patterns14 created by zone
plates of the same focal length and various number of trans-
parent zones m. The size of the image created in the focal
plane scales linearly with the size of the first �central� zone

Fig. 1. Principle of a Hartmann wavefront detector.
R1, and thus we use R1 as the unit of distance.
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The radial distribution of the light intensity in the focal
plane of a zone plate is shown in Fig. 2�a�; the corresponding
plots for refractive lenses of the same diameter and focal
length are depicted by solid lines. A significant difference
between the two is observed only for a plate with one zone
�m=1�, that is, for a circular aperture. Even in this case the
light distribution is confined to its central part, which means
that the classical Hartmann sensor also takes advantage of
the reduction of the diameter of the spots, provided that the
distance of the image plane from the mask is equal to f
=R1

2 /�.
Zone plates with m�2 are inferior to refractive lenses of

the same aperture solely due to the behavior of the tails of
the intensity distribution �and lower transmission, which is
not important for wavefront sensing in a student laboratory�.
Therefore their focusing properties are not affected, but
when a few tens of plates create a dense array, the light
contained in the tails adds up to make a considerable back-
ground. This background must be taken into account when
analyzing data �see Sec. V�. Nevertheless, it is not too high a
price to be paid for the simplicity of making a dense array of
lenslets.

To describe quantitatively the dependence of the size of
the spot on the number of zones in the plate we characterize
the former by its radius at one half of the maximum intensity
rHM, not by the first minimum position because the latter is
poorly defined for a small number of zones. The value of rHM
calculated for plates with the number of transparent zones m
ranging from 1 to 11 is shown in Fig. 2�b�. A rapid change is
observed for m�3. Therefore there is no need to make
wavefront sensors consisting of zone plates with more than
m=3 transparent zones, and those with m=2 still work well,
as we have verified experimentally. We suggest choosing m
=3 or if a very dense array is needed, m=2.

III. PREPARATION OF A WAVEFRONT SENSOR

We have tested two methods of preparing a wavefront sen-
sor made of Fresnel zone plates. In one approach an enlarged

Fig. 2. �a� Normalized radial distribution of the light intensity within the
spots created by Fresnel zone plates with a given number of transparent
zones �symbols� and by refractive lenses of the same aperture and focal
length �solid lines�. �b� The radius at half of the maximum intensity of the
spot created by a zone plate as a function of the number of zones.
mask drawn on a computer and printed on a sheet of paper
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was photographed with a 35 mm camera on black and white
photographic film. The film was then developed and cut into
frames which were used as sensors after placing them in
standard slide frames. The main advantage of this method is
that the entire process, starting with the calculations of the
Fresnel plate geometry in Eq. �2�, can be done in a labora-
tory, thus allowing students to design and make the masks.
However, a darkroom in which the film can be developed is
requisite. In a typical case a mask printed on a sheet of paper
is reduced on the film to the size of a few millimeters. This
reduction must be taken into account while drawing the zone
plates. If a low-grain low-speed film is used �in our case
Ilford PANF Plus, ISO 50�, the resolution of the resulting
image is limited by the resolving power of the camera lens.
For a lens with an average resolving power of 50 lines /mm
the finest details are of the order of 20 �m which is sufficient
to produce a few well resolved Fresnel zones. Care should be
taken to keep the contrast of the negative as high as possible.
To this end the enlarged mask must be printed on a laser
printer with the highest possible quality and be strongly and
uniformly illuminated when photographed. A high-contrast
developer should also be used. Still, our results show that the
contrast of masks obtained with the photographic method is
not very high and the resultant wavefront sensor produces a
significant background which makes it more difficult to de-
termine the positions of the focal spots. This difficulty does
not prevent the use of the photographic technique, but a
higher quality sensor can be made with the other method. In
this method the mask is drawn on a computer with a 1:1
scale, and the drawing is then printed on a transparent plastic
film in a shop that makes printing plates. For the standard
resolution of 3600 dots per inch details as small as a few
micrometers can be easily printed. Moreover, the contrast is
usually much higher than that obtained with a photographic
method. The cost of making a letter size plastic sheet on
which a few hundreds of masks can be fitted is only a few
dollars, and thus the cost of a single mask is negligible.

The parameters of the mask, that is, the total number of
zone plates and their focal length, can be chosen from a wide
range depending on the characteristics of the wavefronts to
be measured and the type of the camera. The relative dis-
placement of a spot on the detector is proportional to the
focal length of lenslets; the smaller the spot, the more accu-
rately its position can be measured. Thus we can assume that
the minimal measurable tilt of the wavefront �� is propor-
tional to the focal length f and inversely proportional to the
radius of the spot rspot. The latter is related to the parameters
of the zone plates by Eq. �3�. Therefore we conclude that the
sensitivity of the sensor is directly proportional to the radius
of the zone plates R2m−1:

�� �
f

rspot
�

R2m−1

�
. �4�

The size of the mask should match the size of the detector,
so the larger each zone plate, the fewer zone plates fit within
the mask because they should not overlap too much. This
requirement gives an inverse relation between the number of
points at which the wavefront is sampled and the sensitivity
of the sensor for fixed number of transparent zones.

In our experiment we used two different CCD cameras: a
standard analog CCTV camera with a 1 /4 in. chip as well as
a digital USB camera �Sumix SMX-150� with a 2 /3 in. chip

�image array size 8.6 mm�6.9 mm, pixel size 6.7 �m
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�6.7 �m�. With the first camera we used masks with focal
lengths in the range of 20–50 mm, and with the second one
the focal lengths were in the range of 50–300 mm. The di-
ameter of a single Fresnel lens �calculated for the wavelength
633 nm of the He–Ne laser� was in the range of 0.5–0.8 mm
and 0.8–2 mm, respectively.

IV. WAVEFRONT MEASUREMENTS

The setup for wavefront measurements is shown in Fig. 3.
The beam of a 1 mW He–Ne laser �a visible diode laser
might be a better light source� is expanded by a telescope
consisting of two lenses L1 �f1=−27 mm� and L2 �f2

=364 mm�, or alternatively by a commercial beam expander.
The divergence of the beam is controlled by translating L2
along the beam, or by adjusting the telescope. The radius of
the beam at the sensor’s position can be changed by selecting
different lenses in the expanding telescope. To obtain a non-
spherical wavefront a wavefront-distorting element WD
could be additionally inserted into the beam. For the latter
we used a cylindrical lens or a microscopic glass melted with
a gas torch. We can also put a soldering gun beneath the
beam for a real-time demonstration of wavefront distortions
caused by a turbulent airflow. After a slight modification of
the setup the beam may be reflected from a spherical mirror.
This configuration allows us to observe the astigmatism in-
troduced into the beam when the angle of incidence is non-
zero. �The astigmatism can be also observed in a straight
geometry with a long focal length lens that is tilted with
respect to the beam axis.�

The mask must be located parallel to the detector plane at
the distance equal to the focal length of the zone plates. The
latter is not crucial because the focusing is weak. The posi-
tion of the mask can be easily optimized by observing the
image created by the mask. The required accuracy is of the
order of a few percent of the focal length. For practical rea-
sons all the components are placed on an optical table, but
they may also be mounted on an optical bench.

The signal from the CCTV camera was recorded using a
frame grabber; the Sumix camera is simply connected to an
USB port of a computer. The software provided with those
devices is used to save images from the cameras. Sample
images of a nearly planar wavefront and the masks used to
obtain them are shown in Fig. 4.

V. WAVEFRONT RECONSTRUCTION

There are two major steps leading from the measured data
to the reconstructed wavefront: determination of the posi-
tions of the focal spots and calculation of the wavefront
shape.

The price to be paid for the simplicity of the wavefront
sensor consisting of zone plates is the diffractive background

Fig. 3. Experimental setup for wavefront measurements. Lenses L1 and L2,
wavefront-distorting element WD, and mask M.
which adds to the image of the foci �it is clearly visible in
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Fig. 4�. To reduce its influence we subtract a threshold value
from the intensities of all pixels in the image. Then the val-
ues of the pixels which are negative after the subtraction are
set to zero. The optimum value of the threshold is usually in
the range of 0.35–0.5 of the maximum intensity of the spots.
The picture after this pre-processing is divided into a lattice
of square subimages so that each spot fits entirely into the
corresponding subimage. The absolute position of the spot is
obtained by calculating the center of mass of the subimage
�the weighted mean of the position with pixel intensities as
weights�.15

The detector can be used in two regimes each requiring
different data and analysis. If the geometries of the sensor
and detector are known with high accuracy, a single mea-
surement is sufficient—the displacements of the focal spots
with respect to the positions of the corresponding lenses pro-
vide information on the absolute shape of the wavefront. In
contrast, we can also use the sensor to determine the distor-
tions introduced by a given optical component placed into a
beam with a wavefront of any reasonable shape. In this case
two measurements are required: one on a beam with the
component under investigation and the other without it. In
this mode of operation the relative displacements are used in
the data analysis, and the result shows only the contribution
to the shape of the wavefront resulting from the presence of
the component—wavefront distortion due to the component.

In the latter regime high accuracy can be achieved without
paying much attention to the adjustment of the setup, while
the sensitivity of the absolute measurements is significantly
limited by the distortions of the wavefront introduced by the
plastic mask as well as by misalignment of the setup. Thus
the relative measurements are more attractive for a student
laboratory, especially in measurements of small distortions of
the wavefront caused, for example, by air fluctuations. The
absolute measurements can be easily performed on beams
passing through spherical or cylindrical lenses with focal

Fig. 4. Sample images from the wavefront sensor obtained with the masks
shown. The scale is maintained between the images and the masks. �a� f
=70 mm and �b� f =200 mm.
lengths of the order of meters, because in this case the cur-

232 Am. J. Phys., Vol. 76, No. 3, March 2008
vature of the wavefront is significantly larger than the errors
due to an imperfect calibration and/or misalignment of the
setup.

The displacements of the spots �absolute or relative� in the
x and y directions, �x and �y, are used to find the compo-
nents of the gradient of the wavefront surface �described by
the function z�x ,y�� in the positions of the corresponding
lenses �see Fig. 5�:

�z

�x
= −

�x

f
, �5a�

�z

�y
= −

�y

f
, �5b�

where the focal length f is equal to the distance between the
mask and the detector plane.

The most intuitive way to calculate the shape of the wave-
front would be a direct integration of its gradient. Because of
the experimental noise in the gradient, the integration is
ambiguous—the integration from point A to B along differ-
ent paths usually gives slightly different results. Therefore
we use the following approach: the experimental values of
the gradient are treated as a vector field, which can be de-
composed into purely rotational and purely irrotational parts.
Because the curl of a gradient is always zero, the rotational
part originates purely from the noise. Thus it is rejected and
only the irrotational part is integrated to calculate the shape
of the wavefront.16 Other algorithms, less intuitive but sim-
pler to implement, utilize matrix calculus.17,18 A very well
described and ready to use algorithm presented in Ref. 17 is
the most suitable for the student laboratory.

The wavefront is reconstructed with an accuracy limited
by experimental errors. For relative measurements these er-
rors originate mostly from mechanical instabilities of the
setup and air currents flowing through the beam path. We
estimated the extent to which those factors influence the re-
sults by recording a sequence of 20 images of a flat wave-
front with 5 s intervals. Then we retrieved the average posi-
tions of the focal spots and their standard deviations, which
were used to calculate the standard deviations of the wave-
front in the z direction. The result is 0.004–0.015 �m de-
pending on the mask parameters. A typical deviation of a
single measurement result from the mean wavefront for two
different masks is shown in Fig. 6. As expected, the noise is
significantly higher for the mask with the higher spatial res-
olution and thus the shorter focal length.

The value of the standard deviation depends on the length
of the image sequence and is greater for longer sequences.

Fig. 5. Geometry used in the reconstruction of the wavefront.
We believe that this correlation exists because the recon-
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structed wavefront was slowly varying with a characteristic
time scale of the order of several seconds, indicating me-
chanical instabilities in the setup and possibly the relaxation
of the flexible mask. Nevertheless, the model setup is ca-
pable of detecting relative changes of the wavefront shape of

Fig. 6. Typical deviations of a single measurement of a flat wavefront from
the arithmetic mean of 20 measurements in 5 s intervals for the mask with
focal lengths of �a� 10 cm and �b� 13 cm.

Fig. 7. Sample distortions of the wavefront of a collimated laser beam pro

beam. The focal lengths of the zone plates used are equal to �a� 10 cm and �b� 13 c
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the order of � /50. Such a sensitivity allows us to use it for
many experiments in a student laboratory; a few examples
are described in Sec. VI.

The accuracy of the absolute measurements was checked
by reconstructing the wavefront from the image of spots cre-
ated by a collimated laser beam. The resulting wavefront
showed distortions of 0.1–0.5 �m which allowed us to esti-
mate the experimental error in this regime to be slightly
smaller than �.

VI. APPLICATIONS OF THE WAVEFRONT SENSOR

From the many possible applications of the sensor such as
measurements of the curvature of the wavefront of the beam
passing through a spherical or a cylindrical lens or detection
of the distortions introduced by a poor quality glass plate, we
discuss two that are especially interesting and instructive.

The first experiment visualizes the distortions of the wave-
front due to fluctuations of the temperature and density of the
air in which the beam propagates. The fluctuations are
caused by a soldering iron located a few millimeters below
the beam. The distortions can be observed in real time if a
fast enough acquisition system and reconstruction software is
used or a sequence of the images is recorded for later pro-
cessing. Such a procedure is an analogue of the wavefront
measurements in adaptive optics systems of large astronomi-
cal telescopes. The experiment also indicates the necessity of
suppressing ambient air currents if high measurement accu-
racy is to be achieved. Results obtained with two different
masks are shown in Fig. 7.

In another demonstration we determined the shape of the
wavefront of a collimated beam reflected from a concave

ing in a turbulent air flow induced by a soldering iron located beneath the
pagat

m. �c� The wavefronts shown in �b� after subtracting a flat, tilted wavefront.
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spherical mirror of focal length f =250 cm. For the angle of
incidence ��0 the mirror introduces astigmatism and two
different foci, tangential and sagittal, appear. Their distance
from the mirror is approximately equal to the corresponding
focal lengths:

f t = f cos � �6a�

fs = f/cos � . �6b�

The angle of incidence was equal to 14.7°. Therefore the
tangential and sagittal foci were approximately 242 and
258 cm away from the mirror, respectively. The Shack–
Hartmann sensor mask was located 47 cm away from the
mirror. Thus the expected curvature radii were �195 and
�211 cm. The reference image of the spots was recorded
with the concave mirror replaced by a flat one. The recon-
structed wavefront is shown in Fig. 8�a� and sections of the
wavefront in the tangential and sagittal planes together with
the fitted function describing a circular arc are shown in Fig.
8�b�. The curvature radii resulting from the fit are slightly
shorter than expected and are equal to 184 and 203 cm, re-
spectively. The 5% error probably originates from the fact
that the wavefront of the incident beam was not absolutely
flat at the mirror, although it was collimated as well as pos-
sible within the size of the laboratory room. However, the
main goal of this experiment, the demonstration of the astig-
matism introduced by a spherical mirror set at an angle to the
beam, was easily accomplished.

If the setup is built on an optical bench instead of a table,
the use of a mirror could be difficult. A lens with a long
enough focal length can be inserted into the beam and tilted

Fig. 8. �a� The wavefront of a collimated beam reflected from a spherical
mirror with an angle of incidence of 14.7°. �b� The sections of the wavefront
in the tangential and sagittal planes.
by a proper angle to obtain the same result.
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VII. CONCLUSIONS

We have proposed a simple and low cost method of build-
ing an optical wavefront sensor based on a Shack–Hartman
detector in which the array of lenslets is replaced by a mask
consisting of Fresnel zone plates. The mask can be easily
prepared by students during a laboratory course using either
a photographic or polygraphic technique.

In spite of its simplicity the technique achieves a sensitiv-
ity of � /50 in relative measurements, which is sufficient to
demonstrate the distortions of the wavefront caused by fluc-
tuations of the air density and temperature during turbulent
flow. Also, the effect of optical components on the shape of
the wavefront can be easily characterized qualitatively and
quantitatively.

We suggest that an experiment involving mask making
and its use to measure different wavefronts be included in an
undergraduate laboratory. This use would deepen students’
understanding of the concept of a wavefront and make them
familiar with techniques widely used in adaptive optics, eye
surgery, and high energy lasers. One possible extension of
this experiment involves a deformable mirror and a feedback
loop to illustrate the principles of adaptive optics.
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