next up previous
Next: Properties of the D Up: Symmetry operators Previous: Double group D for

  
Cartesian harmonic oscillator basis

One often uses the Cartesian harmonic oscillator (HO) basis to solve the self-consistent equations when neither spherical nor axial symmetry is assumed, see, e.g., Refs. [17,10]. The Cartesian HO states are identified by the numbers of oscillator quanta, nx, ny, and nz, in the three Cartesian directions, and by the spin projection sz= $\pm\frac{1}{2}$ on the z axis. For the standard HO phase convention, this basis is real, $\hat{\cal{K}}\vert n_xn_yn_z,s_z\rangle=\vert n_xn_yn_z,s_z\rangle$, where according to our standard convention the script symbol $\hat{\cal{K}}$ denotes the coordinate-space complex-conjugation operator acting in the odd-fermion-number space ${\cal{H}}_-$, see Sec. 2.1.

For the HO states the following relations hold [18]:

       
$\displaystyle \hat{\cal{P}}\vert n_xn_yn_z,s_z\rangle$ = $\displaystyle \phantom{i}(-1)^{n_x+n_y+n_z}\vert n_xn_yn_z,s_z\rangle ,$ (47)
$\displaystyle \hat{\cal{T}}\vert n_xn_yn_z,s_z\rangle$ = $\displaystyle \phantom{i}(-1)^{\frac{1}{2}-s_z}\vert n_xn_yn_z,-s_z\rangle ,$ (48)
$\displaystyle \hat{\cal{R}}_{x}\vert n_xn_yn_z,s_z\rangle$ = $\displaystyle i(-1)^{n_y+n_z+1}\vert n_xn_yn_z,-s_z\rangle ,$ (49)
$\displaystyle \hat{\cal{R}}_{y}\vert n_xn_yn_z,s_z\rangle \!$ = $\displaystyle \!\! \phantom{i}(-1)^{n_x+n_z+\frac{1}{2}-s_z}\vert n_xn_yn_z,-s_z\rangle ,$ (50)
$\displaystyle \hat{\cal{R}}_{z}\vert n_xn_yn_z,s_z\rangle$ = $\displaystyle i(-1)^{n_x+n_y+\frac{1}{2}+s_z}\vert n_xn_yn_z,s_z\rangle ,$ (51)
$\displaystyle \bar{\cal{E}}\vert n_xn_yn_z,s_z\rangle$ = $\displaystyle - \vert n_xn_yn_z,s_z\rangle ,$ (52)

from where one can find similar equations for all the remaining operators of group D $_{\mbox{\rm\scriptsize {2h}}}^{\mbox{\rm\scriptsize {TD}}}$. Since the HO Hamiltonian is symmetric under D $_{\mbox{\rm\scriptsize {2h}}}^{\mbox{\rm\scriptsize {TD}}}$, its eigenstates can be classified according to the ircoreps of D $_{\mbox{\rm\scriptsize {2h}}}^{\mbox{\rm\scriptsize {TD}}}$. It is easily seen that the HO states $\vert n_xn_yn_z,s_z\rangle$ form bases of the spinor, pseudospinor, antispinor and antipseudospinor ircoreps for $\{N$=nx+ny+nz, Ny=nx+$n_z\}$ being {even, odd}, {odd, odd}, {even, even} and {odd, even}, respectively (see Appendix). The entire HO basis would have belonged to the spinor and pseudospinor ircoreps only, if the basis states and phase convention were chosen differently, see Ref.[14].


next up previous
Next: Properties of the D Up: Symmetry operators Previous: Double group D for
Jacek Dobaczewski
2000-02-05