next up previous
Next: THO and Gauss integration Up: Transformed Harmonic Oscillator Basis Previous: Parametrization of the LST

Axially deformed harmonic oscillator

 

In the present study, we restrict our HFB analysis to shapes having axial symmetry. For this purpose, we use HO wave functions in cylindrical coordinates, z, $\rho$, and $\varphi$,

 \begin{displaymath}\begin{array}{lll}
x & = & \rho \cos
\varphi \;, \\ y & = & \rho \sin \varphi \;, \\ z & = & z\;,
\end{array}\end{displaymath} (20)

which allows us to separate the HFB equations into blocks with good projection $\Omega$ of the angular momentum on the symmetry axis. [Note that the use of cylindrical coordinates is independent of working with equal oscillator lengths (13).] Since the use of a cylindrical HO basis is by now a standard technique (see, e.g., Ref. [16]), we give here only the information pertaining to constructing the cylindrical THO states.

The cylindrical HO basis wave functions are given explicitly by

 \begin{displaymath}\varphi_{\alpha}(z,\rho,\varphi,s,t)= \varphi_{n_{z}}(z)\varp...
...{im_{l}\varphi}}{\sqrt{2\pi}}\chi _{m_{s}}(s)\chi
_{m_{t}}(t),
\end{displaymath} (21)

where the spin s and isospin tdegrees of freedom are shown explicitly, nz and $n_{\rho}$ are the number of nodes along z and $\rho$ directions, respectively, while ml and msare the components of the orbital angular momentum and the spin along the symmetry axis. The only conserved quantum numbers in this case are the total angular momentum projection $\Omega$=ml+ms and the parity $\pi$= (-)nz+ml.

In the axially deformed case, the general LST (1) acts only on the cylindrical coordinates z and $\rho$ and takes the form

 \begin{displaymath}\begin{array}{llll}
\rho & \longrightarrow &
\rho^{\prime}\eq...
...quiv z^{\prime}(\rho,z) & =
\frac{z}{{r}} f_z({r}),
\end{array}\end{displaymath} (22)

with the corresponding Jacobian given by
 
D $\textstyle \equiv$ $\displaystyle \frac{\partial(x^{\prime},y^{\prime},z^{\prime})}{\partial(x,y,z)} =
\frac{\rho^2f^{\prime}_\rho f_\rho f_z + z^2f^2_\rho f^{\prime}_z}{{r}^{4}} .$ (23)

Finally, the axial THO wave functions are
 
$\displaystyle \psi_{\alpha}(z,\rho,\varphi,s,t)$ = $\displaystyle D^{1/2}\textstyle{\
\varphi_{n_{z}}\left(\frac{z}{{r}}f_z({r})\right) \varphi_{n_{\rho
}}^{m_{l}}\left(\frac{\rho }{{r}}f_\rho({r})\right)}$  
  $\textstyle \times$ $\displaystyle \frac{e^{im_{l}\varphi}}{\sqrt{2\pi}}\chi _{m_{s}}(s)\chi _{m_{t}}(t).$ (24)

The assumption of a single oscillator length (see Sect. 2.3) that we make in our calculations translates in the axial case to


 \begin{displaymath}L_\rho=L_z \equiv
L_0=\frac{1}{b_0}=\sqrt{\frac{\hbar}{m\omega_{0}}},
\end{displaymath} (25)


 \begin{displaymath}f_\rho({r})=f_z({r}) \equiv f({r}),
\end{displaymath} (26)

and the Jacobian (23) reduces to expression (15).


next up previous
Next: THO and Gauss integration Up: Transformed Harmonic Oscillator Basis Previous: Parametrization of the LST
Jacek Dobaczewski
1999-09-13