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Motivation - Holographic Correspondence

Holographic correspondence: Maldacena, ’97

5D theory with gravity in Asymptotically AdS5 spacetime (times
some compact factor)

m
4D field theory without gravity.

• Excitations near the boundary of AdS5 ⇔ high energy modes in
the FT.

• Radial Evolution away from the boundary ⇔ RG flow to the IR

• Spectrum of 4D field theory particles = spectrum of
normalizable fluctuations around the dual 5D geometry.
Witten, ’97
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Introduction - RSII

Can we add 4D gravity to the mixture?

In RSII we do have 4D gravity:

• bulk is a slice of AdS5

• AdS5 is cut-off before reaching the boundary
⇔ dual 4D Field Theory has a UV cut-off.

• ⇒ there exists one normalizable 4D massless spin-2

However:

• the graviton wave-function is peaked at the UV cut-off
⇔ graviton is a fundamental degree of freedom coupled to the
4D FT at the cut-off

Can we have 4D graviton localized far from the boundary? (this

would be emergent, rather than fundamental, in the dual FT).
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Outline

• RS-like Models

• Einstein-Dilaton Models

• Linear Fluctuation Analysis

• Hunting for Zero-Modes

• Conclusion and Perspectives
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4D Spectrum from 5D

Take asymptotically AdS5 solution of 5D theory,

ds2 ∼ (ky)−2(dy2 + dx2
µ) y → 0

Consider fluctuations of 5D the fields, e.g. 5D metric hAB(x, y),
bulk scalar fields Φi(x, y) ...
5D fluctuations such that:

• they have a fixed 4D mass: �4Φ(x, y) = m2Φ(x, y)

• are normalizable w.r.t. to the radial direction y, i.e. they have a
finite 4D kinetic term.

correspond to 4D states with mass m2 in the dual FT.

We are interested in 4D-massless, y-normalizable fluctuations of the

(tensor part of) the 5D metric component, hµν(x, y)
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Fundamental Vs. Composite

Take a mode Φ(x, y) that solves the corresponding bulk wave
equation.

Close to the boundary y = 0 it has an expansion:

Φ(x, y) ∼ y∆−Φ−(x) + y∆+Φ+(x) + . . . ∆− < ∆+

Typically Φ−-modes are not y-normalizable, and correspond to
external sources in the 4D dual FT, while Φ+-modes are
normalizable (around y = 0) and correspond to IR modifications of
the theory.
For tensor spin-2:

hµν(x, y) ∼ h(0)
µν (x) + y4h(4)

µν (x) + . . . y → 0
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AdS5 vs. RSII

a(y)
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AdS5:

ds2 =
1

(ky)2
(

dy2 + dx2
µ

)

0 < y <∞

Skin[h(0)] =

∫

0
dy

1

(ky)3

∫

d4x
(

∂h(0)
)2

= ∞

• In AdS5 h
(0)
µν is not normalizable ⇒ not a state in the 4D FT,

rather an external source added to the UV theory.
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AdS5 vs. RSII

a(y)
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Slice of AdS5:

ds2 =
1

(1 + ky)2
(

dy2 + dx2
µ

)

0 < y <∞

Skin[h(0)] =

∫

0
dy

1

(1 + ky)3

∫

d4x
(

∂h(0)
)2

<∞

• In RSII it becomes normalizable ⇒ the source gets a kinetic
term and becomes dynamical. it is promoted to a fundamental
d.o.f of the UV theory.
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Massive RSI

First attempt: Gherghetta, Peloso, Poppitz, ’05

• pure gravity in a slice of AdS5 with both UV and IR cut-off
(RSI)

• add a bulk Pauli-Fierz massand boundary “massess” for the
metric fluctuations hAB

Drawbacks:

• general covariance explicitly broken by mass terms

• possible strong coupling in scalar sector

• theory does not “run”: it is conformal all the way to the
boundary

• does 5D massive gravity have a holographic interpretation
anyway?
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Einstein-Dilaton

We condider the problem in a generally covariant theory:

S = M3
5

∫ √−g
(

R− ∂AΦ∂AΦ − V (Φ)
)

,

take as background solutions:

ds2 = a2(y)ηABdx
AdxB, Φ(y, xµ) = Φ0(y)

Take solution asymptotically AdS5 in the UV (y → 0):

a(y) ∼ 1

ky
; Φ0(y) ∼ const; V (Φ0(y)) ∼ 2Λ

Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.10



Einstein-Dilaton

We condider the problem in a generally covariant theory:

S = M3
5

∫ √−g
(

R− ∂AΦ∂AΦ − V (Φ)
)

,

take as background solutions:

ds2 = a2(y)ηABdx
AdxB, Φ(y, xµ) = Φ0(y)

Take solution asymptotically AdS5 in the UV (y → 0):

a(y) ∼ 1

ky
; Φ0(y) ∼ const; V (Φ0(y)) ∼ 2Λ

Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.10



Einstein-Dilaton

We condider the problem in a generally covariant theory:

S = M3
5

∫ √−g
(

R− ∂AΦ∂AΦ − V (Φ)
)

,

take as background solutions:

ds2 = a2(y)ηABdx
AdxB, Φ(y, xµ) = Φ0(y)

Take solution asymptotically AdS5 in the UV (y → 0):

a(y) ∼ 1

ky
; Φ0(y) ∼ const; V (Φ0(y)) ∼ 2Λ

Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.10



Einstein-Dilaton

We condider the problem in a generally covariant theory:

S = M3
5

∫ √−g
(

R− ∂AΦ∂AΦ − V (Φ)
)

,

take as background solutions:

ds2 = a2(y)ηABdx
AdxB, Φ(y, xµ) = Φ0(y)

Take solution asymptotically AdS5 in the UV (y → 0):

a(y) ∼ 1

ky
; Φ0(y) ∼ const; V (Φ0(y)) ∼ 2Λ

Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.10



Einstein-Dilaton

We condider the problem in a generally covariant theory:

S = M3
5

∫ √−g
(

R− ∂AΦ∂AΦ − V (Φ)
)

,

take as background solutions:

ds2 = a2(y)ηABdx
AdxB, Φ(y, xµ) = Φ0(y)

Take solution asymptotically AdS5 in the UV (y → 0):

a(y) ∼ 1

ky
; Φ0(y) ∼ const; V (Φ0(y)) ∼ 2Λ

Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.10



Spin-2 Fluctuations

ds2 = a2(y)
[

dy2 + (ηµν + hµν(x, y)) dx
µdxν

]

hµ
µ = ∂µhµν = 0

h′′µν + 3
a′

a
h′µν + �4hµν = 0

Look for normalizable solution with given 4D mass m:

hµν = h(y)h4D
µν (x), �4h

4D
µν (x) = m2h4D

µν (x)

Get equation for the profile h(y):

h′′(y) + 3
a′

a
h′(y) +m2h(y) = 0
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Analog Schrödinger Problem

Define a Wave-Function Ψ(y):

Ψ(y) = e−B(y)h(y) B(y) ≡ −3

2
log a(y)

−Ψ′′ + V (y)Ψ = m2ψ V = (B′)2 −B′′

4D Kinetic term for hµν from EH action:

S ∼
∫

dy

∫

d4xe−2B(∂µh)
2 =

∫

dy |Ψ|2
∫

d4x(∂µh
4D)2

Normalizability:
∫

dy |Ψ|2 <∞

What kinds of B(y) provide a zero-energy state?
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Background

B(y) can be chosen (almost) arbitrarily:

ds2 = dr2 + e−4B(r)/3ηµνdx
µdxν , (B = −3/2 log a)

Φ̇2
0(r) = 2B̈(r), V (Φ0(r)) = 2B̈(r) − 16

3
Ḃ2(r)

given an arbitrary B(r) such that Φ̇0 6= 0 we can invert r = r(Φ0)

V (Φ) =
9

4

(

∂W

∂Φ

)2

− 3W 2, W (Φ) = (4/3)Ḃ(r(Φ))

⇒ any B(y) is a solution of Einstein’s Eqs. for some V (Φ), as

long as B̈ > 0, i.e. B′ exp(2B(y)/3) is a monotonically increasing

function (Null Energy Condition)
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Spin-2 Zero-Modes

Schrödinger equation for the massless spin-2:

−Ψ′′ + V (y)Ψ = 0 V = (B′)2 −B′′

two independent solutions:

ΨUV (y) = e−B(y), ΨIR(y) = e−B(y)

∫ y

0
dy′ e2B(y′)

asymptotically AdS5 spacetime: B(y) ∼ 3
2 log y as y ∼ 0

⇒ ψUV (y) ∼ y−3/2, ψIR(y) ∼ y5/2.

ψIR is normalizable, ψUV (y) is not.

(Notice: both are normalizable in RS, where y > 1/Λ)
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IR Asymptotics

We have one candidate Zero-Mode, normalizable around y = 0:

ΨIR(y) = e−B(y)

∫ y

0
dy′ e2B(y′)

What happens at large y? either it is normalizable, or it is not! The
answer depends on what B(y) does away from the boundary or in
the dual language, on the infrared dynamics of the model.
Two distinct cases:

• y range extends to +∞ ⇒ ΨIR → ∞ as y → ∞,
not normalizable

• spacetime ends at y = y0 (singularity)
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Singular Case

We have one candidate Zero-Mode:

ΨIR(y) = e−B(y)

∫ y

0
dy′ e2B(y′)

example with a singularity:

B(y) ∼ −α log(y0 − y) a(y) ∼ (y0 − y)2α/3 y ∼ y0

• α > 0 from positive energy condition.

• close to y0:

ΨIR ∼ (y0 − y)α
(

const+ (y0 − y)−2α+1
)

⇒ normalizable if 0 < α < 3/2
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Boundary Conditions at the singularity

At the singularity, we need boundary conditions:

−Ψ′′ +
(

B′2 −B′′) Ψ = m2Ψ

close to y ∼ y0:

B ∼ −α log(y0 − y), Ψ′′ +
α2 − α

(y0 − y)2
Ψ ' 0,

the two independent solutions behave asymptotically as

Ψ ∼ c1(y0 − y)α + c2(y0 − y)1−α

For 0 < α < 3/2 they are both normalizable, ⇒ spectral problem
not fully determined (a solution exists with any m2).

⇒ still need for b.c: fix ratio c1/c2. For a special value r0 of this

ratio zero mode exists in the spectrum.
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Massless Spectrum

y ∈ (0, y0)

B(y0) −α log(y0 − y)

0 < α < 1/2 1/2 < α < 1 1 < α < 3/2

Spin 2 © © ©
Spin 1 © − −
Spin 0 − − −
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Perspectives: Avoiding the need of BC - 1

Unpleasant features:

• singular IR behavior

• need extra input in the IR (boundary conditions): spectrum is
not purely specified by UV data.

• Singularity might be resolved (e.g. in string theory), but need to
do it in a very specific way to give correct b.c.

This may be related with Witten-Weinberg theorem: “you cannot get
a composite massless spin-2 state from a Lorentz-covariant 4D field
theory.” This might indicate that the singularity should be resolved
in a Lorentz-non-invariant way.
Two other ways to evade this:

• look for light, massive spin-2 normalizable state.

• look for light, long lived, spin-2 resonance.
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Conclusions

• We looked for IR-localized, massless 4D gravitons in warped
5D Asymptotically AdS spacetime, with a nontrivial scalar field
turned on.

• These arise only if the 5th dimension terminates, and only if
suitable b.c. are imposed

• We found cases with no other scalar or vector massless degrees
of freedom. This is an advantage over previous attempts.

• Our analysis indicates how one can relax the requirement of an
exactly massless, strictly 4D state, to try to overcome the
problems with the singularity and/or the boundary conditions in
the IR.
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Logarithmic B(y) - Solution

Concrete Example:

B(y) =
3

2
log ky − α log(1 − y/y0), 0 < α < 3/2

ds2 =
(1 − y/y0)

4

3
α

(ky)2
(

dy2 + ηµνdx
µdxν

)

Normalizable zero-mode:

Ψ(y) = y0(ky0)
3/2F (y/y0) F (z) =

(1 − z)α

z3/2

∫ z

0
dz′

z′3

(1 − z′)2α
,
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Logarithmic B(y) - Boundary Conditions

what boundary conditions at the singularity?

Ψ(y) = y0(ky0)
3/2F (y/y0) F (z) =

(1 − z)α

z3/2

∫ z

0
dz′

z′3

(1 − z′)2α
,

Asymptotic behavior:

F (z) ∼ z5/2 z ∼ 0

c1(1 − z)α + c2(1 − z)1−α z ∼ 1

with:

c1 =
3

2
(1 − α)(2 − α)(2 − 3α)c2

⇒ this is the boundary conditions we need to impose on the fluctu-

ations to keep zero-mode is in the spectrum

Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.22



Logarithmic B(y) - Boundary Conditions

what boundary conditions at the singularity?

Ψ(y) = y0(ky0)
3/2F (y/y0) F (z) =

(1 − z)α

z3/2

∫ z

0
dz′

z′3

(1 − z′)2α
,

Asymptotic behavior:

F (z) ∼ z5/2 z ∼ 0

c1(1 − z)α + c2(1 − z)1−α z ∼ 1

with:

c1 =
3

2
(1 − α)(2 − α)(2 − 3α)c2

⇒ this is the boundary conditions we need to impose on the fluctu-

ations to keep zero-mode is in the spectrum

Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.22



Logarithmic B(y) - Boundary Conditions

what boundary conditions at the singularity?

Ψ(y) = y0(ky0)
3/2F (y/y0) F (z) =

(1 − z)α

z3/2

∫ z

0
dz′

z′3

(1 − z′)2α
,

Asymptotic behavior:

F (z) ∼

z5/2 z ∼ 0

c1(1 − z)α + c2(1 − z)1−α z ∼ 1

with:

c1 =
3

2
(1 − α)(2 − α)(2 − 3α)c2

⇒ this is the boundary conditions we need to impose on the fluctu-

ations to keep zero-mode is in the spectrum

Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.22



Logarithmic B(y) - Boundary Conditions

what boundary conditions at the singularity?

Ψ(y) = y0(ky0)
3/2F (y/y0) F (z) =

(1 − z)α

z3/2

∫ z

0
dz′

z′3

(1 − z′)2α
,

Asymptotic behavior:

F (z) ∼ z5/2 z ∼ 0

c1(1 − z)α + c2(1 − z)1−α z ∼ 1

with:

c1 =
3

2
(1 − α)(2 − α)(2 − 3α)c2

⇒ this is the boundary conditions we need to impose on the fluctu-

ations to keep zero-mode is in the spectrum

Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.22



Logarithmic B(y) - Boundary Conditions

what boundary conditions at the singularity?

Ψ(y) = y0(ky0)
3/2F (y/y0) F (z) =

(1 − z)α

z3/2

∫ z

0
dz′

z′3

(1 − z′)2α
,

Asymptotic behavior:

F (z) ∼ z5/2 z ∼ 0

c1(1 − z)α + c2(1 − z)1−α z ∼ 1

with:

c1 =
3

2
(1 − α)(2 − α)(2 − 3α)c2

⇒ this is the boundary conditions we need to impose on the fluctu-

ations to keep zero-mode is in the spectrum

Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.22



Logarithmic B(y) - Boundary Conditions

what boundary conditions at the singularity?

Ψ(y) = y0(ky0)
3/2F (y/y0) F (z) =

(1 − z)α

z3/2

∫ z

0
dz′

z′3

(1 − z′)2α
,

Asymptotic behavior:

F (z) ∼ z5/2 z ∼ 0

c1(1 − z)α + c2(1 − z)1−α z ∼ 1

with:

c1 =
3

2
(1 − α)(2 − α)(2 − 3α)c2

⇒ this is the boundary conditions we need to impose on the fluctu-

ations to keep zero-mode is in the spectrum

Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.22



Logarithmic B(y) - Boundary Conditions

what boundary conditions at the singularity?

Ψ(y) = y0(ky0)
3/2F (y/y0) F (z) =

(1 − z)α

z3/2

∫ z

0
dz′

z′3

(1 − z′)2α
,

Asymptotic behavior:

F (z) ∼ z5/2 z ∼ 0

c1(1 − z)α + c2(1 − z)1−α z ∼ 1

with:

c1 =
3

2
(1 − α)(2 − α)(2 − 3α)c2

⇒ this is the boundary conditions we need to impose on the fluctua-

tions to keep zero-mode is in the spectrum
Massless 4D Gravitons from Asymptotically AdS5 Spacetimes – p.22



Logarithmic B(y) - 4D Planck Scale

Suppose SM fields live on a probe brane at y = yb.

Zero-mode
action including brane source:

S =
1

2k2
5

∫

dy
a3(y)

a2(yb)
(∂ρhµν(y))

2 +

∫

y=yb

hµν(yb)T
µν

[

hµν(y, x) = a−3/2(y)Ψ(y)hµν(x)
]

=
1

2k2
5a

2(yb)

∫

dy |Ψ|2
∫

d4x (∂hµν)
2 + a−3/2(yb)Ψ(yb)

∫

d4xhµνT
µν .

√

8πGN = k5
a−1/2(yb) Ψ(yb)
(∫ y0

0 |Ψ|2
)1/2

=
√

k2
5 k

z
1/2
b F (zb)

(1 − zb)α/3

zb ≡ yb/y0
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Logarithmic B(y) - 4D Planck Scale II

√
8πGN α = 1/4

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

z

√

8πGN ∝ z
1/2
b F (zb)

(1 − zb)α/3

∼ (zb)
3 zb ∼ 0

If yb/y0 � 1,

M2
p ' M3

5

k

(

y0

yb

)6

KK scale masses: m2
kk ∼ 1/y2

0
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