The seminar will concentrate on the development of Small and Medium size Reactors (SMR). The technical barriers and commercial issues will be discussed. The advantages of SMART concept developed in the Republic of Korea will be presented.
Seminar via ZOOM, please contact the organizers to participate.
room 1.01, Pasteura 5 at 10:15

prof. dr Michael Block (GSI and University of Mainz, Niemcy)
The investigation of superheavy elements (SHE), i.e., elements with Z > 103, attracts interest from atomic and nuclear physics as well as from chemistry. On the one hand, relativistic effects strongly impact theatomic structure and may alter the chemical properties of these elements compared to their lighter homologues. This manifests, for example, in changes of atomic ground-state configurations and may eventually result in a deviation from the Periodic Table’s structure established by Mendeleev more than 150 years ago. On the other hand, the existence of very heavy and superheavy nuclei is governed by the stabilization due to nuclear shell effects that stabilize them against spontaneous fission. Hence, studies of the evolution of their nuclear structure are of paramount importance. In contrast to nuclei close to stability, where sizeable shell gaps are found for spherical nuclei with magic nucleon numbers, in the heaviest nuclei shell gaps, though smaller ones, also appear for deformed nuclei. This has been established around N = 152 and Z = 100 as well as at N = 162 and Z = 108. In the deformed heavy nuclei also K isomers occur, some which have a longer half-life than the ground state, as has been. Studies of the nuclear structure evolution and the existence of isomers is possible through mass measurements and laser spectroscopy [1, 2]. Mass spectrometry yields binding energies for studies of the shell structure and allows us to identify isomers and to obtain their excitation energy. Laser spectroscopy gives access to changes in mean-square charge radii, the nuclear spin, and electromagnetic moments. Pioneering experiments at the GSI in Darmstadt, Germany utilizing the SHP separator in combination with the SHIPTRAP and the RADRIS setups have recently provided such information for several isotopes of the heavy elements californium to rutherfordium [3-7]. In my presentation I will introduce the basic methods, the employed setups, and review selected recent results.
References
1. M. Block, Nucl. Phys. A 944 (2015) 471.
2. M. Block et al., Prog. Nucl. Phys. 116 (2021) 103834.
3. M. Block, F. Giacoppo, F. Hessberger, S. Raeder, Riv. Nuovo Cim. 45, 279 (2022).
4. M. Laatiaoui et al., Nature. 583 (2016) 495.
5. S. Raeder et al., Phys. Rev. Lett. 120 (2018) 232503.
6. P. Chhetri et al., Phys. Rev. Lett. 120 (2018) 263003.
7. O. Kaleja et al., Phys. Rev. C. 106 (2022) 054325.
room 1.01, Pasteura 5 at 10:15

Dr Irene Dedes (The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland)
In the recent years there has been an increasing interest in studies of exotic nuclear shapes and underlying symmetries, the related transition properties and hindrance factors and global structures. In this context it is beneficial to combine the most powerful nuclear structure theories (in our case the mean-field theory) with the powerful mathematical tools to increase the significance of the final result.
Our collaboration combines group-, and group representation theories, inverse problem theory and graph-theory together with phenomenological nuclear mean-field theory in order to predict and study the possible exotic geometrical symmetries on the whole nuclear chart. In the case of the present seminar we will focus on the region of N = 136 isotones and the 4 types of octupole instabilities and implied symmetries.
room 1.01, Pasteura 5 at 10:15

Dr Karolina Kolos McCubbin (Lawrence Livermore National Laboratory, USA)
Beta-decay properties like half-lives, decay branching ratios, and isomeric states are key inputs that guide astrophysical nucleosynthesis calculations and fission model. The availability of the nuclear data as well as its accuracy directly impacts the quality of different model predictions. We have performed a number of experiments at the Californium Rare Breeder Upgrade Facility (CARIBU) at Argonne National Laboratory (ANL) to measure some of the important data including nuclear masses and decay properties in the region of doubly magic 132Sn. I will present the results of these studies and plans for the future measurements at ANL and other radioactive ion beam facilities.
room 1.01, Pasteura 5 at 10:15

dr Łukasz Janiak (NCBJ, Świerk)
Czas połowicznego zaniku jest jednym z podstawowych pojęć fizyki jądrowej. Nowoczesne metody spektroskopii umożliwiają pomiary czasów rozpadu z dużą dokładnością.
Na seminarium przedstawię szczegóły dotyczące eksperymentu w którym mierzony był czas połowicznego zaniku 188-keV stanu izomerycznego w 184Re.
room 1.01, Pasteura 5 at 10:15

dr hab. Michał Kowal (NCBJ, Świerk)
Prawdopodobieństwo syntezy jądra superciężkiego faktoryzujemy na trzy „niezależne od siebie" etapy: wychwyt * fuzja * przetrwanie.
Spojrzę krytycznie na opis każdego z nich.
Na etapie „wychwytu" zwrócę uwagę na zagadnienie deformacji i możliwych różnych orientacji ciężkich jonów w kanale wejściowym.
W szacunkach możliwości przetrwania nowo tworzonego układu superciężkiego omówię rolę bariery rozszczepieniowej, jako parametru kontrolującego to prawdopodobieństwo, oraz gęstość stanów wraz z jego zależnością od energii wzbudzenia i deformacji.
Na etapie formowania mono-nuklearnego tworu przedyskutuję rolę momentu pędu i stochastyczny charakter procesu wzbronienia reakcji fuzji.