Local densities are formed by acting several times on the scalar
and vector nonlocal densities with the relative momentum operator
and taking the limit of
.
Using the spherical representation, the possible
coupled
-tensors (10) (up to sixth order in derivatives)
are those given in Table 1
(replacing
with
).
Acting with
on the scalar nonlocal density
gives 16 different local
densities up to N
LO (one for every term in
Table 1). They are listed in Table 3.
When acting with
on the vector nonlocal densities
, one has to construct all
possible ways of coupling the
-tensors with the vector density.
Obviously, each of the 4 scalar (
) derivative operators gives
one local density, while each of the 12 non-scalar (
) derivative
operators gives three local densities. Altogether, from the vector
density one obtains 40 local densities up to N
LO. They are listed
in Table 4.
| No. |
|
density | |||||||||
| 1 |
|
|
0 | 0 | 0 | 0 | 1 | 1 | |||
| 2 |
|
|
1 | 1 | 0 | 1 | |||||
| 3 |
|
|
2 | 0 | 0 | 0 | 1 | 1 | |||
| 4 |
|
|
2 | 2 | 0 | 2 | 1 | 1 | |||
| 5 |
|
|
3 | 1 | 0 | 1 | |||||
| 6 |
|
|
3 | 3 | 0 | 3 | |||||
| 7 |
|
|
4 | 0 | 0 | 0 | 1 | 1 | |||
| 8 |
|
|
4 | 2 | 0 | 2 | 1 | 1 | |||
| 9 |
|
|
4 | 4 | 0 | 4 | 1 | 1 | |||
| 10 |
|
|
5 | 1 | 0 | 1 | |||||
| 11 |
|
|
5 | 3 | 0 | 3 | |||||
| 12 |
|
|
5 | 5 | 0 | 5 | |||||
| 13 |
|
|
6 | 0 | 0 | 0 | 1 | 1 | |||
| 14 |
|
|
6 | 2 | 0 | 2 | 1 | 1 | |||
| 15 |
|
|
6 | 4 | 0 | 4 | 1 | 1 | |||
| 16 |
|
|
6 | 6 | 0 | 6 | 1 | 1 |
| No. |
|
density | |||||||||
| 17 |
|
|
0 | 0 | 1 | 1 | 1 | ||||
| 18 |
|
|
1 | 1 | 1 | 0 | 1 | ||||
| 19 |
|
|
1 | 1 | 1 | 1 | 1 | ||||
| 20 |
|
|
1 | 1 | 1 | 2 | 1 | ||||
| 21 |
|
|
2 | 0 | 1 | 1 | 1 | ||||
| 22 |
|
|
2 | 2 | 1 | 1 | 1 | ||||
| 23 |
|
|
2 | 2 | 1 | 2 | 1 | ||||
| 24 |
|
|
2 | 2 | 1 | 3 | 1 | ||||
| 25 |
|
|
3 | 1 | 1 | 0 | 1 | ||||
| 26 |
|
|
3 | 1 | 1 | 1 | 1 | ||||
| 27 |
|
|
3 | 1 | 1 | 2 | 1 | ||||
| 28 |
|
|
3 | 3 | 1 | 2 | 1 | ||||
| 29 |
|
|
3 | 3 | 1 | 3 | 1 | ||||
| 30 |
|
|
3 | 3 | 1 | 4 | 1 | ||||
| 31 |
|
|
4 | 0 | 1 | 1 | 1 | ||||
| 32 |
|
|
4 | 2 | 1 | 1 | 1 | ||||
| 33 |
|
|
4 | 2 | 1 | 2 | 1 | ||||
| 34 |
|
|
4 | 2 | 1 | 3 | 1 | ||||
| 35 |
|
|
4 | 4 | 1 | 3 | 1 | ||||
| 36 |
|
|
4 | 4 | 1 | 4 | 1 | ||||
| 37 |
|
|
4 | 4 | 1 | 5 | 1 |
| No. |
|
density | |||||||||
| 38 |
|
|
5 | 1 | 1 | 0 | 1 | ||||
| 39 |
|
|
5 | 1 | 1 | 1 | 1 | ||||
| 40 |
|
|
5 | 1 | 1 | 2 | 1 | ||||
| 41 |
|
|
5 | 3 | 1 | 2 | 1 | ||||
| 42 |
|
|
5 | 3 | 1 | 3 | 1 | ||||
| 43 |
|
|
5 | 3 | 1 | 4 | 1 | ||||
| 44 |
|
|
5 | 5 | 1 | 4 | 1 | ||||
| 45 |
|
|
5 | 5 | 1 | 5 | 1 | ||||
| 46 |
|
|
5 | 5 | 1 | 6 | 1 | ||||
| 47 |
|
|
6 | 0 | 1 | 1 | 1 | ||||
| 48 |
|
|
6 | 2 | 1 | 1 | 1 | ||||
| 49 |
|
|
6 | 2 | 1 | 2 | 1 | ||||
| 50 |
|
|
6 | 2 | 1 | 3 | 1 | ||||
| 51 |
|
|
6 | 4 | 1 | 3 | 1 | ||||
| 52 |
|
|
6 | 4 | 1 | 4 | 1 | ||||
| 53 |
|
|
6 | 4 | 1 | 5 | 1 | ||||
| 54 |
|
|
6 | 6 | 1 | 5 | 1 | ||||
| 55 |
|
|
6 | 6 | 1 | 6 | 1 | ||||
| 56 |
|
|
6 | 6 | 1 | 7 | 1 |
One can also act on each of the local densities with derivative operators
of Table 1, and then couple ranks
and
to the
total rank
, i.e.,
In Tables 3 and 4, for completeness we also
show the time-reversal (
) and space-inversion (
) parities defined as,
Local densities constructed above are complex. Taking the complex conjugations gives relations derived in Appendix B:
| (27) |