next up previous
Next: The Hartree-Fock-Bogolyubov energy Up: The Skyrme Hartree-Fock-Bogolyubov equations Previous: Local densities

Spherical symmetry

In the code HFBRAD the solutions are restricted to have a spherical symmetry and do not mix proton and neutron states. In this situation the wave functions have the good quantum numbers $ (n\ell j m q)$ ($ n$ is a good quantum number since the spectrum is discretized inside a spherical box) and all the solutions inside an $ (n\ell j q)$-block are degenerated. Furthermore, the radial part of the wave functions can be chosen to be real. Thus we use the ansatz

$\displaystyle \varphi_i(E,{\mathbf r}\sigma)=\frac{u_i(n\ell j,r)}{r} {\mathrm ...
...ll m_\ell\,{\textstyle\frac{1}{2}}\sigma\vert jm\rangle\,,\hskip 1cm i=1,\,2\,,$ (9)

for the wave functions. The local densities can be written using the radial functions (omitting the isospin quantum number)
$\displaystyle \rho(r)$ $\displaystyle =$ $\displaystyle \displaystyle
\frac{1}{4\pi r^2}\sum_{n\ell j}(2j+1)u_2^2(n\ell j,r)\,,\hfill$ (10)
$\displaystyle \tilde\rho(r)$ $\displaystyle =$ $\displaystyle \displaystyle
-\frac{1}{4\pi r^2}\sum_{n\ell j}(2j+1)u_1(n\ell j,r)
u_2(n\ell j,r)\,.\hfill$ (11)

For the kinetic densities we have
$\displaystyle \tau(r)$ $\displaystyle =$ $\displaystyle \displaystyle
\sum_{n\ell j}\frac{2j+1}{4\pi r^2}
\left[
\left(u_...
...l j,r)}{r}\right)^2
+\frac{\ell(\ell+1)}{r^2}u_2^2(n\ell j,r)
\right]\,,
\hfill$ (12)
$\displaystyle \tilde\tau(r)$ $\displaystyle =$ $\displaystyle \displaystyle
-\sum_{n\ell j}\frac{2j+1}{4\pi r^2}
\left[
\left(u...
...{r}\right)
\left(u_2'(n\ell j,r)-\frac{u_2(n\ell j,r)}{r}\right) \right.
\hfill$  
    $\displaystyle \hfill\displaystyle +\left.\frac{\ell(\ell+1)}{r^2}u_1(n\ell j,r)u_2(n\ell j,r)
\right]\,.$ (13)

Finally the spin current vector densities have only one non vanishing component given by
$\displaystyle J(r)$ $\displaystyle =$ $\displaystyle \displaystyle \frac{1}{4\pi r^3}\sum_{n\ell j}(2j+1)
\left[j(j+1)-\ell(\ell+1)-\frac{3}{4}\right]u_2^2(n\ell j,r)\,,\hfill$ (14)
$\displaystyle \tilde J(r)$ $\displaystyle =$ $\displaystyle \displaystyle -\frac{1}{4\pi r^3}\sum_{n\ell j}(2j+1)
\left[j(j+1)-\ell(\ell+1)-\frac{3}{4}\right]u_1(n\ell j,r)u_2(n\ell j,r)\,.$ (15)


next up previous
Next: The Hartree-Fock-Bogolyubov energy Up: The Skyrme Hartree-Fock-Bogolyubov equations Previous: Local densities
Jacek Dobaczewski 2005-01-23