OPUS Project


micropillar



Light-matter coupling in a system of two coupled optical microcavities based on II-VI semiconductors


Funding: National Science Centre in a frame of Sonata-BIS programme
Host Institution: Solid State Division of Institute of Experimental Physics of Faculty of Physics at University of Warsaw
Project abstract:
The principal aim of this project is to study effects of the light-matter interaction in the innovatively designed and produced system of two vertically coupled optical microcavities made of II-VI semiconductor embedding quantum emitters like Quantum Wells (QW) and Quantum Dots (QD). In order to achieve the goal of the project (i) present technology of production and microstructuralization of II-VI semiconductor nanostructures comprising Bragg mirrors at University of Warsaw will be further refined, (ii) spectroscopy investigations of the design and produced structures will be carried out using state-of-the-art experimental techniques like, i.e., single photon correlation methods or streak camera measurements, (iii) theoretical modeling supporting the production of the structures and describing the obtained experimental results will be performed.
Detailed goals of the project can be grouped into following three main areas:

I. Design and production of the vertically coupled microcavities and quantum emitters based on II-VI semiconductors
1. Structure design, development and optimization of the technique of the Molecular Beam Epitaxy (MBE) growth of the zinc telluride and zinc selenite based Bragg mirrors, as well as Bragg mirror based, single and vertically coupled microcavities
2. Development of (MBE) growth technique of zinc telluride and zinc selenite based quantum emitters (Quantum Wells and Quantum Dots) and the structures combining coupled microcavities and quantum emitters
3. Development of the lithography methods serving for marking and microstructuralization of the II-VI semiconductor structures
II. Spectroscopy studies of the optical properties of the vertically coupled microcavity systems
4. Optical measurements and modeling of the optical properties of the zinc telluride and zinc selenite based single or two vertically coupled microcavities as well as 1D, 2D and 3D microstructures involving such microcavities
III. Spectroscopy studies of the light-matter coupling in the system of two vertically coupled microcavities with a quantum emitter
5. Spectroscopy of the structures with embedded Quantum Dots layer(s) 6. Spectroscopy of the structures with embedded Quantum Well(s)
In its optimal version, the project will lead to a demonstration of qualitatively new physical phenomena related to, e. g., energy transfer between distant QWs mediated by exciton-polariton states and controlled by magnetic field.

Project number: UMO-2013/10/E/ST3/00215
Duration: 22.05.2014 - 21.11.2019
Principal Investigator: dr hab. Jan Suffczyński


Project results:


Publications in peer-reviewed journals:

15. T. Fąs, M. Ściesiek, W. Pacuski, A. Golnik, and J. Suffczyński, Hybrid Semimagnetic Polaritons in a Strongly Coupled Optical Microcavity, The Journal of Physical Chemistry Letters 12, 7619 (2021).

14. K. Sawicki, T. J. Sturges, M. Ściesiek, T. Kazimierczuk, K. Sobczak, A. Golnik, W. Pacuski, J. Suffczyński, Polariton lasing and energy-degenerate parametric scattering in non-resonantly driven coupled planar microcavities, Nanophotonics 10(9), 2421 (2021).

13. O. Halder, G. Mallik, Gyanadeep, J. Suffczyński, W. Pacuski, K. Varadwaj, B. Satpati, S. Rath, Enhanced Exciton Binding Energy, Zeeman Splitting and Spin Polarization in Hybrid Layered Nanosheets Comprised of (Cd,Mn)Se and Nitrogen-Doped Graphene Oxide: Implication for Semiconductor Devices, Nanotechnology 32, 325204 (2021).

12. M. Ściesiek, K. Sawicki, W. Pacuski, K. Sobczak, T. Kazimierczuk, A. Golnik and J. Suffczyński, Long-distance coupling and energy transfer between exciton states in magnetically controlled microcavities, Communications Materials 1, 78 (2020).

11. K. Sawicki, M. Jurczak, W. Pacuski, J. Suffczyński, Direct interbranch relaxation of polaritons in a microcavity with embedded CdSe/(Cd,Mg)Se quantum wells, Journal of Electronic Materials 49, 4531 (2020).

10. K. Sawicki, J-G. Rousset, R. Rudniewski, W. Pacuski, M. Œciesiek, T. Kazimierczuk, K. Sobczak, J. Borysiuk, M. Nawrocki, and J. Suffczyński, Triple threshold lasing from a photonic trap in a Te/Se-based optical microcavity, Communications Physics 2, 38 (2019).

9. M. Ściesiek, W. Pacuski, J.-G. Rousset, M. Parlińska-Wojtan, A.Golnik, and J. Suffczyński, Design and Control of Mode Interaction in Coupled ZnTe Optical Microcavities, Crystal Growth & Design, 17, 3716 (2017).

8. M. Ściesiek, J. Suffczyński, W. Pacuski, M. Parlińska-Wojtan, T. Smoleński, P. Kossacki, and A. Golnik, Effect of electron-hole separation on optical properties of individual Cd(Se,Te) quantum dots, Physical Review B 93, 195313 (2016).

7. J.-G. Rousset, J. Kobak, E. Janik, M. Parlińska-Wojtan, T. Słupinski, A. Golnik, P. Kossacki, M. Nawrocki and W. Pacuski, Distributed Bragg reflectors obtained by combining Se and Te compounds: Influence on the luminescence from CdTe quantum dots, Journal of Applied Physics 119, 183105 (2016).

6. J. Piwowar, W. Pacuski, T. Smoleński, M. Goryca, A. Bogucki, A. Golnik, M. Nawrocki, P. Kossacki, and J. Suffczyński, Epitaxial growth and photoluminescence excitation spectroscopy of CdSe quantum dots in (Zn,Cd)Se barrier, Journal of Luminescence 173, 94 (2016).

5. J.-G. Rousset, B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko, J. Borysiuk, J. Suffczyński, T. Kazimierczuk, M. Goryca, T. Smoleński, P. Kossacki, M. Nawrocki and W. Pacuski, Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells, Applied Physics Letters 118, 201109 (2015).

4. J. Piwowar, Resonant spectroscopy of individual CdSe quantum dots containing single Mn2+ ions in (Zn,Cd)Se barrier, Proc. SPIE, 9553, 95530I (2015).

3. K. Gałkowski, P. Wojnar, E. Janik, J. Papierska, K. Sawicki, P. Kossacki, and J. Suffczyński, Exciton dynamics in individual semimagnetic (Zn,Mn)Te/(Zn,Mg)Te nanowires, Journal of Applied Physics 118, 095704 (2015).

2. K. Sawicki, F. K. Malinowski, K. Gałkowski, T. Jakubczyk, P. Kossacki, W. Pacuski, and J. Suffczyński, Single-color, in situ photolithography marking of individual CdTe/ZnTe Quantum Dots containing a single Mn2+ ion, Applied Physics Letters 106, 012101 (2015).

1. T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundmann, C. Kruse, D. Hommel , and P. Kossacki, Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors, ACS Nano 8, 9970 (2014).