next up previous
Next: Bibliography Up: Effective pseudopotential for energy Previous: Relations defining the gauge-invariant


Relations between the central-like and tensor-like pseudopotentials

In the following we present the recoupling formulae which connect the two alternative forms of the pseudopotential of the Eqs. (1) and (22). We have,


$\displaystyle \hat{V}_{\tilde{n} \tilde{L},v_{12} S}^{\tilde{n}' \tilde{L}'}$ $\textstyle =$ $\displaystyle \frac{1}{2} i^{v_{12}} \left(1-{\textstyle{\frac{1}{2}}}\delta_{v_1,v_2}\right) \sqrt{2S+1}$  
  $\textstyle \times$ $\displaystyle \left( \sum_{J=\vert\tilde{L}'-v_1\vert}^{\tilde{L}'+v_1} (-1)^{J...
... \left[K_{\tilde{n}\tilde{L}} \sigma^{(2)}_{v_2} \right]_{J}\right]_{0} \right.$  
    $\displaystyle + \sum_{J=\vert\tilde{L}'-v_1\vert}^{\tilde{L}'+v_1} (-1)^{J+v_2+...
...ht]_{J}
\left[K_{\tilde{n}\tilde{L}} \sigma^{(1)}_{v_2} \right]_{J}\right]_{0}$  
    $\displaystyle + \sum_{J=\vert\tilde{L}-v_1\vert}^{\tilde{L}+v_1}(-1)^{J+v_2+\ti...
...]_{J}
\left[K_{\tilde{n}'\tilde{L}'} \sigma^{(2)}_{v_2} \right]_{J}\right]_{0}$  
    $\displaystyle + \left. \sum_{J=\vert\tilde{L}-v_1\vert}^{\tilde{L}+v_1}(-1)^{J+...
...left[K_{\tilde{n}'\tilde{L}'} \sigma^{(1)}_{v_2} \right]_{J}\right]_{0} \right)$  
    $\displaystyle \times \left(1-\hat{P}^{M}\hat{P}^{\sigma}\hat{P}^{\tau}\right)
\hat{\delta}_{12}(\bm{r}'_1\bm{r}'_2;\bm{r}_1\bm{r}_2)
.$ (92)

Analogously, the recoupling formula which allows to express the tensor-like pseudopotential through the central-like one reads,

$\displaystyle \hat{\tilde{V}}_{\tilde{n} \tilde{L}, v_{12}J}^{\tilde{n}' \tilde{L}'}$ $\textstyle =$ $\displaystyle \frac{1}{2} i^{v_{12}} \left(1-{\textstyle{\frac{1}{2}}}\delta_{v...
...J+1}
\sum_{S=\vert\tilde{L}'-\tilde{L}\vert}^{\tilde{L}'+\tilde{L}} \sqrt{2S+1}$  
  $\textstyle \times$ $\displaystyle \left( (-1)^{S+J+v_1+\tilde{L}} \left(\begin{array}{ccc} \tilde{L...
...right]_{S}
\left[ \sigma^{(1)}_{v_1} \sigma^{(2)}_{v_2} \right]_{S}\right]_{0}$  
    $\displaystyle +(-1)^{J+v_2+\tilde{L}} \left(\begin{array}{ccc} \tilde{L}' & \ti...
...right]_{S}
\left[ \sigma^{(1)}_{v_2} \sigma^{(2)}_{v_1} \right]_{S}\right]_{0}$  
    $\displaystyle + (-1)^{S+J+v_1+\tilde{L}'} \left(\begin{array}{ccc} \tilde{L} & ...
...right]_{S}
\left[ \sigma^{(1)}_{v_1} \sigma^{(2)}_{v_2} \right]_{S}\right]_{0}$  
    $\displaystyle \left. + (-1)^{J+v_2+\tilde{L}'} \left(\begin{array}{ccc} \tilde{...
...S}
\left[ \sigma^{(1)}_{v_2} \sigma^{(2)}_{v_1} \right]_{S}\right]_{0} \right)$  
    $\displaystyle \times \left(1-\hat{P}^{M}\hat{P}^{\sigma}\hat{P}^{\tau}\right)
\hat{\delta}_{12}(\bm{r}'_1\bm{r}'_2;\bm{r}_1\bm{r}_2)
.$ (93)

According to the recoupling of the Eq. (92), we give the list of the relations between the parameters of the two forms of the pseudopotential. For the second order terms we have,


$\displaystyle C_{00,00}^{20}$ $\textstyle =$ $\displaystyle \tilde{C}_{00,00}^{20} ,$ (94)
$\displaystyle C_{00,20}^{20}$ $\textstyle =$ $\displaystyle \tilde{C}_{00,21}^{20},$ (95)
$\displaystyle C_{00,22}^{22}$ $\textstyle =$ $\displaystyle \tilde{C}_{00,21}^{22},$ (96)
$\displaystyle C_{11,00}^{11}$ $\textstyle =$ $\displaystyle \tilde{C}_{11,01}^{11},$ (97)
$\displaystyle C_{11,20}^{11}$ $\textstyle =$ $\displaystyle \frac{1}{3}\tilde{C}_{11,20}^{11}+\frac{1}{\sqrt{3}}\tilde{C}_{11,21}^{11}+\frac{\sqrt{5}}{3}\tilde{C}_{11,22}^{11} ,$ (98)
$\displaystyle C_{11,11}^{11}$ $\textstyle =$ $\displaystyle -\tilde{C}_{11,11}^{11} ,$ (99)
$\displaystyle C_{11,22}^{11}$ $\textstyle =$ $\displaystyle \frac{\sqrt{5}}{3}\tilde{C}_{11,20}^{11}-\frac{\sqrt{5}}{2\sqrt{3}}\tilde{C}_{11,21}^{11}+\frac{1}{6}\tilde{C}_{11,22}^{11};$ (100)

at the fourth order,


\begin{displaymath}
C_{00,00}^{40}=\tilde{C}_{00,00}^{40} ,
\\
\end{displaymath} (101)


\begin{displaymath}
C_{00,20}^{40}= \tilde{C}_{00,21}^{40} ,
\\
\end{displaymath} (102)


\begin{displaymath}
C_{00,22}^{42}= \tilde{C}_{00,21}^{42} ,
\\
\end{displaymath} (103)


\begin{displaymath}
C_{11,00}^{31}= \tilde{C}_{11,01}^{31} ,
\\
\end{displaymath} (104)


\begin{displaymath}
C_{11,20}^{31}= \frac{1}{3}\tilde{C}_{11,20}^{31} + \frac{1...
...{11,21}^{31} + \frac{\sqrt{5}}{3}\tilde{C}_{11,22}^{31} ,
\\
\end{displaymath} (105)


\begin{displaymath}
C_{11,11}^{31}= -\tilde{C}_{11,11}^{31} ,
\\
\end{displaymath} (106)


\begin{displaymath}
C_{11,22}^{31}= \frac{\sqrt{5}}{3}\tilde{C}_{11,20}^{31} -\...
...lde{C}_{11,21}^{31} + \frac{1}{6}\tilde{C}_{11,22}^{31} ,
\\
\end{displaymath} (107)


\begin{displaymath}
C_{11,22}^{33}= \tilde{C}_{11,22}^{33} ,
\\
\end{displaymath} (108)


\begin{displaymath}
C_{20,00}^{20}= \tilde{C}_{20,00}^{20} ,
\\
\end{displaymath} (109)


\begin{displaymath}
C_{20,20}^{20}= \tilde{C}_{20,21}^{20} ,
\\
\end{displaymath} (110)


\begin{displaymath}
C_{20,22}^{22}= \tilde{C}_{20,21}^{22} ,
\\
\end{displaymath} (111)


\begin{displaymath}
C_{22,00}^{22}= \tilde{C}_{22,02}^{22} ,
\\
\end{displaymath} (112)


\begin{displaymath}
C_{22,20}^{22}= \frac{1}{\sqrt{5}}\tilde{C}_{22,21}^{22}+\f...
...22,22}^{22} + \sqrt{\frac{7}{15}}\tilde{C}_{22,23}^{22} ,
\\
\end{displaymath} (113)


\begin{displaymath}
C_{22,11}^{22}= -\tilde{C}_{22,12}^{22} ,
\\
\end{displaymath} (114)


\begin{displaymath}
C_{22,22}^{22}= \frac{\sqrt{35}}{10}\tilde{C}_{22,21}^{22}-...
...{C}_{22,22}^{22} + \frac{1}{\sqrt{15}}\tilde{C}_{22,23}^{22};
\end{displaymath} (115)

at the sixth order,

\begin{displaymath}
C_{00,00}^{60}=\tilde{C}_{00,00}^{60} ,
\\
\end{displaymath} (116)


\begin{displaymath}
C_{00,20}^{60}=\tilde{C}_{00,21}^{60} ,
\\
\end{displaymath} (117)


\begin{displaymath}
C_{00,22}^{62}=\tilde{C}_{00,21}^{62} ,
\\
\end{displaymath} (118)


\begin{displaymath}
C_{11,00}^{51}=\tilde{C}_{11,01}^{51} ,
\\
\end{displaymath} (119)


\begin{displaymath}
C_{11,20}^{51}= \frac{1}{3}\tilde{C}_{11,20}^{51} + \frac{1...
...}_{11,21}^{51} +\frac{\sqrt{5}}{3}\tilde{C}_{11,22}^{51},
\\
\end{displaymath} (120)


\begin{displaymath}
C_{11,11}^{51}= -\tilde{C}_{11,11}^{51} ,
\\
\end{displaymath} (121)


\begin{displaymath}
C_{11,22}^{51}= \frac{\sqrt{5}}{3}\tilde{C}_{11,20}^{51} -\...
...lde{C}_{11,21}^{51} + \frac{1}{6}\tilde{C}_{11,22}^{51} ,
\\
\end{displaymath} (122)


\begin{displaymath}
C_{11,22}^{53}=\tilde{C}_{11,22}^{53} ,
\\
\end{displaymath} (123)


\begin{displaymath}
C_{20,00}^{40}=\tilde{C}_{20,00}^{40} ,
\\
\end{displaymath} (124)


\begin{displaymath}
C_{20,20}^{40}=\tilde{C}_{20,21}^{40} ,
\\
\end{displaymath} (125)


\begin{displaymath}
C_{20,22}^{42}=\tilde{C}_{20,21}^{42} ,
\\
\end{displaymath} (126)


\begin{displaymath}
C_{22,22}^{40}=\tilde{C}_{22,21}^{40} ,
\\
\end{displaymath} (127)


\begin{displaymath}
C_{22,00}^{42}=\tilde{C}_{22,02}^{42} ,
\\
\end{displaymath} (128)


\begin{displaymath}
C_{22,20}^{42}= \frac{1}{\sqrt{5}}\tilde{C}_{22,21}^{42}+\f...
...22,22}^{42} + \sqrt{\frac{7}{15}}\tilde{C}_{22,23}^{42} ,
\\
\end{displaymath} (129)


\begin{displaymath}
C_{22,11}^{42}=-\tilde{C}_{22,12}^{42} ,
\\
\end{displaymath} (130)


\begin{displaymath}
C_{22,22}^{42}= \frac{\sqrt{35}}{10}\tilde{C}_{22,21}^{42}-...
...{22,22}^{42} + \frac{1}{\sqrt{15}}\tilde{C}_{22,23}^{42},
\\
\end{displaymath} (131)


\begin{displaymath}
C_{22,22}^{44}=\tilde{C}_{22,23}^{44} ,
\\
\end{displaymath} (132)


\begin{displaymath}
C_{31,00}^{31}=\tilde{C}_{31,01}^{31} ,
\\
\end{displaymath} (133)


\begin{displaymath}
C_{31,20}^{31}= \frac{1}{3}\tilde{C}_{31,20}^{31} + \frac{1...
..._{31,21}^{31} +\frac{\sqrt{5}}{3}\tilde{C}_{31,22}^{31} ,
\\
\end{displaymath} (134)


\begin{displaymath}
C_{31,11}^{31}=-\tilde{C}_{31,11}^{31} ,
\\
\end{displaymath} (135)


\begin{displaymath}
C_{31,22}^{31}=\frac{\sqrt{5}}{3}\tilde{C}_{31,20}^{31} -\f...
...lde{C}_{31,21}^{31} + \frac{1}{6}\tilde{C}_{31,22}^{31} ,
\\
\end{displaymath} (136)


\begin{displaymath}
C_{31,22}^{33}=\tilde{C}_{31,22}^{33} ,
\\
\end{displaymath} (137)


\begin{displaymath}
C_{33,00}^{33}=\tilde{C}_{33,03}^{33} ,
\\
\end{displaymath} (138)


\begin{displaymath}
C_{33,20}^{33}=\sqrt{\frac{5}{21}}\tilde{C}_{33,22}^{33}+\f...
...C}_{33,23}^{33}+\sqrt{\frac{3}{7}}\tilde{C}_{33,24}^{33},
\\
\end{displaymath} (139)


\begin{displaymath}
C_{33,11}^{33}=-\tilde{C}_{33,13}^{33} ,
\\
\end{displaymath} (140)


\begin{displaymath}
C_{33,22}^{33}=\sqrt{\frac{2}{7}}\tilde{C}_{33,22}^{33}-\fr...
...3,23}^{33}+\frac{\sqrt{5}}{2\sqrt{14}}\tilde{C}_{33,24}^{33}.
\end{displaymath} (141)


next up previous
Next: Bibliography Up: Effective pseudopotential for energy Previous: Relations defining the gauge-invariant
Jacek Dobaczewski 2011-03-20