next up previous
Next: Continuity equation for densities Up: Time-dependent density functional theory Previous: Time-dependent density functional theory


Continuity equation for the scalar-isoscalar density

The CE now results from specifying $\eta G$ to the local gauge transformation [13,Dobaczewski and Dudek(1995)] that is defined as

\begin{displaymath}
\psi'_\alpha({\bm r}\sigma\tau) \equiv (U\psi_\alpha)({\bm r...
...gma\tau)
=e^{i\gamma({\bm r})}\psi_\alpha({\bm r}\sigma\tau)
.
\end{displaymath} (21)

Then, Eq. (13) gives:
\begin{displaymath}
\rho'({\bm r}\sigma\tau,{\bm r}'\sigma'\tau',t)
= e^{i\left(...
... r}')\right)}
\rho({\bm r}\sigma\tau,{\bm r}'\sigma'\tau',t)
.
\end{displaymath} (22)

Matrix elements of the local-gauge angle $\gamma({\bm r})$ are given by local integrals,
\begin{displaymath}
\gamma_{\alpha\beta} = \int {\rm d}^3\bm{r}\sum_{\sigma\tau}...
...m r}\sigma\tau)
\gamma({\bm r})\psi_\beta({\bm r}\sigma\tau)
;
\end{displaymath} (23)

therefore, from Eq. (13) again, the average value of the gauge angle, $\langle\gamma\rangle=\mbox{Tr}\gamma\rho$, depends on the scalar-isoscalar local density $\rho_0^0({\bm r},t)=\sum_{\sigma\tau}\rho({\bm r}\sigma\tau,{\bm r}\sigma\tau,t)$, that is,
\begin{displaymath}
\langle\gamma\rangle = \int {\rm d}^3\bm{r}
\gamma({\bm r})\rho_0^0({\bm r},t)
.
\end{displaymath} (24)

Now, the assumed local-gauge invariance of the potential energy implies the equation of motion for the average value $\langle\gamma\rangle$, which from Eq. (20) reads

\begin{displaymath}
\frac{{\rm d}}{{\rm d} t}\langle\gamma\rangle
= -\frac{\hba...
...^3\bm{r}\gamma({\bm r})
\bm{\nabla}\cdot\bm{j}_0^0(\bm{r},t)
,
\end{displaymath} (25)

where the standard scalar-isoscalar current is defined as [16] $\bm{j}_0^0({\bm r},t)=\sum_{\sigma\tau}\frac{1}{2i}
\left[({\bm\nabla}-{\bm\nabla}')
\rho({\bm r}\sigma\tau,{\bm r}'\sigma\tau,t)\right]_{{\bm r}={\bm r}'}$.

We note here [13,Dobaczewski and Dudek(1995)], that the gauge invariance that corresponds to a specific dependence of the gauge angle on position, $\gamma({\bm r})={\bm P}_0\cdot{\bm r}$, represents the Galilean invariance of the potential energy for the system boosted to momentum ${\bm P}_0$. Then, equation of motion (25) simply represents the classical equation for the center-of-mass velocity,

\begin{displaymath}
\frac{{\rm d}}{{\rm d} t}\frac{\langle{\bm r}\rangle}{A}
\e...
...le}{mA}
\equiv \frac{\langle -i\hbar{\bm\nabla}\rangle}{mA}
.
\end{displaymath} (26)

In the general case, that is, when the potential energy is gauge-invariant and the gauge angle $\gamma({\bm r})$ is an arbitrary function of ${\bm r}$, Eq. (25) gives the CE that reads

\begin{displaymath}
\frac{{\rm d}}{{\rm d} t} \rho_0^0({\bm r},t)
= -\frac{\hbar}{m} \bm{\nabla}\cdot\bm{j}_0^0(\bm{r},t)
.
\end{displaymath} (27)

Thus for a gauge-invariant potential energy density, the TDHF or TDDFT equation of motion implies the CE, that is, the gauge invariance is a sufficient condition for the validity of the CE. By proceeding in the opposite direction, we can prove that it is also a necessary condition. Indeed, the CE of Eq. (27) implies the first-order condition (19), and then the full gauge invariance stems from the fact that the gauge transformations form local U(1) groups.


next up previous
Next: Continuity equation for densities Up: Time-dependent density functional theory Previous: Time-dependent density functional theory
Jacek Dobaczewski 2011-11-11